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Abstract

In the last couple of years, several adversar-
ial attack methods based on different threat
models have been proposed for the image
classification problem. Most existing de-
fenses consider additive threat models in
which sample perturbations have bounded
Lp norms. These defenses, however, can be
vulnerable against adversarial attacks under
non-additive threat models. An example of
an attack method based on a non-additive
threat model is the Wasserstein adversar-
ial attack proposed by Wong et al. (2019),
where the distance between an image and
its adversarial example is determined by the
Wasserstein metric (“earth-mover distance”)
between their normalized pixel intensities.
Until now, there has been no certifiable de-
fense against this type of attack. In this
work, we propose the first defense with cer-
tified robustness against Wasserstein adver-
sarial attacks using randomized smoothing.
We develop this certificate by considering the
space of possible flows between images, and
representing this space such that Wasserstein
distance between images is upper-bounded
by L1 distance in this flow-space. We can
then apply existing randomized smoothing
certificates for the L1 metric. In MNIST
and CIFAR-10 datasets, we find that our
proposed defense is also practically effective,
demonstrating significantly improved accu-
racy under Wasserstein adversarial attack
compared to unprotected models.
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1 Introduction

In recent years, adversarial attacks against machine
learning systems, and defenses against these attacks,
have been heavily studied (Szegedy et al., 2013; Madry
et al., 2017; Carlini and Wagner, 2017). Although
these attacks have been applied in a variety of do-
mains, image classification tasks remain a major focus
of research. In general, for a specified image classifier
f , the goal of an adversarial attack on an image x is
to produce a perturbed image x̃ that is imperceptibly
‘close’ to x, such that f classifies x̃ differently than x.
This ‘closeness’ notion can be measured in a variety
of different ways under different threat models. Most
existing attacks and defenses consider additive threat
models where the Lp norm of x̃ −x is bounded.

Recently, non-additive threat models (Wong et al.,
2019; Laidlaw and Feizi, 2019; Engstrom et al., 2019;
Assion et al., 2019) have been introduced which aim
to minimize the distance between x and x̃ accord-
ing to other metrics. Among these attacks is the at-
tack introduced by Wong et al. (2019) which considers
the Wasserstein distance between x and x̃, normal-
ized such that the pixel intensities of the image can
be treated as probability distributions. Informally, the
Wasserstein distance between probability distributions
x and x̃ measures the minimum cost to ‘transport’
probability mass in order to transform x into x̃, where
the cost scales with both the amount of mass trans-
ported and the distance over which it is transported
with respect to some underlying metric. The intuition
behind this threat model is that shifting pixel inten-
sity a short distance across an image is less percepti-
ble than moving the same amount of pixel intensity
a larger distance (See Figure 1 for an example of a
Wasserstein adversarial attack.)

A variety of practical approaches have been proposed
to make classifiers robust against adversarial attack,
including adversarial training (Madry et al., 2017), de-
fensive distillation (Papernot et al., 2016), and obfus-
cated gradients (Papernot et al., 2017). However, as
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Figure 1: An illustration of Wasserstein adversarial
attack (Wong et al., 2019).

new defenses are proposed, new attack methods are of-
ten developed which defeat them (Tramèr et al., 2017;
Athalye et al., 2018; Carlini and Wagner, 2016). While
updated defenses are often then proposed (Tramèr
et al., 2017), in general, we cannot be confident that
newer attacks will not in turn defeat these defenses.

To escape this cycle, approaches have been proposed to
develop certifiably robust classifiers (Wong and Kolter,
2018; Gowal et al., 2018; Lecuyer et al., 2019; Li et al.,
2018; Cohen et al., 2019; Salman et al., 2019): in these
classifiers, for each image x, one can calculate a radius
ρ such that it is provably guaranteed that any other
image x̃ with distance less than ρ from x will be classi-
fied similarly to x. This means that no adversarial at-
tack can ever be developed which produces adversarial
examples to the classifier within the certified radius.

One effective approach to develop certifiably robust
classification is to use randomized smoothing with
a probabilistic robustness certificate (Lecuyer et al.,
2019; Li et al., 2018; Cohen et al., 2019; Salman et al.,
2019). In this approach, one uses a smoothed classifier
f̄(x), which represents the expectation of f(x) over
random perturbations of x. Based on this smoothing,
one can derive an upper bound on how steeply the
scores assigned to each class by f̄ can change, which
can then be used to derive a radius ρ in which the
highest class score must remain highest1.

