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Abstract—Real-time network intrusion and anomaly detection 

systems designed for battery powered devices are in high demand. 

This paper presents a study of unsupervised and supervised 

memristor based neuromorphic systems for such tasks. 

AutoEncoder (AE) and Multilayer Perceptron (MLP) algorithms 

are used to design memristor based intrusion and anomaly 

detection systems. The autoencoder shows strong intrusion 

detection performance with accuracy greater than 92.5% on zero-

day attack packets. A real-time online incremental learning and 

anomaly detection system is also designed using the effective 

anomaly detection abilities of the AE. The learning system uses 

two autoencoders, one AE is pretrained for classifying network 

packets as normal and malicious, and the second AE is initialized 

with random weights and learns malicious data incrementally. 

Thus, this system is able to flag new attack classes during runtime. 

The real-time intrusion detection system performs with an 

accuracy greater than 89.7%. The memristor based 

implementation shows that the proposed system can be 

implemented using extreme low power for edge and IoT 

applications. 
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I. INTRODUCTION  

Modern computing devices operating in the real world are 
exposed to the pervasive internet system, while continuously 
sharing a huge amount of data.  The ubiquity of the internet also 
increases the possibility of theft of valuable and confidential 
information. According to [1], the minute a vulnerability is 
exposed to an intrusion, data confidentiality, integrity, and 
availability is at risk, which can cause an unrequitable loss for 
an organization. To protect a network from the threat of 
breaching, it needs a continuous surveillance system [2].  

To increase internet security, there are two eminent 
intrusion detection systems available in the industry. One is a 
signature/rule-based system which is known as SNORT, and 
the other is an anomaly-based system [3]. SNORT compares an 
incoming packet with a list of stored signatures to detect if the 
packet is a threat to the network. The drawback of the system is 
that it cannot detect any new attacks, especially ‘zero day’ 
attacks [3]. The anomaly-based intrusion detection system 
compares the incoming packets with learned patterns to detect 
an intrusion. Neural network-based intrusion detection systems 

have shown promising results when performing anomaly 
detection. The neural networks exhibit adaptability and are able 
to learn in real-time [1], which makes these types of systems 
strong candidates when used for online learning and adaptable 
threat detection [4].  

The learning mechanisms in neural networks are of two 
main types, supervised and unsupervised [5]. In supervised 
learning, the network uses labeled data for learning and 
classification. Some supervised learning algorithms include the 
multilayer perceptron (MLP) and the convolutional neural 
network (CNN) [6]. Unlike supervised systems, unsupervised 
learning does not require data labels to learn, and the systems 
are primarily used as generative models. Autoencoders (AEs) 
and generative adversarial networks (GANs) [6] are examples 
of unsupervised learning systems. Researchers have been 
investigating both supervised and unsupervised learning for 
intrusion detection applications, but supervised techniques are 
primarily good for detecting known attack categories. In the 
case of unsupervised learning, the network learns to find the 
anomalies within a set of packets, so this technique is more 
suitable for detecting categories that have not been 
predetermined [7]. The main bottleneck of a neural network 
system is the requirement of a large memory unit and high-
power consumption during training, especially when graphics 
processing units (GPUs) are used for training the network [8]. 

Modern communication and computation have been shifting 
to battery powered smart devices like IoTs and edge computing 
modules. The IoTs are connected to the communication channel 
and continuously share a huge amount of data. These IoTs 
collect data on human health, living habits, and even location 
[9]. Real-time network monitoring and intrusion detection is 
essential for these low power systems capable of storing and 
transmitting personal data. 

To enable neural network based online learning and real-
time monitoring for battery powered devices, the memristor can 
be viable solution. Memristors are nano-scale non-volatile 
resistive memory devices which can retain learned information 
when removed from a power source [10]. Memristor based 
neuromorphic systems have been developed recently for 
different applications including network security [4,10,11], and 
image reconstruction and recognition [12,13]. These devices 



 

 

can be patterned with a very high density, and they are able to 
perform multiply- add operations with extreme efficiency in a 
highly parallel fashion [10-14].  

