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Abstract—Flight delays occur in the air transportation system
when disruptive events such as weather, equipment outage, or
congestion create an imbalance between system capacity and
demand. These cycles of disruptions and subsequent recoveries
can be viewed from a dynamical systems perspective: exogenous
inputs (convective weather, airspace restrictions, etc.) disrupt the
system, inducing delays and inefficiencies from which the system
eventually recovers. We study these disruption and recovery cycles
through a state-space representation that captures the severity
and spatial impact of airport delays. In particular, using US
airport delay data from 2008-2017, we first identify representative
disruption and recovery cycles. These representative cycles pro-
vide insights into the common operational patterns of disruptions
and recoveries in the system. We also relate these representative
cycles to specific off-nominal events such as airport outages, and
elucidate the differing disruption-recovery pathways for various
off-nominal events. Finally, we explore temporal trends in terms
of when and how the system tends to be disrupted, and the
subsequent recovery.
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I. INTRODUCTION

The size and scale of the air transportation system render
disruptions inevitable. In the US, more than 2 million flight
operations were delayed in 2018, caused by everything from
extreme weather to equipment outages [1]. Some examples
of extremely disruptive events include the Chicago area con-
trol center fire on September 26, 2014; the March 2017
nor’easter; Hurricane Sandy and its effects on the New York-
area airports; and computer outage issues at Delta Air Lines’
Atlanta headquarters in August of 2016. Such disruptions,
along with the associated flight delays and cancellations, result
in significant monetary and environmental losses [2]. However,
as with any resilient engineering system, a robust design
enables swift recoveries with minimal secondary impacts. To
this end, the Federal Aviation Administration (FAA) has a
goal of “[achieving] 90% capacity at the top 30 airports with
the most passenger activity within 24 hours [of a disruption],
and 90% capacity at facilities that manage air traffic at high
altitude and in the vicinity of airports within 96 hours” [3].
Disruptions and subsequent recoveries in the air transporta-
tion system vary in their geographical extent (number of
airports affected), intensity (severity of resultant delays and
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cancellations), and duration (ranging from hours to days). The
inherent variability of factors such as weather in the operating
environment, along with the complex interconnectivity of the
system, make it difficult to extract actionable insights from
past events. Our work focuses on formalizing and analyzing
disruptions and recoveries in the air transportation system by
leveraging techniques that evaluate aviation disruptions from
the perspective of signal processing in networked systems [4].

A. Motivation

We now discuss and motivate two questions that we will
address in our work. The first relates to defining and formal-
izing periods of disruptions and recoveries comprehensively.
A simple way to do so may be to consider the total delay
as a measure of system disruptions, and then define any
time interval in which delays exceed some threshold as a
disrupted period. However, this approach is unable to capture
spatial information regarding the geographical extent of the
disruption. Suppose only one strongly-connected airport — and
no other airport in the system — is experiencing high delays.
The total delay metric may not classify this as a disruption,
even though this scenario is unexpected, and may indicate
an impending propagation of delays. Similar approaches that
monitor temporal trends in delays at specific airports or
origin-destination (OD) pairs are also unable to account for
network connectivity-based information. Finally, in the context
of extreme events such as hurricanes and nor’easters, the start
of an event may not always coincide with the start of the
system disruption. For example, airlines may proactively delay
or cancel flights before the event, in which case the disruption
precedes the event; on the other hand, airlines may opt to
continue operations that progressively deteriorate, in which
case the opposite order occurs. Hence, we address this question
by providing a holistic method to identify both disruptions and
the subsequent recovery phases, based on the magnitude and
geographical distribution of delays.

The second motivation relates to understanding broader
trends and patterns in historical disruption-recovery cycles
in order to improve system predictability and resilience. As
discussed earlier, a significant challenge to analyzing past
disruptions and recoveries is their inherently large variability.
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Thus, seemingly simple questions — what is the typical du-
ration of disruptions due to specific off-nominal events; do
two different events with similar delay impacts recover in
different ways; is the recovery phase longer than the disruption
phase; can we predict the onset and duration of the recovery
phase; and so on — become very difficult to answer. Addressing
these questions requires not only precise definitions for the
onset and progression of disruptions and recoveries, but also
the identification of “typical” or “representative” patterns that
disruption-recovery cycles tend to follow.