In this work, we present the first certified de-
fense against Wasserstein adversarial attacks using an
adapted randomized smoothing approach, which we
call Wasserstein smoothing. To develop the robust-
ness certificate, we define a (non-unique) representa-
tion of the difference between two images, based on
the flow of pixel intensity necessary to construct one
image from another. In this representation, we show
that the L1 norm of the minimal flow between two im-

1In practice, samples are used to estimate the expectation
f̄(x), producing an empirical smoothed classifier f̃(x):
the certification is therefore probabilistic, with a degree
of certainty dependent on the number of samples.

ages is equal to the Wasserstein distance between the
images. This allows us to apply existing L1 smoothing-
based defenses, by adding noise in the space of these
representations of flows. We show empirically that
this gives improved robustness certificates, compared
to using a weak upper bound on Wasserstein distance
given by randomized smoothing in the feature space
of images directly. We also show that our Wasserstein
smoothing defense protects against Wasserstein adver-
sarial attacks in practice, with significantly improved
empirical robustness compared to baseline models. For
small adversarial perturbations on the MNIST dataset,
our method achieves higher accuracy under adversar-
ial attack than all existing practical defenses for the
Wasserstein threat model. In summary, we make the
following contributions:

• We develop a novel certified defense for the
Wasserstein adversarial attack threat model. This
is the first certified defense, to our knowledge, that
has been proposed for this threat model.

• We demonstrate that our certificate is nonvacu-
ous, in that it can certify Wasserstein radii larger
than those which can be certified by exploiting a
trivial L1 upper bound on Wasserstein distance.

• We demonstrate that our defense effectively pro-
tects against existing Wasserstein adversarial at-
tacks, compared to an unprotected baseline.

2 Background

Let x ∈ [0,1]n×m denote a two dimensional image, of
height n and width m. We will normalize the image
such that ∑i∑j xi,j = 1, so that x can be interpreted
as a probability distribution on the discrete support
of pixel coordinates of the 2D image.2 Also, let [n]
denote the set of integers 1 through n, and let < A,B >
denote the elementwise inner product between A and
B. Following the notation of Wong et al. (2019), we
define the p-Wasserstein distance between x and x′ as:

Definition 2.1. Given two distributions x,x′ ∈
[0,1]n×m, and a distance metric d ∈ ([n]×[m])×([n]×
[m])→ R , the p-Wasserstein distance is:

Wp(x,x′) = min
Π∈R(n⋅m)×(n⋅m)

+

< Π,C >, (1)

Π1 = x, ΠT1 = x′,
C(i,j),(i′,j′) ∶= [d ((i, j), (i′, j′))]

p
.

2In the case of multi-channel color images, the attack pro-
posed by Wong et al. (2019) does not transport pixel in-
tensity between channels. This allows us to defend against
these attacks using our 2D Wasserstein smoothing with
little modification. See Section 6.3, and Corollary 2 in
the appendix.
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Note that C(i,j),(i′,j′) is the cost of transporting a mass
unit from the position (i, j) to (i′, j′) in the image. For
the purpose of matrix multiplication, we are treating
x,x′ as vectors of length nm. Similarly, the transport
plan matrix Π and the cost matrix C are in Rnm×nm.

Intuitively, Π(i,j),(i′,j′) represents the amount of prob-
ability mass to be transported from pixel (i, j) to
(i′, j′), while C(i,j),(i′,j′) represents the cost per unit
probability mass to transport this probability. We can
choose d(., .) to be any measure of distance between
pixel positions in an image. For example, in order to
represent the L1 distance metric between pixel posi-
tions, we can choose:

d ((i, j), (i′, j′)) = ∣i − i′∣ + ∣j − j′∣. (2)

Moreover, to represent the L2 distance metric between
pixel positions, we can choose:

d ((i, j), (i′, j′)) =
√
(i − i′)2 + (j − j′)2. (3)

Our defense directly applies to the 1-Wasserstein met-
ric using the L1 distance as the metric d(., .), while the
attack developed by Wong et al. (2019) uses the L2 dis-
tance. However, because images are two dimensional,
these differ by at most a constant factor of

√
2, so

we adapt our certificates to the setting of Wong et al.
(2019) by simply scaling our certificates by 1/

√
2. All

experimental results will be presented with this scal-
ing. We emphasize that this it not the distinction be-
tween 1-Wasserstein and 2-Wasserstein distances: this
paper uses the 1-Wasserstein metric, to match the ma-
jority of the experimental results of Wong et al. (2019).