In this work, we investigated both supervised (MLP) and 
unsupervised (autoencoder) neural network algorithms to 
determine their performance for network intrusion detection in 
two different use cases (using the NSL-KDD dataset). In the 
first case, we determined each network’s ability to learn and 
recognize a known set of attacks. In the second case, each 
system was trained, and then evaluated with a dataset that 
contained some attacks types that were not learned previously, 
representing the case of zero day attacks. The algorithms 
developed were then ported to simulated memristor crossbar 
systems to show successful operation at extreme energy and 
area efficiency.  

We also examined incremental online learning and real-time 
packet detection in this work. In the real-world, network 
packets are not labeled, so an unsupervised network is more 
suitable for online learning and new class identification. The 
proposed system uses a pretrained autoencoder, which is 
trained with only normal (benign) data packets. This AE is able 
to sort the normal and malicious packets. A second autoencoder 
learns from only the packets determined to be malicious in an 
incremental fashion, and this process fine tunes the network for 
anomaly detection in real-time.  

This paper is organized as follows: Section II discusses 
related work, and Section III discusses the details of the NSL-
KDD dataset. Section IV presents the memristor based 
intrusion detection circuits, and Section V presents the 
memristor based anomaly detection system. Intrusion and 
anomaly detection results are presented in Sections VI. Section 
VII presents the power, energy, and timing of the system and 
Section VIII provides a conclusion. 

II. RELATED WORK 

Researchers have been working on network intrusion 
detection systems since the inception of computer networking 
systems. Both unsupervised and supervised methods have been 
explored in software in the literature. Although, only a couple 
of papers have presented memristor based network intrusion 
detection systems. Work in [15] presents a ternary content 
addressable memory circuit to accelerate regular expression 
matching. A memristor based deep packet inspection (DPI) 
system is presented in [11] for high speed intrusion detection 
and classification. A low power, and high-density pattern 
matching system is presented in [16] for detection of network 
packets. Work in [10] presents a supervised MLP implemented 
using memristor crossbars and achieves more than 99% testing 
accuracy using the KDD Cup’99 dataset. A neuromorphic 
system is presented using a deep autoencoder for intrusion 
detection [8] and achieved greater than 90.12% accuracy when 
implemented using the TrueNorth neurosynaptic chip. In earlier 
work [4], we presented a memristor based unsupervised real-
time intrusion detection system that achieved 92.91% accuracy 
using offline training. This model learns unknown packets in 
real-time and responds to the malicious packets only. Some 
works have also been published for supervised [17-29] and 
unsupervised learning [20,21] for intrusion detection software 
that is not tied to specific custom hardware.   

Existing intrusion detection systems are primarily rule 
based, and thus not effective for the detection of ‘zero day’ 
attacks [3]. The capabilities of continual learning, fine-tuning, 
and transfer of knowledge are crucial computational learning 
techniques when a system is operating in the real world and 
processing a continuous stream of data [27].  Work in [28] 
presents a supervised online learning algorithm for MNIST data 
using Hedge Backpropagation. The autoencoder algorithm is 
used in real world applications for anomaly detection [29]. The 
extreme learning machine (ELM) algorithm is also proposed for 
real-time intrusion detection in [30]. Work in [2] describes a 
hierarchical temporal memory (HTM) based unsupervised real-
time anomaly detection system proposed for monitoring a video 
stream.  

In our proposed work, we studied MLPs and autoencoders 
for supervised and unsupervised learning respectively. Each of 
these designs were implemented using a simulated memristor 
crossbar, which allows us to study energy and timing metrics in 
this custom nanoscale low power hardware. 