Our main contributions lie in formalizing a framework for
examining disruptions and recoveries in networks, drawing
from graph signal processing and the state-space representa-
tion of dynamical systems. Specifically, we consider disrup-
tions and recoveries not only in terms of signal magnitudes,
but also their spatial distribution and temporal evolution. Our
framework is of potential use to air traffic managers who might
be interested in characterizing and improving the resilience of
air transportation systems. Airlines and passengers may also
benefit from an improved understanding of disruptions and
subsequent recoveries. Finally, our work generates a reference
data set of disruption-recovery cycles that can be used to
benchmark system recovery (available upon request).

B. Prior work

Prior work has defined aviation system recovery in terms of
flight delays, displaced or delayed crews, and disrupted or
delayed passengers [5, 6]. However, these recovery definitions
and strategies are airline-specific and of limited use in defining
and measuring system-wide characteristics. We expand on this
line of work by incorporating system-wide spatio-temporal
information [4, 7], leading to our comprehensive definitions
of disruptions and recoveries.

More broadly, analyzing disruptions and recoveries in a
networked system is a growing field of study, and is closely
related to understanding system resilience. Significant prior
work has focused on developing models for such systems,
and then analyzing them theoretically or through simulations
[8, 9]. In [10], a system-level analysis was performed to
model different types of synthetic disruptions and recoveries
for simplified network models; they found that in simple
aviation networks, there was asymmetry in the disruption and
recovery timescales. Our work complements this literature by
developing a framework that enables a data-driven analysis of
historical disruption-recovery cycles.

Finally, while post-hoc analyses of singular off-nominal
events [11, 12] and tactical disruption management strategies
[13] have been explored, there have been no cohesive efforts
to classify multiple types of disruption-recovery events. There
also remains the lack of a formal framework for defining
disruptions and recoveries in networked systems, a concern
that we address in Section II.

C. Contributions

The key contributions of this paper are as follows:

\9]

1) We leverage techniques from graph signal processing to
comprehensively define the start, progression, and end
of flight delay disruption-recovery cycles in a network of
airports. Our method not only considers the magnitude
of delays, but also their spatial distribution, their relation
to historical delay patterns, and temporal trends.

2) We identify disruption-recovery trajectories using oper-
ational data, and develop appropriate features in order
to cluster them into representative groups. One of our
key technical contributions is the choice of incorpo-
rating spectral graph-theoretic and temporal features to
describe disruptions and recoveries in airport networks.

3) We uncover and interpret two interesting observations
related to: (1) the behavior of disruption and recovery
during off-nominal events (e.g., airport outages), and (2)
the temporal trends in disruption-recovery trajectories.

II. DATA AND METHODOLOGY
A. Data sources and processing

We use hourly airport delay data for the years 2008 to 2017
from the FAA’s Aviation System Performance Metrics (ASPM)
database for our analysis, focusing on the US Core 30 airports
(see Figure 10 in the appendix for a geographical overview),
which were responsible for 72% of all US enplanements in
2017 [14]. For each hour in this data set, we construct a graph
with the airports as nodes, and the signal at each node being
the total average arrival and departure delay experienced by
all scheduled flights in that hour at the airport. The adjacency
matrix for these graphs are the hourly 30 x 30 correlation
matrices evaluated by considering the hour-by-hour subsets of
the 10-year airport delay data set. Thus, there are 24 adjacency
matrices, corresponding to each hour of the day. For each
graph, the graph Laplacian is the difference between the degree
and the adjacency matrix. With the hourly graph Laplacian, we
can compute the total variation (TV) for each hour. The graph
signal vector x(t) = [z; ] € R3*! represents the delay z; ;
at time t for airport ¢. The total delay (TD) is the 1-norm
of x(t), and the total variation is TV (x(t)) = x(¢)TLx(t),
where L is the Laplacian for the hour-of-day of time ¢ [4].