To develop our certificate, we rely an alternative linear
program formulation for the 1-Wasserstein distance on
a two-dimensional image with the L1 distance metric,
provided by Ling and Okada (2007):

W1(x,x′) =min
g
∑
(i,j)

∑
(i′,j′)∈N (i,j)

g(i,j),(i′,j′) (4)

where g ≥ 0 and ∀(i, j),

∑
(i′,j′)∈N (i,j)

g(i,j),(i′,j′) − g(i′,j′),(i,j) = x′i,j − xi,j

Here, N (i, j) denotes the (up to) four immediate (non-
diagonal) neighbors of the position (i, j); in other
words, N (i, j) = {(i′, j′) ∣ ∣i − i′∣ + ∣j − j′∣ = 1}. For
the L1 distance in two dimensions, Ling and Okada
(2007) prove that this formulation is in fact equivalent
to the linear program given in Equation 1. Note that
only elements of g with ∣i − i′∣ + ∣j − j′∣ = 1 need to be
defined: this means that the number of variables in
the linear program is approximately 4nm, compared
to the n2m2 elements of Π in Equation 1. While this
was originally used to make the linear program more

tractable to be solved directly, we exploit the form of
this linear program to devise a randomized smoothing
scheme in the next section.

3 Robustness Certificate

In order to present our robustness certificate, we
first introduce some notation. Let δ = {δvert. ∈
R(n−1)×m,δhoriz. ∈ Rn×(m−1)} denote a local flow plan.
It specifies a net flow between adjacent pixels in an
image x, which, when applied, transforms x to a new
image x′. See Figure 2 for an explanation of the
indexing. For compactness, we write δ ∈ Rr where
r = (n − 1)m +n(m − 1) ≈ 2nm, and in general refer to
the space of possible local flow plans as the flow do-
main. We define the function ∆, which applies a local
flow to a distribution.

Definition 3.1. The local flow plan application func-
tion ∆ ∈ Rn×m × Rr → Rn×m is defined as:

∆(x,δ)i,j = xi,j + δvert.i−1,j − δvert.i,j + δhoriz.i,j−1 − δhoriz.i,j (5)

where we let δvert.0,j = δvert.n,j = δhoriz.i,0 = δhoriz.i,m = 0.3

Note that local flow plans are additive:

∆(∆(x,δ),δ′) =∆(x,δ + δ′) (6)

Using this notation, we make a simple transformation
of the linear program given in Equation 4, removing
the positivity constraint from the variables and reduc-
ing the number of variables to ∼ 2nm:

Lemma 1. For any normalized probability distribu-
tions x,x′ ∈ [0,1]n×m:

W1(x,x′) = min
δ∶ x′=∆(x,δ)

∥δ∥1 (7)

where W1 denotes the 1-Wasserstein metric, using the
L1 distance as the underlying distance metric d.

Therefore, we can upper-bound the Wasserstein dis-
tance between two images using the L1 norm of any
feasible local flow plan between them. This enables
us to extend existing results for L1 smoothing-based
certificates (Lecuyer et al., 2019) to the Wasserstein
metric, by adding noise in the flow domain.

Definition 3.2. We denote by L(σ) = Laplace(0, σ)r
as the Laplace noise with parameter σ in the flow do-
main of dimension r.

3Note that the new image x′ = ∆(x,δ) is not necessarily
a probability distribution because it may have negative
components. However, note that normalization is pre-
served: ∑i∑j x

′

i,j = 1. This is because every component
of δ is added once and subtracted once to elements in x.
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Figure 2: Indexing of the elements of the local flow
map δ, in relation to the pixels of the image x, with
n =m = 3.