We perform intrusion detection based on a set of known 
attacks, but we also perform experiments where new attacks are 
introduced to the network during runtime. Furthermore, online 
training for intrusion detection is performed on a redefined 
model which is consistent with earlier work [4]. To the best of 
our knowledge, there is no other published work on the relative 
study of supervised and unsupervised intrusion detection in 
memristor based neuromorphic systems. The unsupervised 
online learning and anomaly detection methods for network 
security in neuromorphic systems we present are also novel.  

III. NSL-KDD DATASET 

NSL-KDD dataset contains samples of network data 
packets, and it is a revised version of the KDD Cup’99 dataset. 
This dataset has both training and testing portions and they 
consist of 125,973 and 22,544 samples respectively [22]. Both 
datasets are comprised of normal and malicious packets. Table 
I shows the number of normal and malicious packets in the 
training and testing datasets for each class. The number of 
attack types in the training dataset is 22, but there are 39 attack 
types in the testing dataset. This means the testing dataset has 
17 more malicious datatypes when compared to the training 
dataset. The training set attack types are described in [4]. The 
attack types that are absent in the training data set but exist in 
the testing dataset include: apache2, udpstorm, processtable, 
worm, mailbomb, mscan, saint, xlock, xsnoop, snmpguess, 
snmpgetattack, httptunnel, sendmail, named, ps, xterm, and 
sqlattack. These new categories in the testing dataset will be a 
challenge for supervised learning systems, as they have not 
learned these new datatypes. However, an anomaly detection 
system may be more suited to the detection of these new attack 
types if they appear out of place when compared to normal 
network data. 

Normal and malicious packets both have 43 attributes with 
nominal, binary, and numeric values [22]. The nominal 
attributes are at the 2nd position (protocol/type), the 3rd position 
(service), the 4th position (flag), and the 42nd position (attack 
type). The network packets need to undergo some 
preprocessing steps before they are fed into the network for 
training and testing. At first, the nominal attributes are replaced 



 

 

with the integers. Then all features are compressed according 
to min-max normalization to bound each feature to a value 
within 0 to 1 (including the integer representations of features 
2 through 4). The 42th position is represents the attack type and 
this feature is replaced with a 0 or a 1 for normal and malicious 
packets respectively. Example packets from the NSL-KDD 
dataset are shown in Figs. 1 (a) and (b), and the preprocessed 
version of these same packets are displayed in Figs. 1 (c) and 
(d). Table I displays the data breakdown of the two NSL-KDD 
data files (Test+ and Train+) used in this study. 

0,tcp,http,SF,287,2251,0,0,0,0,0,1,0,0,0,0,0,0,0,0

,0,0,3,7,0.00,0.00,0.00,0.00,1.00,0.00,0.43,8,219,

1.00,0.00,0.12,0.03,0.00,0.00,0.00,0.00,normal,21 

(a) 

0,icmp,eco_i,SF,18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

,0,1,1,0.00,0.00,0.00,0.00,1.00,0.00,0.00,1,16,1.0

0,0.00,1.00,1.00,0.00,0.00,0.00,0.00,ipsweep,18 

(b) 

0,0,0.04347,0,2.17e-07,1.05e-05,0,0,0,0,0,1,0,0,0, 

0,0,0,0,0,0,0.0156,0.01761,0,0.11,0,0,1,0,0.22,0.3

568,1,1,0,0.01,0.02,0,0,0,0,1 

(c) 

0,1,0.10,0,1.304e-08,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 

0,0,0.0019,0.00195,0,0,0,0,1,0,0,0.0039,0.0627,1, 

0,1,1,0,0,0,0,0.857 

(d) 

Fig. 1. Example network packets (a) and (b) directly from the NSL-
KDD dataset and (c) and (d) preprocessed normalized packets ready 
for training and evaluation.   