B. Disruption-recovery trajectories (DRTs)

We represent disruptions and the subsequent recoveries as
disruption-recovery trajectories (DRTs) in the TV-TD state
space. We define a DRT T,;- to be a chronologically or-
dered set of TD and TV values, capturing the evolution of
the magnitude (TD) and spatial distribution (TV) of airport
delays. DRTs project the state of the system in a qualitatively
interpretable manner. For example, we can assess how the
system evolves in terms of airport delays from t; to ts by
looking at the progression of the TV-TD state space trajectory
(=), TV (x(t1))) = (Ix(E2)[, TV (x(t2)))-

We further divide the TV-TD space into regions according
to operationally-interesting regimes. We illustrate one potential
(disjoint) partition that we utilize for our analysis in Fig-
ure 1(a). This partition distinguishes a nominal region (i.e.,
nominal TD and TV levels), a high-TD region (i.e., delay
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magnitudes are high), and an unexpected TV region (i.e.,
the spatial distribution of delays is unexpected). Prior work
has shown that unexpected spatial distributions correspond to
regions with very high or low TV [4, 7]. In particular, given an
observation x(t) belonging to a certain hour, we can compute
the bounds on the TV for identifying delay distributions that

are spatially perturbed at time ¢, denoted as [@,a @
hour(t
using the methods proposed in [4, 7, 15]. We also compute

a delay threshold fo"® € R for each hour to identify

delay distributions that have a very high magnitude of TD.
The regions in Figure 1(a) are defined as follows:
(.e.,

() Region (nominal): TV (x(t)) € [@,ah »
our(t
spatial distribution is nominal), and ||x(¢)| is less than

f;%ur(t) (i.e., the magnitude of delay is not abnormally

high).

(S) Region (scale): TV (x(t)) € [@,ah © (i.e., the
our(t

spatial distribution is nominal), but ||x(¢)| is greater
than f%ODur(t) (i.e., the magnitude of delay is currently
elevated).

(D) Region (distribution): TV (x(t)) ¢ [@,ahour(ﬂ

(i.e., the spatial distribution of delays is unexpected).
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Fig. 1. (a) A disjoint partition of the TV-TD state space into three regions; (b)
Schematic representation of a disruption-recovery trajectory T+ constructed
via Algorithm 1 anchored in time at ¢*.

Algorithm 1 describes a method for constructing an
operationally-significant DRT T;«, given the 3-region parti-
tion from Figure 1(a). Specifically, it anchors a DRT at a
particular time index t* such that (||x(¢*)]|, TV (x(t*))) €
(D). Algorithm 1 is O(T) where T is the total number of
hours, and it constructs ¢*-anchored DRTs forward in time.
This algorithm identifies minimal-length trajectories that have
at least one state in the region with unexpected spatial delay
distributions, i.e., region @, and the start and end state in

region @

C. Nomenclature and definitions

The state at time t is the TD and TV of the system, i.e.,
(Ix(@®)]l , TV (x(t))). We refer to a sequence of consecutive
states as a trajectory, and a trajectory of length 2 as a maneu-
ver. A DRT of length N consists of N —1 maneuvers between
consecutive hours. The TV-TD state space is partitioned into
regions @, @, and @ Hence, every point on the TV-TD
space (i.e., every state) belongs to one of three regions. A

Algorithm 1 Constructing DRTs given a 3-region disjoint
decomposition of the TV-TD state space.
Input: Labeled states indexed by time ¢ € [O At T], where At = 1 hour;

Region labels R(t) € {@, @, @}

Output: Set of DRTs Ty € T

ts < @; T + w; ]IDRT <~ FALSE
fort € [0: At :T)] do
if R(t) = (V) then

| ts <+t
end
it R(t) =(D)Ats # 0 then

‘ IpRT TRUE

tr <t

end
if R(t) = A I1prr = TRUE then
Ty = {(lIx(D)I, TV (x(7))) |7 € [ts,t]}
ts + t
lDRT <+ FALSE

end
end
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Fig. 2. A 12-hour long DRT transitions out of the nominal region at 1700Z.
Arrows denote maneuvers, and their colors denote the succeeding region (see
Figure 1). Select DRT features from Section II-E such as signed enclosed
area and trade-off maneuvers (brown dashed indicators) are annotated. Note
that each state is a one hour interval.