Given a classification score function f ∶ Rn×m → [0,1]k,
we define f̄ as the Wasserstein-smoothed classification
function as follows:

f̄ = E
δ∼L(σ)

[f(∆(x,δ))] . (8)

Let i be the class assignment of x using the
Wasserstein-smoothed classifier f̄ (in other words, i =
arg maxi′ f̄i′(x)).
Theorem 1. For any normalized probability distribu-
tion x ∈ [0,1]n×m, if

f̄i(x) ≥ e2
√

2ρ/σ max
i′≠i

f̄i′(x) (9)

then for any perturbed probability distribution x̃ such
that W1(x, x̃) ≤ ρ, we have:

f̄i(x̃) ≥max
i′≠i

f̄i′(x̃). (10)

All proofs are presented in the appendix.

4 Intuition: One-Dimensional Case

To provide an intuition about the proposed Wasser-
stein smoothing certified robustness scheme, we con-
sider a simplified model, in which the support of x
is a one-dimensional array of length n, rather than
a two-dimensional grid (i.e. x ∈ Rn). In this case,
we can denote a local flow plan δ ∈ Rn−1, so that for
x′ =∆(x,δ):

x′i = xi + δi−1 − δi (11)

where δ0 = δn = 0. In this one-dimensional case, for
any fixed x,x′ (with the normalization constraint that
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Figure 3: An illustrative example in one dimension.
r (black) denotes a fixed reference distribution. With
this starting distribution fixed, x (red) and x̃ (blue)
can both be uniquely represented in the flow domain
as δx and δx̃. Note that the Wasserstein distance be-
tween x and x̃ is then equivalent to the L1 distance
between δx and δx̃. In the one-dimensional case, this
shows that we can transform the samples into a space
where the Wasserstein threat model is equivalent to
the L1 metric. We can then use a pre-existing L1 cer-
tified defense in the flow space to defend our classifier.

∑i xi = ∑i x′i = 1), there is a unique solution δ to x′ =
∆(x,δ):

δi =
i

∑
j=1

xj −
i

∑
j=1

x′j (12)

Note at this reminds us a well-known identity describ-
ing optimal transport between two distributions X,Y
which share a continuous, one-dimensional support
(see Section 2.6 of Peyré et al. (2019), for example):

W1(X,Y ) =
∞

∫
−∞

∣FX(z) − FY (z)∣dz (13)

where FX , FY denote cumulative density functions. If
we apply this result to our discretized case, with the
index i taking the place of z, and apply the identity to
x and x′, this becomes:

W1(x,x′) =
n

∑
i=1

RRRRRRRRRRR

i

∑
j=1

xj −
i

∑
j=1

x′j

RRRRRRRRRRR
=

n

∑
i=1
∣δi∣ = ∥δ∥1 (14)

By the uniqueness of the solution given in Equation
12, for any x, we can define δx as the solution to
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x = ∆(r,δ), where r is an arbitrary fixed reference
distribution (e.g. suppose r1 = 1, ri = 0 for i ≠ 1).
Therefore, instead of operating on the images x, x̃ ∈ Rn

directly, we can equivalently operate on δx and δx̃ in
the flow domain instead. We will therefore define a
flow-domain version of our classifier f :

fflow(δ) ∶= f(∆(r,δ)). (15)

We will now perform classification entirely in the
flow-domain, by first calculating δx and then using
fflow(δx) as our classifier. Now, consider x and an ad-
versarial perturbation x̃, and let δ be the unique solu-
tion to x̃ =∆(x,δ). By Equation 14, ∥δ∥1 =W1(x, x̃).
Then:

x̃ =∆(x,δ) =∆(∆(r,δx),δ) =∆(r,δx + δ) (16)

where the second equality is by Equation 6. Moreover,
by the uniqueness of Equation 12, δx̃ = δx + δ, or
δx̃ − δx = δ. Therefore

∥δx̃ − δx∥1 =W1(x, x̃). (17)

In other words, if we classify in the flow-domain, us-
ing fflow, the L1 distance between point δx,δx̃ is the
Wasserstein distance between the distributions x and
x̃. Then, we can perform smoothing in the flow-
domain, and use the existing L1 robustness certificate
provided by Lecuyer et al. (2019), to certify robust-
ness. Extending this argument to two-dimensional im-
ages adds some complication: images can no longer be
represented uniquely in the flow domain, and the re-
lationship between L1 distance and the Wasserstein
distance is now an upper bound. Nevertheless, the
same conclusion still holds for 2D images as we state
in Theorem 1. Proofs for the two-dimensional case are
given in the appendix.