TABLE I.  NORMAL AND MALICIOUS PACKET DISTRIBUTION IN THE NSL-
KDD TRAINING AND TESTING DATASETS 

Class Normal DoS Probe R2L U2R Total 

NSL-KDD 
Test+ 

9711 7460 2421 2885 67 22,544 

NSL-KDD 
Train+ 

67343 45927 11656 995 52 125,973 

NSL-KDD 
Test+ Variants 

1 11 6 15 7 40 

NSL-KDD 
Train+ Variants 

1 6 4 8 4 23 

IV. MEMRISTOR BASED INTRUSION DETECTION CIRCUITS 

A. Network Topologies 

The general architectures for the autoencoder and multilayer 
perceptron (MLP) are displayed in Fig. 2. An autoencoder is 
used as a generative model to recreate the trained samples after 
they are compressed at the bottleneck layer.  

         

   (a)                                         (b) 

Fig. 2. Example architectures of (a) the autoencoder and (b) the MLP used in 
this study.  

The mathematical details of the autoencoder are described 
in our earlier work [4]. The MLP is a supervised network that 
can classify the data samples within a known set of classes. 
Traversal of the MLP is carried out according to equations (1-
3). Here 𝑏  and 𝑓(𝑥)  denote the bias and activation function 
respectively. 

𝐿1𝑗 = 𝑓(∑ 𝑤1(𝑖,𝑗). 𝑥𝑖 + 𝑏1𝑗
41
𝑖=1 )   () 

𝐿2𝑘 = 𝑓(∑ 𝑤2(𝑗,𝑘). ℎ1𝑗 + 𝑏2𝑘
90
𝑗=1 )           () 

𝐿3𝑗 = 𝑓(∑ 𝑤3(𝑘,𝑗). ℎ2𝑘 + 𝑏3𝑗
10
𝑘=1 )        () 

B. Memristor Based Implementation 

The memristor based autoencoder and MLP networks are 
based on previous works [10,12,13] for network intrusion and 
anomaly detection. Memristors [23] are a nano-scale non-
volatile memory device that can be operated at extremely low 
power [12] when used to implement layers in neural networks. 
Thus, the memristor is a suitable candidate for use in embedded 
neuromorphic systems [13].  Memristors are essentially utilized 
to approximate the synaptic connectivity between neurons. 
Therefore, the memristor stores the connection strength 
between neurons and the incoming signals. Memristors laid out 
in a crossbar pattern can be used to store a weight matrix (or 
neural network layer) very effectively.  

 
Fig. 3. Memristor based neuron circuit. 

The basic neuron circuit we use in this work is displayed in 
Fig. 3, and this pattern can be repeated within a crossbar to 
define an entire layer of neurons. Thus, this memristor based 
neuron layer can perform multiply and addition operations very 
efficiently in parallel in the analog domain [24]. This neuron 
circuit requires two memristors to represent a single synaptic 
weight. For a given input, a positive weight value is observed 
when 𝜎𝑖+ > 𝜎𝑖− , otherwise the weight observed is negative 
[12,13,24]. This circuit is able to carry out multiply-add 
operations according to equation (4). The memristor 
conductivity range we assumed for this work is as follows: 
𝜎𝑚𝑎𝑥 = 2 × 10−5 Ω−1 and  𝜎𝑚𝑖𝑛 = 1 × 10−7 Ω−1. 

𝐷𝑃𝑗 = ∑ 𝑥𝑖 × (𝜎𝑖𝑗
+ − 𝜎𝑖𝑗

−)𝑁+1
𝑖=1       (4) 

𝑦𝑗 = 𝑓(𝐷𝑃𝑗)      (5) 
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Fig. 4. Sigmoid activation function overlaid with the utilized approximation. 

 

Fig. 5. Memristor crossbar circuits build a multilayered neural network with 
inputs (X) and outputs (Y). The Op-amp activation circuit is showing in the 
inset. 

In Fig. 3, each input column is connected to a virtually 
grounded op-amp (operational amplifier). The output 𝑦𝑗  in 

equation (5) represents the neuron output after accounting for 
the activation function, which is approximated using the rail 
voltages to effectively squeeze DPj values. Equation (6) 
displays the typical sigmoid function used in deep learning. 
Equation (7) represents the approximated sigmoid activation 
function generated by op-amp circuits when the 𝑉𝐷𝐷 and 𝑉𝑆𝑆  of 
op-amps are connected to 0 and 1 respectively. The plot in Fig. 
4 displays an overlay of f(x) and g(x) to provide a visual 
comparison of these two activation functions. 