transition is a maneuver where the two consecutive states are
in different regions. Note that a DRT is the minimal trajectory
(shortest-length trajectory) that starts and ends in region @
and contains at least one state in region @ We further classify
each maneuver into two categories (Figure 3). A symbiotic
maneuver is one in which both TD and TV are increasing,
or that both are decreasing. On the other hand, a trade-off
maneuver is one in which the TV and TD change in opposite
directions. Symbiotic maneuvers indicate pure disruptions or
recoveries, whereas trade-off maneuvers are more nuanced, as
one quantity is recovering at the detriment of the other. For
example, a trade-off maneuver could indicate that although the
system delay is decreasing, its spatial variability is increasing.

D. Disruptions and recoveries

In order to define disruptions and recoveries, we take into
account the maneuver type (i.e., symbiotic versus trade-off)
and whether or not a transition has occurred. For a DRT of
length N, we define the start of a disruption to be a transition
out of @, and the end of a recovery to be a transition into @
Among the remaining maneuvers, symbiotic maneuvers with
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Fig. 3. Symbiotic and trade-off maneuvers in TV-TD space. The star at the
center indicates the current state.

increasing TV and TD are defined as a disruption segment, and
symbiotic maneuvers with decreasing TV and TD are defined
as a recovery segment. Trade-off maneuvers inherit disruption
or recovery classifications from the previous maneuver. The
four possible trade-off maneuvers are defined as follows:

i. Disruption-in-TV segment: Increasing TV and decreasing
TD following a disruption.
ii. Disruption-in-TD segment: Increasing TD and decreasing
TV following a disruption.
iii. Recovery-in-TD segment: Increasing TV and decreasing
TD following a recovery.
iv. Recovery-in-TV segment: Increasing TD and decreasing
TV following a recovery.

Trade-off maneuvers are, by definition, a recovery along one
axis and a disruption along the other. Our convention therefore
assumes that a trade-off maneuver predominantly follows the
trend of the preceding maneuver.

E. DRT clustering features

We cluster DRTs using twelve features that capture various
operational characteristics:

DRT length: This feature, denoted by |Ty«|, captures the
duration of a DRT. The minimum DRT length is 3 hours;
the shortest DRT is given by @ — @ — @

Duration in (S) and (D) regions: These features represent the
number of hours in a DRT during which the system is either
experiencing high delays (region (S)) or unexpected spatial
delay distributions (region @). The minimum number of states
in region @ is 1.

Average TD and TV intensity: For each DRT, we calcu-
late the average TV and TD, and normalize them by their
respective maximum values. The resultant features reflect the
intensity in terms of the magnitude or spatial distribution of
delay. A DRT where every hour attains a TD and/or TV value
close to the maximum is considered to be more intense, with
TD and/or TV intensity values close to 1.

Signed enclosed area: Figure 2 illustrates how in some
DRTs, the disruption phase is characterized by higher spatial
variability in the delay patterns, whereas in others, the spa-
tial variability is higher during recovery. We use the signed
enclosed area of a DRT as a feature:

%Z (x(Eir) | = lIxE) D) (TV (x(tig1)) + TV (x(2:)))

where the summation is over all maneuvers in the DRT. This
computation is shown in Figure 4. If the area is negative,
then more unexpected spatial delay distributions are associated
with decreasing TD, whereas if the area is positive, these
unexpected spatial delay distributions are associated with
increasing TD. Note that this is an aggregate measure over
an entire DRT.

Total Variation
Total Variation

= aF - +

I Total Delay I Total Delay
(@) )

Fig. 4. A DRT where higher TV is associated with recovery (leff), and a
DRT where higher TV is associated with disruption (right).