5 Practical Certification Scheme

To generate probabilistic robustness certificates from
randomly sampled evaluations of the base classifier f ,
we adapt the procedure outlined by Cohen et al. (2019)
for L2 certificates. We consider a hard smoothed clas-
sifier approach: we set fj(x) = 1 if the base classifier
selects class j at point x, and fj(x) = 0 otherwise.
We also use a stricter form of the condition given as
Equation 9:

f̄i(x) ≥ e2
√

2ρ/σ(1 − f̄i(x)) (18)

This means that we only need to provide a probabilis-
tic lower bound of the expectation of the largest class
score, rather than bounding every class score. This
reduces the number of samples necessary to estimate

a high-confidence lower bound on f̄i(x), and therefore
to estimate the certificate with high confidence. Cohen
et al. (2019) provides a statistically sound procedure
for this, which we use: refer to that paper for details.
Note that, when simply evaluating the classification
given by f̄(x), we will also need to approximate f̄
using random samples. Cohen et al. (2019) also pro-
vides a method to do this which yields the expected
classification with high confidence, but may abstain
from classifying. We will also use this method when
evaluating accuracies.

Since the Wasserstein adversarial attack introduced
by Wong et al. (2019) uses the L2 distance metric,
to have a fair performance evaluation against this at-
tack, we are interested in certifying a radius in the 1-
Wasserstein distance with underlying L2 distance met-
ric, rather than L1. Let us denote this radius as ρ2. In
two-dimensional images, the elements of the cost ma-
trix C in this metric may be smaller by up to a factor
of
√

2, so we have:

ρ2 ≥
1√
2
ρ (19)

Therefore, by certifying to a radius of ρ =
√

2ρ2, we can
effectively certify against the L2 metric 1-Wasserstein
attacks of radius ρ2. (We provide a more formal proof
of this claim as Corollary 3 in the appendix.) Our
condition then becomes:

f̄i(x) ≥ e4ρ2/σ(1 − f̄i(x)). (20)

6 Experimental Results

In all experiments, we use 10,000 random noised sam-
ples to predict the smoothed classification of each im-
age; to generate certificates, we first use 1000 sam-
ples to infer which class has highest smoothed score,
and then 10,000 samples to lower-bound this score.
All probabilistic certificates and classifications are re-
ported to 95% confidence. The model architectures
used for the base classifiers for each data set are the
same as used in Wong et al. (2019). When reporting
results, median certified accuracy refers to the maxi-
mum radius ρ2 such that at least 50% of classifications
for images in the data set are certified to be robust to
at least this radius, and these certificates are for the
correct ground truth class. If over 50% of images are
not certified for the correct class, this statistic is re-
ported as N/A.

6.1 Comparison to naive Laplace Smoothing

Note that one can derive a trivial but sometimes
tight bound, that, under any Lp distance metric, if
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Table 1 Certified Wasserstein Accuracy of Wasserstein and Laplace smoothing on MNIST

Noise Wasserstein Smoothing Wasserstein Smoothing Wasserstein Smoothing
standard deviation Classification accuracy Median certified Base Classifier

σ (Percent abstained) robustness Accuracy
0.005 98.71(00.04) 0.0101 97.94
0.01 97.98(00.19) 0.0132 94.95
0.02 93.99(00.58) 0.0095 79.72
0.05 74.22(03.95) 0 43.67
0.1 49.41(01.29) 0 30.26
0.2 31.80(08.40) N/A 25.13
0.5 22.58(00.84) N/A 22.67

Noise Laplace Smoothing Laplace Smoothing Laplace Smoothing
standard deviation Classification accuracy Median certified Base Classifier

σ (Percent abstained) robustness Accuracy
0.005 98.87(00.06) 0.0062 97.47
0.01 97.44(00.19) 0.0053 89.32
0.02 91.11(01.29) 0.0030 67.08
0.05 61.44(07.45) 0 33.80
0.1 34.92(09.36) N/A 25.56
0.2 24.02(05.67) N/A 22.85
0.5 22.57(01.05) N/A 22.70