𝑓(𝑥) =
1

1+𝑒−𝑥          (6) 

𝑔(𝑥) = {
1,                      𝑥 > 2
0.25𝑥 + 0.5, |𝑥| ≤ 2
0,                      𝑥 < 2

   (7) 

The autoencoder and MLP networks are feed-forward 
networks. The multiple neurons interconnect and build a 
crossbar circuit, and the multilayered crossbar circuits construct 
a multilayer neural network circuit. Fig. 5 shows an MLP neural 

network with three crossbar circuits. In this study, we had to 
implement three crossbar circuits for the MLP and four for AE.  

C. Memristor Crossbar Training 

The architecture and training algorithm are similar for the 
autoencoder and the MLP. Although, the loss function 
calculation at the output layer of each is different. In the MLP, 
the output is compared with the true class label. However, in 
the autoencoder, the output vector is compared with the input 
vector. The MLP and autoencoder networks implemented in 
this experiment comprise two and three hidden layers, 
respectively. The training algorithm and training circuit have 
been adopted from [12,13,16,24]. Both the autoencoder and 
MLP are trained based on the Back Propagation (BP) algorithm 
[25]. The stochastic BP algorithm is utilized in these 
experiments where the synaptic weights are updated after each 
network packet is applied to the input layer instead of using a 
batch learning method. The training algorithm utilized is as 
follows.  

i) Initialize the memristors with low random conductance. 

ii) For an input network packet x: 

a) Compute 𝐷𝑃𝑗  and 𝑦𝑗  at the neuron outputs of each 

crossbar layer. 

b) For a neuron 𝑗 , compute the error  𝑗  based on the 

output 𝑦𝑗 and the target  𝑗 using equation (8) with the 

derivative of the activation function 𝑔(𝑥). 

 𝑗 = (𝑥𝑗 − 𝑦𝑗)𝑔
 (𝐷𝑃𝑗)    (8) 

c) Back propagate the error toward the input from each 
hidden layer neuron 𝑗 according to equation (9)  

 𝑗 = ∑  𝑘𝑘 𝑤𝑘,𝑗𝑔(𝐷𝑃𝑗)    (9) 

d) Compute the weight update ∆𝑤𝑗  according to the 

error function and update weight layers with learning 
rate 𝜂.  

iii) Return to step (ii) until reaching the sufficient accuracy. 

This simulation assumes on-chip learning is utilized, thus 
memristor resistance is tuned and optimized during the training 
process. On-chip training is beneficial because it accounts for 
the variation in resistance present across an array of memristor 
devices [26]. The memristor devices employed in this study 
have a resistance ratio of approximately 200 and a write 
threshold voltage of 1.3V. 

V. MEMRISTOR BASED ONLINE LEARNING AND ANOMALY 

DETECTION CIRCUIT 

Our proposed system for online learning and real-time 
anomaly detection in network data is built on earlier work [4], 
but has been improved in its ability to perform effective online 
training. Fig. 6 shows how this system is able to complete 
online learning and anomaly detection. AE-1 is a pretrained 
autoencoder which sorts between normal and malicious 
packets.  

Then, all malicious packets are sent to AE-2 which learns 
only malicious packets in real time. AE-2 is initialized with 
random weights and a random threshold. With every learning 
cycle, AE-2 fine tunes its knowledge and updates the threshold 
in real time. Fig. 7 shows the algorithm for online learning and 
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anomaly detection within the proposed system. Fig. 8 shows the 
circuit block diagrams of online Euclidean distance computing. 

 

Fig. 6. The model for online learning and real-time anomaly detection. 

