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Abstract

Saliency methods are used extensively to highlight the importance of input features
in model predictions. These methods are mostly used in vision and language
tasks, and their applications to time series data is relatively unexplored. In this
paper, we set out to extensively compare the performance of various saliency-based
interpretability methods across diverse neural architectures, including Recurrent
Neural Network, Temporal Convolutional Networks, and Transformers in a new
benchmark * of synthetic time series data. We propose and report multiple metrics
to empirically evaluate the performance of saliency methods for detecting feature
importance over time using both precision (i.e., whether identified features contain
meaningful signals) and recall (i.e., the number of features with signal identified
as important). Through several experiments, we show that (i) in general, network
architectures and saliency methods fail to reliably and accurately identify feature
importance over time in time series data, (ii) this failure is mainly due to the
conflation of time and feature domains, and (iii) the quality of saliency maps
can be improved substantially by using our proposed two-step temporal saliency
rescaling (TSR) approach that first calculates the importance of each time step
before calculating the importance of each feature at a time step.

1 Introduction

As the use of Machine Learning models increases in various domains [1, 2], the need for reliable model
explanations is crucial [3, 4]. This need has resulted in the development of numerous interpretability
methods that estimate feature importance [5—13]. As opposed to the task of understanding the
prediction performance of a model, measuring and understanding the performance of interpretability
methods is challenging [14—18] since there is no ground truth to use for such comparisons. For
instance, while one could identify sets of informative features for a specific task a priori, models
may not necessarily have to draw information from these features to make accurate predictions. In
multivariate time series data, these challenges are even more profound since we cannot rely on human
perception as one would when visualizing interpretations by overlaying saliency maps over images or
when highlighting relevant words in a sentence.

In this work, we compare the performance of different interpretability methods both perturbation-
based and gradient-based methods, across diverse neural architectures including Recurrent Neural
Network, Temporal Convolutional Networks, and Transformers when applied to the classification
of multivariate time series. We quantify the performance of every (architectures, estimator) pair for
time series data in a systematic way. We design and generate multiple synthetic datasets to capture
different temporal-spatial aspects (e.g., Figure 1). Saliency methods must be able to distinguish
important and non-important features at a given time, and capture changes in the importance of
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features over time. The positions of informative features in our synthetic datasets are known a priori
(colored boxes in Figure 1); however, the model might not need all informative features to make a
prediction. To identify features needed by the model, we progressively mask the features identified as
important by each interpretability method and measure the accuracy degradation of the trained model.
We then calculate the precision and recall for (architectures, estimator) pairs at different masks by
comparing them to the known set of informative features.

Based on our extensive experiments, we report the following observations: (i) feature importance
estimators that produce high-quality saliency maps in images often fail to provide similar high-quality
interpretation in time series data, (ii) saliency methods tend to fail to distinguish important vs. non-
important features in a given time step; if a feature in a given time is assigned to high saliency, then
almost all other features in that time step tend to have high saliency regardless of their actual values,
(iii) model architectures have significant effects on the quality of saliency maps.

After the aforementioned analysis and to improve the quality of saliency methods in time series data,
we propose a two-step Temporal Saliency Rescaling (TSR) approach that can be used on top of any
existing saliency method adapting it to time series data. Briefly, the approach works as follows: (a)
we first calculate the time-relevance score for each time by computing the total change in saliency
values if that time step is masked; then (b) in each time-step whose time-relevance score is above a
certain threshold, we calculate the feature-relevance score for each feature by computing the total
change in saliency values if that feature is masked. The final (time, feature) importance score is the
product of associated time and feature relevance scores. This approach substantially improves the
quality of saliency maps produced by various methods when applied to time series data. Figure 4
shows the initial performance of multiple methods, while Figure 5 shows their performance coupled
with our proposed TSR method.
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Figure 1: Different evaluation datasets used for benchmarking saliency methods. Some datasets
have multiple variations shown as sub-levels. N/S: normal and small shapes, T/F: temporal and
feature positions, M: moving shape. All datasets are trained for binary classification, except MNIST.
Examples are shown above each dataset, where dark red/blue shapes represent informative features.
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Figure 2: Middle box dataset generated by different time series processes. The first row shows how
each feature changes over time when independently sampled from time series processes. The bottom
row corresponds to the heatmap of each sample where red represents informative features.