Maximum TD and TV values: These features are the
maximum observed TD and TV values for each DRT.
Number of symbiotic and trade-off maneuvers: These
features are the counts of each type of maneuver in a DRT.
Length of symbiotic and trade-off maneuvers: The length of
a maneuver is defined as the Euclidean norm of the maneuver
in R2. We use the total length of the symbiotic and trade-
off maneuvers as features that indicate the dominance of each
maneuver type. For example, given a maneuver from (1, 1)
to (10, 10) and a maneuver from (1, 1) to (100, 100), both
are symbiotic maneuvers, but the latter is a more pronounced,
dominant evolution within the TV-TD state space.

ITI. REPRESENTATIVE DRTS
A. Average DRT characteristics

Algorithm 1 yields 2,322 DRTs composed of 12,350 hours
(approximately 14% of all hours) within the 10-year span
contained in our data set. The average length of a DRT, i.e., the
average time between the system state leaving and returning
to the nominal @ region, is 5.3 hours. Hence, the average
duration during which the system is either in the disruption
or recovery phase is 3.3 hours (subtracting the start and end
nominal hours). Two of these hours are in the high-delay
region (S), and one hour is in the unexpected distribution
region @ In other words, although most of the duration
of a typical DRT involves only high magnitudes of delay
(the conventional measure of a disruption), one-third of the
duration is associated with the unusual spatial distribution of
delay, and not necessarily its magnitude.

Recall that the TD and TV intensities measure how the val-
ues for each hour within a DRT compare to the maximum TD
or TV values for that DRT. Operationally, a higher intensity
indicates that both the disruption as well as the recovery of
the system happened in a shorter time span, or in other words,
most of the hours were spent close to the peak disruption state.
Figure 5 shows the histograms of the average TD and TV
intensities for each DRT. The distribution of ||x|| (i.e., the TD)
is left-skewed with a mean of 0.83, whereas the distribution of
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TV values is more symmetric with a mean of 0.57. The figure
implies that when disruptions (and subsequently, recoveries)
occur, the TD increases (and decreases) rapidly in time, but the
effect on the spatial distribution of delay is more variable and
evolves slowly. In other words, DRTs display faster changes
along the horizontal (TD) axis than the vertical (TV) axis.

200 -
I
ETV(x) n

150 | M

100

|
all |

0 0.2 0.4 0.6 0.8 1
Average intensity

Occurrence (hours)

Fig. 5. Distribution of TD and TV intensity values.

Recall that the signed enclosed area of a DRT reflects
whether the TV was higher during increasing delays (pos-
itive area) or decreasing delays (negative area), aggregated
across the entire DRT. The average signed area is positive
(6.72 x 10° min®), indicating that the spatial distribution of
delays tends to be more varied and unexpected during the
disruption phase as compared to the recovery phase.

The last feature that we discuss in an average sense across
all 2,322 DRTs is the number of symbiotic and trade-off ma-
neuvers. Since the average length of a DRT is approximately
5 hours, the average number of maneuvers in the TV-TD state
space is 4. Out of these, the average number of symbiotic
maneuvers is 3, with 1 maneuver being a trade-off between
TD and TV. Although the system prefers to evolve such that
both TD and TV are increasing or decreasing, 25% of the times
the system state exhibits a decrease in TD and an increase in
TV, or vice versa. Since TV(x) = xTLx, there is a positive
quadratic relationship between TV and TD, indicating that the
system typically will evolve symbiotically. The 25% of times
where the system state exhibits trade-off maneuvers form an
interesting set of airport delay behaviors, possibly reflecting
the influence of external inputs (Traffic Management Initiatives
or TMIs, airline recovery actions, etc.) in the disruption-
IECOVery process.

B. Clustering DRTs

We used k-means clustering with the 12 features from Section
II-E in order to determine representative DRTs from the
set of 2,322 DRTs. While other clustering methods such as
DBSCAN could be used, we chose k-means clustering for its
interpretable parameter choice (i.e., number of clusters) and
simplicity. Prior to clustering, we standardize all feature obser-
vations by the feature mean and standard deviation. We select
k = 7 clusters, taking into account the within cluster sum-
of-square (WCSS) error (Figure 6), and the cluster population

and interpretability. Each cluster centroid provides an average
representation of the DRTs that belong to that cluster. We list
the centroids, along with pertinent DRT features, descriptive
labels, and cluster population in Table I.