     

 

Fig. 7. Unsupervised, online learning, anomaly detection algorithm. 

 

Fig. 8. Block diagram of the online Euclidean computing circuits for threshold 
optimization, SQs are the squaring circuits, and SQR is square root circuit. VED  
is the voltage equivalent of the Euclidean distance of two vectors.  

From the classification result, the performance of the 
models will be evaluated according to the accuracy and 
sensitivity as in equations (12) and (13). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝑇𝑟𝑢𝑒 𝑁𝑜𝑟𝑚𝑎𝑙+∑ 𝑇𝑟𝑢𝑒 𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 

∑𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
  (12) 

𝑆𝑒𝑛𝑠𝑖 𝑖𝑣𝑖 𝑦 =
∑𝑇𝑟𝑢𝑒 𝑁𝑜𝑟𝑚𝑎𝑙

∑𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑁𝑜𝑟𝑚𝑎𝑙
   (13) 

VI. RESULTS AND DISCUSSION 

The presented work has two parts. First, we studied 
supervised and unsupervised techniques for network intrusion 
detection and observed performance in both traditional 
software and simulated memristor based systems. Second, we 
discussed anomaly detection results from the system described 
in Fig. 6.  

A. Intrusion Detection Results 

The NSL-KDD training dataset has 67,343 benign packets 
and 58,630 malicious packets of 22 different attack types. In 
our first study, the MLP is trained with 90% of the packets in 
the NSL-KDD Train+ data and evaluated with remaining 10% 
of the packets. The autoencoder is trained with 90% of the 
normal packets form the NSL-KDD Train+ dataset and 
evaluated with the remaining 10% of the normal packets, as 
well as 10% of the malicious packets from the Train+ data file. 
This study is performed to test each network’s ability to classify 
known attack types. 

A second study is then performed where the MLP network 
is trained with all 125,973 packets from the NSL-KDD Train+ 
dataset, and the autoencoder is trained with all 67,343 normal 
packets from this dataset. After which, each network is 
evaluated with the entire NSL-KDD Test+ dataset which 
contains 22,544 packets from 40 different datatypes (including 
normal data). This study was performed to determine each 
network’s ability to classify zero day attacks, as the testing set 
contains 17 attack types not present in the training data.  

The MLP examined has a layer structure of 
41→90→10→2, and the autoencoder has a layer structure of 
41→90→10→90→41. Each network is first implemented in 
traditional software for baseline testing. Then, each of these 
networks is implemented using the simulated memristor based 
hardware. Both execution types are implemented using 
MATLAB scripts. In the case of the hardware simulation, analog 
circuit equations are used to carry out the neural network 
traversal for realistic simulation. 

Fig. 9 shows the mean squared error (MSE) during the 
training of the AE in both software and simulated memristor 
hardware when learning all normal packets in the NSL-KDD 
Train+ dataset. The memristor error curve is different most 
likely due to reduced dynamic range of memristor weight 
values and the approximated sigmoid function. The MSE of the 
MLP when learning the entire NSL-KDD training dataset is 
shown in Fig.10.  

 
Fig. 9. Training error vs. epochs for the software and memristor based 
autoencoder design. 
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After training the networks, the autoencoder was evaluated 
according to the recognition datasets designed to test the 
autoencoder’s ability to recognize both known and zero day 
attacks. Fig. 11 shows the binary classification results for 
normal and malicious network packets based on the threshold. 
The threshold parameter was computed and saved during the 
training session. Below the threshold margin in Fig. 11, all 
packets are classified as normal, otherwise they are considered 
malicious.  
 

 
Fig. 10. MSE of the MLP model in software and the memristor system. 

 

 
Fig. 11. The anomaly-based intrusion detection system in unsupervised 
autoencoder on NSL-KDD test dataset. 

TABLE II.  INTRUSION AND DETECTION RESULTS FOR THE AUTOENCODER 

SYSTEM.  