2 Background and Related Work

The interest in interpretability resulted in several diverse lines of research, all with a common goal
of understanding how a network makes a prediction. [19-23] focus on making neural models more
interpretable. [24, 9, 11, 6, 7, 25] estimate the importance of an input feature for a specified output.
Kim et al. [26] provides an interpretation in terms of human concepts. One key question is whether
or not interpretability methods are reliable. Kindermans et al. [17] shows that the explanation can
be manipulated by transformations that do not affect the decision-making process. Ghorbani et al.
[15] introduces an adversarial attack that changes the interpretation without changing the prediction.
Adebayo et al. [16] measures changes in the attribute when randomizing model parameters or labels.

Similar to our line of work, modification-based evaluation methods [27-29] involves: applying
saliency method, ranking features according to the saliency values, recursively eliminating higher
ranked features and measure degradation to the trained model accuracy. Hooker et al. [14] proposes
retraining the model after feature elimination.

Recent work [23, 30, 31] have identified some limitations in time series interpretability. We provide
the first benchmark that systematically evaluates different saliency methods across multiple neural
architectures in a multivariate time series setting, identifies common limitations, and proposes a
solution to adapt existing methods to time series.

2.1 Saliency Methods

We compare popular backpropagation-based and perturbation based post-hoc saliency methods; each
method provides feature importance, or relevance, at a given time step to each input feature. All
methods are compared with random assignment as a baseline control.

In this benchmark, the following saliency methods’ are included:

¢ Gradient-based: Gradient (GRAD) [5] the gradient of the output with respect to the
input. Integrated Gradients (IG) [9] the average gradient while input changes from a
non-informative reference point. SmoothGrad (SG) [10] the gradient is computed 7 times,
adding noise to the input each time. Deep LIFT (DL) [11] defines a reference point, relevance
is the difference between the activation of each neuron to its reference activation. Gradient
SHAP (GS) [12] adds noise to each input, selects a point along the path between a reference
point and input, and computes the gradient of outputs with respect to those points. Deep
SHAP (DeepLIFT + Shapley values) (DLS) [12] takes a distribution of baselines computes
the attribution for each input-baseline pair and averages the resulting attributions per input.

* Perturbation-based: Feature Occlusion (FO) [24] computes attribution as the difference
in output after replacing each contiguous region with a given baseline. For time series we
considered continuous regions as features with in same time step or multiple time steps
grouped together. Feature Ablation (FA) [32] computes attribution as the difference in
output after replacing each feature with a baseline. Input features can also be grouped
and ablated together rather than individually. Feature permutation (FP) [33] randomly
permutes the feature value individually, within a batch and computes the change in output
as a result of this modification.

e Other: Shapley Value Sampling (SVS) [34] an approximation of Shapley values that
involves sampling some random permutations of the input features and average the marginal
contribution of features based the differences on these permutations.

2.2 Neural Net Architectures

In this benchmark, we consider 3 main neural architectures groups; Recurrent networks, Convolution
neural networks (CNN) and Transformer. For each group we investigate a subset of models that
are commonly used for time series data. Recurrent models include: LSTM [35] and LSTM with
Input-Cell Attention [23] a variant of LSTM with that attends to inputs from different time steps.
For CNN, Temporal Convolutional Network (TCN) [36—38] a CNN that handles long sequence
time series. Finally, we consider the original Transformers [39] implementation.

Captum implementation of different methods was used.
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3 Problem Definition

We study a time series classification problem where all time steps contribute to making the final
output; labels are available after the last time step. In this setting, a network takes multivariate time
series input X = [x1,...,z7] € RV*T where T is the number of time steps and N is the number
of features. Let x; ; be the input feature ¢ at time ¢. Similarly, let X. ; € RY and X;. € R” be the
feature vector at time ¢, and the time vector for feature ¢, respectively. The network produces an
output S(X) = [S1(X), ..., Sc(X)], where C is the total number of classes (i.e. outputs). Given a
target class c, the saliency method finds the relevance R(X) € RV *7 which assigns relevance scores
R; +(X) for input feature ¢ at time .