W1(x, x̃) ≤ ρ/2, then ∥x− x̃∥1 ≤ ρ. (See Corollary 1 in
the appendix.) This enables us to write a condition for
ρ2-radius Wasserstein certified robustness by applying
Laplace smoothing directly, and simply converting the
certificate. In our notation, this condition is:

f̄Laplace
i (x) ≥ e4

√
2ρ2/σ(1 − f̄Laplace

i (x)) (21)

where f̄Laplace(x) is a smoothed classifier with Laplace
noise added to every pixel independently. It may
appear as if our Wasserstein-smoothed bound should
only be an improvement over this bound by a factor
of
√

2 in the certified radius ρ2. However, as shown
in Table 1, we in fact improve our certificates by a
larger factor. This is because, for a fixed noise stan-
dard deviation, the base classifier is able to achieve a
higher accuracy after adding noise in the flow-domain,
compared to adding noise directly to the pixels. When
adding noise in the flow-domain, we add and subtract
noise in equal amounts between adjacent pixels, pre-
serving more information for the base classifier.

To give a concrete example, consider some k×k square
patch of an image. Suppose that the overall aggregate
pixel intensity in this patch (i.e. the sum of the pixel
values) is a salient feature for classification (This is a
highly plausible situation: for example, in MNIST, this
may indicate whether or not some region of an image is
occupied by part of a digit.) Let us call this feature µ,
and calculate the variance of µ in smoothing samples
under Laplace and Wasserstein smoothing, both with
variance σ2. Under Laplace smoothing (Figure 4-a),
k2 independent instances of Laplace noise are added

to µ, so the resulting variance will be k2σ2: this is
proportional to the area of the region. In the case of
Wasserstein smoothing, by contrast, probability mass
exchanged between between pixels in the interior of
the patch has no effect on the aggregate quantity µ.
Instead, only noise on the perimeter will affect the
total feature value µ: the variance is therefore 4kσ2

(Figure 4-b). Wasserstein smoothing then reduces the
effective noise variance on the feature µ by a factor of
O(k).

6.2 Empirical adversarial accuracy

We measure the performance of our smoothed classifier
against the Wasserstein-metric adversarial attack pro-
posed in Wong et al. (2019), and compare to models
tested in that work. Results are presented in Figure 5.
For testing, we use the same attack parameters as in
Wong et al. (2019): the “Standard” and “Adversarial
Training” results are therefore replications of the ex-
periments from that paper, using the publicly available
code and pretrained models.

In order to attack our hard smoothed classifier, we
adapt the method proposed by Salman et al. (2019):
in particular, note that we cannot directly calculate
the gradient of the classification loss with respect to
the image for a hard smoothed classifier, because the
derivatives of the logits of the base classifier are not
propagated. Therefore, we must instead attack a soft
smooth classifier: we take the expectation over sam-
ples of the softmaxed logits of the base classifier, in-
stead of the final classification output. In each step of
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(b) Wasserstein Smoothing

Figure 4: Schematic diagram showing the difference between Laplace and Wasserstein smoothing on the variance
of the aggregate pixel intensity in a square region, outlined in red. See the text of Section 6.1. In both figures,
pixels are represented as square tiles. In (a), noise on individual pixels is represented with circles, which are gray
if they do not contribute to the overall pixel intensity in the outlined region, but are cyan if they do contribute.
We see that the noise is proportional (in variance) to the area of the region. In (b), under Wasserstein smoothing,
noise is represented by arrows between pixels which exchange intensity. Again, these are gray if they do not
contribute to the overall pixel intensity in the outlined region, and cyan if they do contribute. Note that arrows
in the interior do not contribute to the aggregate intensity, because equal values are added and subtracted from
adjacent pixels. The noise is proportional (in variance) to the perimeter of the region. This provides a plausible
intuition as to why base classifiers, when given noisy images, classify with higher accuracy on Wasserstein
smoothed images compared to Laplace smoothed images, as seen empirically in Table 1.

the attack, we use 128 noised samples to estimate this
gradient, as used in Salman et al. (2019).