Autoencoder Predicted Normal Predicted Malicious Accuracy 

Software Evaluated for Known Attacks 

Actual Normal TP=6309 FP=443 
95.86% 

Actual Malicious FN=78 TN=5763 

Memristor Evaluated for Known Attacks  

Actual Normal TP=6125 FP=627 
94.35% 

Actual Malicious FN=84 TN=5779 

Software Evaluated for Zero Day Attacks  

Actual Normal TP=8992 FP=719 
93.54% 

Actual Malicious FN=737 TN=12096 

Memristor Evaluated for Zero Day Attacks  

Actual Normal TP=8732 FP=976 
92.52% 

Actual Malicious FN=740 TN=12093 

 
The intrusion detection results are summarized in Tables II 

and III. In Table II the autoencoder shows strong performance 
when trained to recognize both known and zero day attacks. 
However, Table III shows that while the MLP is slightly better 
at recognizing known attacks compared to the autoencoder, the 
MLP is substantially worse at recognizing previously unlearned 
(or zero day) attacks. 

The unknown attack types present in the NSL-KDD test 
dataset are unfamiliar to the MLP network. However, the 
autoencoder is trained only with normal packets to detect the 
anomalies, so this model successfully identified a high number 
of zero day attacks.  

Fig. 12 summarizes the results obtained when comparing 
the experiments designed to recognize known attacks and zero 
day attacks in both software and the memristor system. These 
results again show that the MLP is effective when the testing 
environment is similar to its training environment but when the 
test samples are less familiar, the MLP performance 
deteriorates.  

TABLE III.  INTRUSION AND DETECTION RESULTS FOR THE MLP.  

MLP Predicted Normal Predicted Malicious Accuracy 

Software Evaluated for Known Attacks 

Actual Normal TP=6740 FP=12 
99.86% 

Actual Malicious FN=5 TN=5836 

Memristor Evaluated for Known Attacks 

Actual Normal TP=6736 FP=8 
99.83% 

Actual Malicious FN=13 TN=5828 

 Software Evaluated for Zero Day Attacks  

Actual Normal TP=9669 FP=42 
82.4% 

Actual Malicious FN=3820 TN=9013 

Memristor Evaluated for Zero Day Attacks  

Actual Normal TP=9669 FP=48 
79.4% 

Actual Malicious FN=4595 TN=8238 

*TN-True negative, TP-True Positive, FP-False Positive, FN-False Negative 

MLP Known MLP Zero DayAE Known AE Zero Day  
Fig. 12. Anomaly detection in supervised and unsupervised methods. 

MLP Known MLP Zero Day AE Known AE Zero Day
 

Fig.13. Sensitivity and Accuracy of MLP and AE in memristor for known 
and zero-day network packets 

Fig. 13 shows the accuracy and sensitivity resulting from 
the memristor implementation of the MLP and AE networks. 
Unlike the MLP model, the autoencoder is trained to regenerate 
the normal packets, and it will likely regenerate malicious 



 

 

packets poorly. Thus, the autoencoder performs classification 
of unknown attacks much better than the MLP when unknown 
(or zero day) attacks are passed through each system. 

B. Anomaly Detection Results 

The outperformance of autoencoder over the MLP for zero 
day attacks has motivated the design of the following real-time 
unsupervised learning and anomaly detection system. Fig. 13 
displays the results of an experiment used to test this system. In 
the proposed design, the issue of catastrophic forgetting is 
reduced by sending all packets decided to be malicious by AE-
1 to AE-2 for real-time training.   

In an earlier design [4] AE-2 was initialized with a set of 
normal packets to set up the threshold and initialize the weights. 
Alternatively, in this model, AE-2 is initialized with random 
weights. As a result, the model did not recognize any packets 
during the initial cycle, and in successive cycles it continuously 
updated its network parameters as well as the threshold margin.  

 

Fig. 14. Model of real-time learning and network intrusion detection system. 