4 Benchmark Design and Evaluation Metrics

4.1 Dataset Design

Since evaluating interpretability through saliency maps in multivariate time series datasets is nontrivial,
we design multiple synthetic datasets where we can control and examine different design aspects that
emerge in typical time series datasets. We extend the synthetic data proposed by Ismail et al. [23] for
binary classification. We consider how the discriminating signal is distributed over both time and
feature axes, reflecting the importance of time and feature dimensions separately. We also examine
how the signal is distributed between classes: difference in value, position, or shape. Additionally,
we modify the classification difficulty by decreasing the number of informative features (reducing
feature redundancy), i.e., small box datasets. Along with synthetic datasets, we included MNIST as a
multivariate time series as a more general case (treating one of the image axes as time). Different
dataset combinations are shown in Figure 1.

Each synthetic dataset is generated by seven different processes as shown in Figure 2, giving a total
of 70 datasets. Each feature is independently sampled from either: (a) Gaussian with zero mean and
unit variance. (b) Independent sequences of a standard autoregressive time series with Gaussian noise.
(c) A standard continuous autoregressive time series with Gaussian noise. (d) Sampled according to a
Gaussian Process mixture model. (e) Nonuniformly sampled from a harmonic function. (f) Sequences
of standard non-linear autoregressive moving average (NARMA) time series with Gaussian noise. (g)
Nonuniformly sampled from a pseudo period function with Gaussian noise. Informative features are
then highlighted by the addition of a constant p to positive class and subtraction of x from negative
class (unless specified, 1+ = 1); the embedding size for each sample is N = 50, and the number of
time steps is 7' = 50. Figures throughout the paper show data generated as Gaussian noise unless
otherwise specified. Further details are provided in the supplementary material.

4.2 Feature Importance Identification

Modification-based evaluation metrics [27-29] have two main issues. First, they assume that feature
ranking based on saliency faithfully represents feature importance. Consider the saliency distributions
shown in Figure 3. Saliency decays exponentially with feature ranking, meaning that features that
are closely ranked might have substantially different saliency values. A second issue, as discussed
by Hooker et al. [14], is that eliminating features changes the test data distribution violating the
assumption that both training and testing data are independent and identically distributed (i.i.d.).
Hence, model accuracy degradation may be a result of changing data distribution rather than removing
salient features. In our synthetic dataset benchmark, we address these two issues by the following:
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* Replace z; ¢, where R (z;;) € {R. (z;4)}*_, with the original distribution (known since
this is a synthetic dataset).

* Calculate the drop in model accuracy after the masking, this is repeated at different values
of d = [0, 10,...,100].



We address the first issue by removing features that represent a certain percentage of the overall
saliency rather than removing a constant number of features. Since we are using synthetic data and
masking using the original data distribution, we are not violating i.i.d. assumptions.
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Figure 3: The saliency distribution of ranked features produced by different saliency methods for

three variations of the Middle Box dataset (Gaussian, Harmonic, Continous Autoregressive (CAR)).
Top row shows gradient-based saliency methods while bottom row shows the rest.

4.3 Performance Evaluation Metrics

Masking salient features can result in (a) a steep drop in accuracy, meaning that the removed feature is
necessary for a correct prediction or (b) unchanged accuracy. The latter may result from the saliency
method incorrectly identifying the feature as important, or that the removal of that feature is not
sufficient for the model to behave incorrectly. Some neural architectures tend to use more feature
information when making a prediction (i.e., have more recall in terms of importance); this may be the
desired behavior in many time series applications where importance changes over time, and the goal
of using an interpretability measure is to defect all relevant features across time. On the other hand, in
some situations, where sparse explanations are preferred, then this behavior may not be appropriate.
This in mind, one should not compare saliency methods solely on the loss of accuracy after masking.
Instead, we should look into features identified as salient and answer the following questions: (1)
Are all features identified as salient informative? (precision) (2) Was the saliency method able to
identify all informative features? (recall)

We choice to report the weighted precision and recall of each (neural architecture, saliency method)
pair, since, the saliency value varies dramatically across features Figure 3 (detailed calculations are
available in the supplementary material).