In the attack proposed by Wong et al. (2019), the im-
ages are attacked over 200 iterations of projected gra-
dient descent, projected onto a Wasserstein ball, with
the radius of the ball every 10 iterations. The attack
succeeds, and the final radius is recorded, once the
classifier misclassifies the image. In order to preserve
as much of the structure (and code) of the attack as
possible to provide a fair comparison, it is thus nec-
essary for us to evaluate each image using our hard
classifier, with the full 10,000 smoothing samples, at
each iteration of the attack. We count the classifier
abstaining as a misclassification for these experiments.
However, note that this may somewhat underestimate
the true robustness of our classifier: recall that our
classifier is nondeterministic; therefore, because we
are repeatedly evaluating the classifier and reporting
a perturbed image as adversarial the first time it is
missclassified, we may tend to over-count misclassifi-

cations. However, because we are using a large number
of noise samples to generate our classifications, this is
only likely to happen with examples which are close to
being adversarial. Still, the presented data should be
regarded as a lower bound on the true accuracy under
attack of our Wasserstein smoothed classifier.

In Figure 5, we note two things: first, our Wasser-
stein smoothing technique appears to be an effective
empirical defense against Wasserstein adversarial at-
tacks, compared to an unprotected (’Standard’) net-
work. (It is also more robust than the binarized and
L∞-robust models tested by Wong et al. (2019): see
appendix.) However, for large perturbations, our de-
fense is less effective than the adversarial training de-
fense proposed by Wong et al. (2019). This suggests
a promising direction for future work: Salman et al.
(2019) proposed an adversarial training method for
smoothed classifiers, which could be applied in this
case. Note however that both Wasserstein adversarial
attacks and smoothed adversarial training are com-
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Table 2 Certified Wasserstein Accuracy of Wasserstein smoothing on CIFAR10

Noise standard deviation Classification accuracy Median certified Base Classifier
σ (Percent abstained) robustness Accuracy

0.00005 87.01(00.24) 0.000101 86.02
0.0001 83.39(00.42) 0.000179 82.08
0.0002 77.57(00.66) 0.000223 75.46
0.0005 68.75(01.01) 0.000209 65.12
0.001 61.65(01.77) 0.000127 57.03

Figure 5: Comparison of empirical robustness on
MNIST to models from (Wong et al., 2019). Wasser-
stein smoothing is with σ = 0.01. (This is the amount
of noise which maximizes certified robustness, as seen
in Table 1.)

putationally expensive, so this may require significant
computational resources.

Second, the median radius of attack to which our
smoothed classifier is empirically robust is larger than
the median certified robustness of our smoothed clas-
sifier by two orders of magnitude. This calls for fu-
ture work both to develop improved robustness certifi-
cates as well as to develop more effective attacks in the
Wasserstein metric.

6.3 Experiments on color images (CIFAR-10)

Wong et al. (2019) also apply their attack to color
images in CIFAR-10. In this case, the attack does
not transport probability mass between color channels:
therefore, in our defense, it is sufficient to add noise
in the flow domain to each channel independently to
certify robustness (See Corollary 2 in the appendix
for a proof of the validity of this method). Certifi-
cates are presented in Table 2, while empirical robust-
ness is presented in Figure 6. Again, we compare di-
rectly to models from Wong et al. (2019). We note
that again, empirically, our model significantly out-

Figure 6: Comparison of empirical robustness on
CIFAR-10 to models from (Wong et al., 2019). Wasser-
stein smoothing is with σ = 0.0002. (This is the
amount of noise which maximizes certified robustness,
as seen in Table 2.) Note that we test on a random
sample of 1000 images from CIFAR-10, rather than
the entire data set.

performs an unprotected model, but is not as robust
as a model trained adversarially. We also note that
the certified robustness is orders of magnitude smaller
than computed for MNIST: however, the unprotected
model is also significantly less robust empirically than
the equivalent MNIST model.

7 Conclusion

In this paper, we developed a smoothing-based certifi-
ably robust defense for Wasserstein-metric adversarial
examples. To do this, we add noise in the space of pos-
sible flows of pixel intensity between images. To our
knowledge, this is the first certified defense method
specifically tailored to the Wasserstein threat model.
Our method proves to be an effective practical defense
against Wasserstein adversarial attacks, with signifi-
cantly improved empirical adversarial robustness com-
pared to a baseline model.
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