Fig. 14 shows the online learning and real-time detection 
result. The orange curve shows the result of anomaly detection 
on malicious packets over time, and the blue curve represents 
the incremental learning of malicious packets in real-time. At 
point ‘A’ Test Set 1 is applied to the model, which contains 500 
DoS type malicious packets as well as 500 normal packets. AE-
2 learns only the malicious packets and considers the packets as 
learned if the network has already encountered the incoming 
malicious packet type. After the first cycle anomaly detection 
is reduced drastically, as the malicious packet type is no longer 
new to the anomaly detection system. At point ‘B’ Test Set 2 is 
applied at the 19th cycle, and the number of anomalies detected 
increased to 390 from 45, as this new test set contains 500 
attacks of a type that has never been presented to the system (in 
this case, the Probe attack type). The network fine tunes its 
parameters based on this new attack, and the detection threshold 
is also adjusted. At point ‘C’ Test Set 3 is sent to the network 
and again anomaly detection increased at first, then reduced 
over time as the network got used to the new data type. The 
performance of the network is measured at points B, C, and D, 
and the results are presented in Table IV. Black circles on the 
anomaly detection curve indicate the emergence of new attacks. 

Red circles indicate the incremental learning progress on the 
learning curve.  Fig. 15 shows the accuracy obtained for each 
of the three different test sets. The accuracy is computed at 
points B, C, and D after fine-tuning and rescaling the threshold 
of the system to observe the intrusion detection in real-time. 
The system exhibits 89.72% accuracy at the final point ‘D.’  

TABLE IV.  REAL-TIME LEARNING AND INTRUSION DETECTION RESULT 

 Test Set Classes  Samples FP FN TP TN 

Test Set 1 N+D 1000 10 45 490 455 

Test Set 2 N+D+P 1500 52 87 448 913 

Test Set 3 N+D+P+R 2000 65 141 435 1359 

Note: N=Normal, D=DoS, P=Probe, R=R2L 

 

Fig. 15. Real-time anomaly detection accuracy for Test Sets 1 – 3. 

VII. SYSTEM POWER, ENERGY AND TIMING ANALYSIS 

The energy, power, and timing of the memristor crossbar 
and peripheral circuitry has been estimated for the pretrained 
autoencoder circuit for intrusion detection and for the anomaly 
detection system. The power, energy, and timing results are 
presented in Table V for each autoencoder in the anomaly 
detection circuit.   

TABLE V.  POWER, ENERGY, AND TIMING ANALYSIS OF THE PROPOSED 

NEUROMORPHIC SYSTEM  

Metrics 
AE Intrusion 

Detection 
Circuit 

AE Anomaly 
Detection 

Circuit  

Area (mm2) 0.00135 0.00271 

Training Power (mW) 20.6 28.6 

Training Time (µs) 4.02 4.42 

Training Energy: One Sample (nJ) 82 85 

Recognition Power (mW) 7.56 15.1 

Recognition Time (µs) 0.384 0.768 

Recognition Energy: One Sample (nJ) 2.90 5.81 

VIII. CONCLUSION 

Unsupervised and supervised intrusion and anomaly 
detection systems have been studied in both traditional software 
and in simulated memristor neuromorphic hardware. The 
memristor crossbar technology exhibited the functionalities of 
the software-based model successfully. The experiment was 
performed in two different sub-experiments, one to examine 
learning of known attacks, and one to examine the learning of 
zero day attacks. The network intrusion detection is evaluated 
in the unsupervised autoencoder with an accuracy of 94.35% 
for the known attack experiment and 92.52% for the zero-day 
attack experiment. The supervised MLP performed 



 

 

significantly worse when learning zero day attacks with an 
accuracy of 79.4%. The online incremental learning and 
anomaly detection system is implemented using a memristor 
hardware simulation and was evaluated in real-time with a final 
detection accuracy of 89.72%. In the future, we plan to study 
the supporting peripheral circuits for online learning, Euclidean 
distance and threshold computing, and backpropagation in 
more detail.  
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