4
2210
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04 ‘ ‘ ‘ ‘

5 10 15 20
Number of clusters k

Fig. 6.

clusters.

Within cluster sum-of-square (WCSS) error versus the number of

C. Analyzing representative DRTs

For each representative DRT listed in Table I, we discuss
the operational characteristics that describe the disruption and
subsequent recovery. Furthermore, these representative DRTs
help identify when a disruption begins, when the recovery
begins, and when the event ends, using historical data.

We now list the representative DRTs, along with a shortened
tag that we will use to refer to them:
Short DRTs with spatially-perturbed disruption segments
(Short_bDis): This type of DRT is the most prevalent
(50% of all DRTSs), and is a short-duration (3 hours) event.
Short_Dis DRTs indicate brief disruptions; for example, a
transient pop-up thunderstorm around the vicinity of a major
airport. In comparison to the other short representative DRT
(Short_Rec), the average area for Short_Dis is positive,
indicating that the airport delays were spatially distributed in a
more unexpected manner during disruption than recovery. Fur-
thermore, the maximum TV value observed for Short_Dis
is significantly higher than Short_Rec, even though their
maximum TD values are comparable.
Short DRTs with spatially-perturbed recovery segments
(Short_Rec): This DRT type accounts for 33% of all DRTs.
Similar to Short_Dis, these DRTs represent transient off-
nominal conditions, with an average length of 4 hours. The
average TD and TV intensity values for Short_Rec are
smaller than those of Short_Dis, indicating that the system
state does not typically attain the maximum TD and TV values.
Furthermore, the area is negative but of the same magnitude as
Short_Dis, meaning that the spatial distribution of airport
delays was more unexpected during recovery segments than
disruption segments.
Medium-length DRTs (Med): These DRTs have an average
length of around 6 hours, indicating that these disruptions and
subsequent recoveries account for significant portions of an
operational day in the US airspace system. The relative rarity
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TABLE I
THE SEVEN REPRESENTATIVE DRTS AND THEIR FEATURES.

DRT name | Ty | Region @ Region @ LD | A T Ar?as Max. TD Ma.x.zTV Symbiotic | Trade-off Pop.
(hours) (hours) (hours) intensity intensity (min®”) (min) (min~) (%)
Short_Dis 3 0 1 0.91 0.70 1.04x10° 6.50x10% | 4.66x10* | 1 1 1163
(50%)
Short_Rec | 4 1 1 0.76 047 SL11x10% | 665x102 | 1.05%x10% | 2 1 7
(33%)
Med 6 2 2 0.76 0.43 -5.74%10% | 1.19%x10% | 550x10° | 4 1 :89;))
OpsDay_Dis | 15 11 2 0.62 0.26 5.43x10% 221x10% | 2.19x10% | 12 2 (2]]%)
6 3 5 142
OpsDay_Rec | 18 15 1 0.68 0.35 -4.98%10 1.68x 10 5.02%10 13 4 (&%)
MultiDay 55 49 4 0.59 0.22 2.20%10% 228%10% | 1.07x10% | 40 14 (212% )
Dec08Event | 229 221 6 0.57 0.23 8.46x 10% 3.09x10° | 1.21x10% | 173 55 1