Through our experiments, we report area under the precision curve (AUP), the area under the
recall curve (AUR), and area under precision and recall (AUPR). The curves are calculated by the
precision/recall values at different levels of degradation. We also consider feature/time precision and
recall (a feature is considered informative if it has information at any time step and vice versa). For
the random baseline, we stochastically select a saliency method then permute the saliency values
producing arbitrary ranking.

5 Saliency Methods Fail in Time Series Data

Due to space limitations, only a subset of the results is reported below; the full set is available in the
supplementary material. The results reported in the following section are for models that produce
accuracy above 95% in the classification task.

5.1 Saliency Map Quality

Consider synthetic examples in Figure 4; given that the model was able to classify all the samples
correctly, one would expect a saliency method to highlight only informative features. However, we
find that for the Middle Box and Rare Feature datasets, many different (neural architecture, saliency
method) pairs are unable to identify informative features. For Rare time, methods identify the correct
time steps but are unable to distinguish informative features within those times. Similarly, methods
were not able to provide quality saliency maps produced for the multivariate time series MNIST digit.
Overall most (neural architecture, saliency method) pairs fail to identify importance over time.
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Figure 4: Saliency maps produced by Grad, Integrated Gradients, and DeepSHAP for 3 different
models on synthetic data and time series MNIST (white represents high saliency). Saliency seems to
highlight the correct time step in some cases but fails to identify informative features in a given time.
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Figure 5: Saliency maps when applying the proposed Temporal Saliency Rescaling (TSR) approach.
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5.2 Saliency Methods versus Random Ranking

Here we look into distinctions between each saliency method and a random ranking baseline. The
effect of masking salient features on the model accuracy is shown in Figure 6. In a given panel, the
leftmost curve indicates the saliency method that highlights a small number of features that impact
accuracy severely (if correct, this method should have high precision); the rightmost curve indicates
the saliency method that highlights a large number of features that impact accuracy severely (if
correct, this method should show high recall).

Model Accuracy Drop

We were unable to identify a consistent trend for saliency methods across all neural architectures
throughout experiments. Instead, saliency methods for a given architecture behave similarly across
datasets. E.g., in TCN Grad and SmoothGrad had steepest accuracy drop across all datasets while
LSTM showed no clear distinction between random assignment and non-random saliency method
curves (this means that LSTM is very hard to interpret regardless of the saliency method used as
[23]) Variance in performance between methods can be explained by the dataset itself rather than the
methods. E.g., the Moving box dataset showed minimal variance across all methods, while Rare time
dataset showed the highest.

Precision and Recall

Looking at precision and recall distribution box plots Figure 7 (the precision and recall graphs per
dataset are available in the supplementary materials), we observe the following: (a) Model architecture
has the largest effect on precision and recall. (b) Results do not show clear distinctions between



saliency methods. (c) Methods can identify informative time steps while fail to identify informative
features; AUPR in the time domain (second-row Figure 7) is higher than that in the feature domain
(third-row Figure 7). (d) Methods identify most features in an informative time step as salient, AUR
in feature domain is very high while having very low AUP. This is consistent with what we see in
Figure 4, where all features in informative time steps are highlighted regardless of there actual values.
(e) Looking at AUP, AUR, and AUPR values, we find that the steepness in accuracy drop depends
on the dataset. A steep drop in model accuracy does not indicate that a saliency method is correctly
identifying features used by the model since, in most cases, saliency methods with leftmost curves in
Figure 6 have the lowest precision and recall values.
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Figure 6: The effect of masking features identified as salient by different methods against a random
baseline. Gradient-based and non-gradient based saliency methods are shown in the left and right
plots, respectively. The rate of accuracy drop is not consistent; in many cases there is not much
improvement over random baseline.
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Figure 7: Precision and Recall distribution box plots, the top row represents overall Precision/Recall,
while the second two rows show Precision/Recall distribution on time and feature axes (a) Distribution
across architectures. (b) Distribution across saliency methods.
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6 Saliency Maps for Images versus Multivariate Time Series