of these longer-duration events are reflected in its cluster pop-
ulation: only 196 out of 2,322 DRTs (about 8%) are classified
as Med. We also note that, similar to Short_Rec, the airport
delays were spatially distributed in a more unexpected manner
during recovery segments than disruption segments.
Operational day-long DRTs with spatially-perturbed dis-
ruption segments (OpsDay_Dis): With average DRT
lengths of approximately 15 hours, these disruptions and
subsequent recoveries account for a major portion of an oper-
ational day. For example, a DRT in OpsDay_Dis beginning
in the morning would not recover back into the nominal @ re-
gion until well into the evening. Similar to the difference be-
tween Short_Dis and Short_Rec DRTs, OpsDay_Dis
and OpsDay_Rec DRTs differ by the signed enclosed area.
The spatial distribution of airport delays was more unexpected
during disruption segments for OpsDay_Dis DRTs. This
DRT type accounts for less than 1% of all DRTs.
Operational day-long DRTs with spatially-perturbed re-
covery segments (OpsDay_Rec): The temporal persistence
of these DRTs is similar to OpsDay_Dis, with an average
length of 18 hours. As we have noted in OpsDay_Dis, the
spatial delay distribution for OpsDay_Rec is more unex-
pected during recovery segments. Furthermore, the maximum
TV value is significantly lower than OpsDay_Dis. Both
OpsDay_Rec and MultiDay DRTs tend to occur in winter
months, as we will discuss further in Section IV when we
combine information regarding specific off-nominal events
(nor’easters, hurricanes, etc.) and month-of-occurrence.
Multi-day DRTs (MultiDay): This cluster of DRTs repre-
sents a prolonged disruption and subsequent recovery event,
with average lengths of over 2 days (55 hours). The maximum
observed TD and TV values are also some of the highest
among all clusters, indicating that these lengthy DRTs impact
the system severely in terms of both magnitude and spatial dis-
tribution of delays. We also note that the spatial distribution of
delays tend to be more unexpected during disruption segments
for MultiDay DRTs, as signified by the positive average
area. The unique characteristic of these MultiDay DRTs is
that there was no recovery back to a nominal @ region even
during the overnight hours, when the system typically has low
traffic and enough slack to reset the disruption.

6

We refer to the last cluster in Table I as DecO8Event;
the fact that one unique DRT was placed in a cluster by itself
indicates that it differs significantly from the other representa-
tive DRTs. Since it is a singular, extreme disruption-recovery
event spanning almost 10 days (229 hours) in December 2008,
we analyze it separately and present it as a case study.

In Section III-A, we saw that the average DRT was com-
posed of 75% symbiotic maneuvers and 25% trade-off maneu-
vers. Even though this average does not have to hold within
each representative DRT cluster, the ratio of symbiotic to
trade-off maneuvers is robust to variations in the actual length
of the DRT, assuming that it is long enough to observe such
behavior. This indicates that even during prolonged disruption-
recovery events, the preferred evolution of the system state is
still in symbiotic directions, with maneuvers occurring in the
trade-off direction at a frequency of only 20-25%.

IV. EVALUATING OFF-NOMINAL EVENTS AND TEMPORAL
TRENDS

A. Mapping off-nominal events to DRTs

We identify the following types of off-nominal events using
weather data and news sources: nor’easters, hurricanes, thun-
derstorms, and airline- or airport-specific outages. This yields a
set of 178 days which are then cross-referenced with the set of
DRTs, allowing us to examine what type of DRTs are common
during each of these events. Figure 7 shows a normalized bar
plot depicting the DRT type breakdown for each of the four
off-nominal events.

fii:

Hurricane  Nor’easter Outage Thunderstorm

0.8
. [l OpsDay _Rec
g0.6 EVed
o [ |MultiDay
é‘ Il Short Rec
= 0.4 [ Short Dis
[[70psDay_Dis

f=4
B

Fig. 7. Frequency of representative DRTs, given the occurrence of an off-
nominal event. The extreme DecO8Event cluster is not shown.
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Long-lasting DRTs (i.e., OpsDay_Rec, OpsDay_Dis,
and MultiDay) are present in over 70% of nor’easter- and
thunderstorm-type days, but only around 37% of days with an
airline- or airport-specific outage. In particular, 37% of DRTs
during nor’easters are of type OpsDay_Rec, and 44% of
DRTs during thunderstorms are MultiDay. The spatial dis-
tribution of airport delays during nor’easter days, particularly
during recovery segments, tends to be more unexpected than
during disruption segments. This could be indicative of airline-
specific recovery efforts that result in airport delays at unusual
combinations of airports. Examining the average representative
DRT lengths, the time it takes the system to be disrupted
and recover from nor’easter-type days tends to be shorter
than for thunderstorm-type days, which are dominated by
MultiDay DRTs. This may be explained by the more volatile
and disruptive nature of thunderstorm squall lines compared
to large winter storms, resulting in more unpredictable DRTs.

63% of DRTs are Med-length or shorter on outage-type
days, indicating that the disruption and recovery of the system
during these events are short-lived. Similar to nor’easters, the
spatial distribution of airport delays is higher during recovery
segments, with 68% of DRTs having a negative area. Finally,
we note that for many hurricane-type days, due to pre-emptive
cancellations and airport closures, both TD and TV values are
suppressed. Hence, most DRTs (84%) during hurricane-type
days are short-term disruptions and recoveries.

B. Monthly distribution of DRTs

In order to observe temporal trends in DRT occurrences, we
plot the frequency of occurrence of representative DRT types
in Figure 8, splitting the data set into a 2008-2016 subset, and
a 2017 subset. The reason for this split is that certain represen-
tative DRTs in the year 2017 behaved differently than in the
preceding 9 years. Specifically, MultiDay DRTSs primarily
appeared only in the winter months prior to 2017. By contrast,
42%, 30% and 23% of all DRTs in April, July, and August
2017 were MultiDay DRTs. Furthermore, MultiDay DRTs
in April and July 2017 are predominantly thunderstorm-type
off-nominal days. This indicates an increased vulnerability
of the system to thunderstorms in the summer of 2017.
Further investigation would be needed to determine what
specific initiatives and policies might have caused this shift
in disruption-recovery dynamics in 2017.

C. December 2008 DRT: Case study

Dec08Event was an extremely long DRT (229 hours) with
a sequence of disruptions and subsequent partial recoveries,
occurring between December 15 and December 25, 2008.
To better understand this DRT, we superimpose FAA-issued
advisories related to Airspace Flow Programs (AFP), Ground
Stops (GS), and Ground Delay Programs (GDP) for the
duration of the Dec08Event DRT (Figure 9). The combined
number of GS- and GDP-related advisories, a measure of
airport capacity reductions, remained at, or above, 29 for most
of the Dec08Event DRT. There was a brief drop in the
number of GS- and GDP-related advisories on December 22,
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Fig. 8. Occurrence counts of DRT hours for each month, split by represen-
tative DRT clusters; counts (a) averaged across 2008-2016 and (b) for 2017.

but the continuity in the Dec08Event DRT indicates that
the system was unable to return to a nominal TV-TD state
before undergoing another disruption-recovery event between
December 23 to December 25. The system returned to a
nominal state for about 48 hours, before entering into a
OpsDay_Rec-type DRT between December 27 and 28.
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Fig. 9. Plot of AFP-, GS-, and GDP-related advisories issued by the FAA
during the primary December 2008 DRT and subsequent shorter DRTs.

The DecO08Event DRT captures a series of disruptions
caused by winter weather; it began with widespread ice storms
throughout the US on December 11-12, and was followed by
a separate, larger weather system that resulted in heavy rains
in the West Coast, before transforming into a disruptive winter
storm over the Midwest. The inability of the system state to
return to the nominal @ region, even during late evening and
early morning periods when the system typically resets, was
pronounced during this event.
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V. CONCLUDING REMARKS

This paper defined disruptions and subsequent recoveries using
the delay magnitude (TD) and the spatial distribution (TV) of
the delays, in conjunction with a low-dimensional state-space
trajectory representation. We presented a partition of the TV-
TD state space into various regions, representing nominal con-
ditions, high-delay conditions, and conditions with unexpected
spatial distributions of delay. We then focused on the problem
of finding representative DRTSs. The seven representative DRT
clusters identified had interpretable characteristics in terms
of lengths (i.e., the duration of disruptions and subsequent
recovery), intensities, and delay behavior during the disruption
Or recovery segments.

The next steps will be to examine each of the individual
DRTs at a more microscopic level, with a focus on time
periods involving trade-off maneuvers. Doing so will help
reveal whether these trade-off maneuvers correspond to the
implementation of certain TMIs, driving the TD and TV
values in a direction not normally traversed by them. Another
direction of future research is to leverage the representative
DRTs as features for predicting future system behavior, both
at the system-wide and airline-specific levels.
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Fig. 10. Geographic locations of the US airports considered in our analysis
(IATA code given). Note that HNL is not shown for simplicity.