Since saliency methods are commonly evaluated on images, we compare the saliency maps produced
from models like CNN, which fit images, to the maps produced by temporal models like TCN, over
our evaluation datasets by treating the complete multivariate time series as an image. Figure 8(a)
shows two examples of such saliency maps. The maps produced by CNN can distinguish informative
pixels corresponding to informative features in informative time steps. However, maps produced
from TCN fall short in distinguishing important features within a given time step. Looking at the
saliency distribution of gradients for each model, stratified by the category of each pixel with respect
to its importance in both time and feature axes; we find that CNN correctly assigns higher saliency
values to pixels with information in both feature and time axes compared to the other categories,
which is not the case with TCN, that is biased in the time direction. That observation supports the



conclusion that even though most saliency methods we examine work for images, they generally fail
for multivariate time series. It should be noted that this conclusion should not be misinterpreted as a
suggestion to treat time series as images (in many cases this is not possible due to the decrease in
model performance and increase in dimensionality).

Finally, we examine the effect of reshaping a multivariate time series into univariate or bivariate
time series. Figure 8 (b) shows a few examples of saliency maps produced by the various treatment
approaches of the same sample (images for CNN, uni, bi, multivariate time series for TCN). One
can see that CNN and univariate TCN produce interpretable maps, while the maps for the bivariate
and multivariate TCN are harder to interpret. That is due to the failure of these methods to distin-
guish informative features within informative time steps, but rather focusing more on highlighting
informative time steps.

These observations suggest that saliency maps fail when feature and time domains are conflated.
When the input is represented solely on the feature domain (as is the case of CNN), saliency maps are
relatively accurate. When the input is represented solely on the time domain, maps are also accurate.
However, when feature and time domains are both present, the saliency maps across these domains
are conflated, leading to poor behavior. This observation motivates our proposed method to adapt
existing saliency methods to multivariate time series data.
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Figure 8: (a) Saliency maps and distribution produced by CNN versus TCN for Middle Box. (b)
Saliency Maps for samples treated as image (CNN) vs. uni-, bi- or multi-variate time series (TCN).

7 Temporal Saliency Rescaling

From the results presented in previous sections, we conclude that most saliency methods identify
informative time steps successfully while they fail in identifying feature importance in those time steps.
In this section, we propose a method that can be used on top of any generic interpretation method
to boost its performance in time series applications. The key idea is to decouple the (time,feature)
importance scores to time and feature relevance scores using a two-step procedure called Temporal
Saliency Rescaling (TSR). In the first step, we calculate the time-relevance score for each time by
computing the total change in saliency values if that time step is masked. Based on our experiments
presented in the last sections, many existing interpretation methods would provide reliable time-
relevance scores. In the second step, in each time-step whose time-relevance score is above a certain
threshold o, we compute the feature-relevance score for each feature by computing the total change
in saliency values if that feature is masked. By choosing a proper value for «, the second step can be
performed in a few highly-relevant time steps to reduce the overall computational complexity of the
method. Then, the final (time, feature) importance score is the product of associated time and feature
relevance scores. The method is formally presented in Algorithm 1.

Figure 5 shows updated saliency maps when applying TSR on the same examples in Figures 4.
There is a definite improvement in saliency quality across different architectures and interpretability
methods except for SmoothGrad; this is probably because SmoothGrad adds noise to gradients, and
using a noisy gradient as a baseline may not be appropriate. Table 1 shows the performance of
TSR with simple Gradient compared to some standard saliency method on the benchmark metrics
described in Section 4. TSR + Grad outpreforms other methods on all metrics.



Algorithm 1: Temporal Saliency Rescaling (TSR)

Given: input X, a baseline interpretation method R(.)
Output: TSR interpretation method RS (.)
fort <~ 0 to T do
Mask all features at time ¢: X .t = 0, otherwise X =X;
Compute Time-Relevance Score A} = 3. |R; +(X) — Ri +(X)];
fort < Oto I do
for i < Oto N do
if Al'™¢ > o then
Mask feature i at time ¢: X; . = 0, otherwise X = X;
Compute Feature-Relevance Score Af“*™7¢ — >it|Rit(X) = Rin(X)[;
else
L Feature-Relevance Score Alf eature _ ).

. . t .
Compute (time,feature) importance score R? 7% = A{ carure s Atime

The proposed rescaling approach improves the ability of saliency methods to capture feature impor-
tance over time but significantly increases the computational cost of producing a saliency map. Other
approaches [14, 10] have relied on a similar trade-off between interpretability and computational
complexity. In the supplementary material, we show the effect of applying temporal saliency rescaling
on other datasets and provide possible optimizations.

Middle Box Moving Box
Saliency Methods | AUPR  AUP AUR AUC | AUPR AUP AUR AUC
Grad 0.331 0328 0457 6490 | 0225 0.229 0.394 95.35
DLS 0.344 0344 0452 68.30 | 0.288 0.288 0.435 94.05
SG 0.294 0300 0451 64.00 | 0.241 0.247 0395 9290
TSR + Grad 0.399 0.381 0471 6220 | 0335 0.326 0.456 84.00

Table 1: Results from TCN on Middle Box and Moving Box synthetic datasets. Higher AUPR, AUP,
and AUR values indicate better performance. AUC lower values are better as this indicates that the
rate of accuracy drop is higher.

8 Summary and Conclusion

In this work, we have studied deep learning interpretation methods when applied to multivariate
time series data on various neural network architectures. To quantify the performance of each (inter-
pretation method, architecture) pair, we have created a comprehensive synthetic benchmark where
positions of informative features are known. We measure the quality of the generated interpretation by
calculating the degradation of the trained model accuracy when inferred salient features are masked.
These feature sets are then used to calculate the precision and recall for each pair.

Interestingly, we have found that commonly-used saliency methods, including both gradient-based,
and perturbation-based methods, fail to produce high-quality interpretations when applied to multi-
variate time series data. However, they can produce accurate maps when multivariate time series are
represented as either images or univariate time series. That is, when temporal and feature domains
are combined in a multivariate time series, saliency methods break down in general. The exact
mathematical mechanism underlying this result is an open question. Consequently, there is no clear
distinction in performance between different interpretability methods on multiple evaluation metrics
when applied to multivariate time series, and in many cases, the performance is similar to random
saliency. Through experiments, we observe that methods generally identify salient time steps but
cannot distinguish important vs. non-important features within a given time step. Building on this
observation, we then propose a two-step temporal saliency rescaling approach to adapt existing
saliency methods to time series data. This approach has led to substantial improvements in the quality
of saliency maps produced by different methods.



9 Broader Impact

The challenge presented by meaningful interpretation of Deep Neural Networks (DNNs) is a technical
barrier preventing their serious adoption by practitioners in fields such as Neuroscience, Medicine,
and Finance [40, 41]. Accurate DNNSs are not, by themselves, sufficient to be used routinely in high
stakes applications such as healthcare. For example, in clinical research, one might like to ask, "why
did you predict this person as more likely to develop a certain disease?" Our work aims to answer
such questions. Many critical applications involve time series data, e.g., electronic health records,
functional Magnetic Resonance Imaging (fMRI) data, and market data; nevertheless, the majority of
research on interpretability focuses on vision and language tasks. Our work aims to interpret DNNs
applied to time series data.

Having interpretable DNNs has many positive outcomes. It will help increase the transparency
of these models and ease their applications in a variety of research areas. Understanding how a
model makes its decisions can help guide modifications to the model to produce better and fairer
results. Critically, failure to provide faithful interpretations is a severe negative outcome. Having no
interpretation at all is, in many situations, better than trusting an incorrect interpretation. Therefore,
we believe this study can lead to significant positive and broad impacts in different applications.
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