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Abstract

In this paper, we propose a Distributed
Accumulated Newton Conjugate gradiEnt
(DANCE) method in which sample size is
gradually increasing to quickly obtain a solu-
tion whose empirical loss is under satisfactory
statistical accuracy. Our proposed method is
multistage in which the solution of a stage
serves as a warm start for the next stage which
contains more samples (including the samples
in the previous stage). The proposed multi-
stage algorithm reduces the number of passes
over data to achieve the statistical accuracy
of the full training set. Moreover, our algo-
rithm in nature is easy to be distributed and
shares the strong scaling property indicating
that acceleration is always expected by us-
ing more computing nodes. Various iteration
complexity results regarding descent direction
computation, communication efficiency and
stopping criteria are analyzed under convex
setting. Our numerical results illustrate that
the proposed method outperforms other com-
parable methods for solving learning problems
including neural networks.

1 Introduction

In the field of machine learning, solving the expected
risk minimization problem has received lots of atten-
tions over the last decades, which is in the form of

min
w∈Rd

L(w) = min
w∈Rd

Ez[f(w, z)], (1)
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where z is a d + 1 dimensional random variable con-
taining both feature variables and a response variable.
f(w, z) is a loss function with respect to w and any
fixed value of z.

In most practical problems, the distribution of z is
either unknown or leading great difficulties evaluating
the expected loss. One general idea is to estimate
the expectation with a statistical average over a large
number of independent and identically distributed data
samples of z, denoted by {z1, z2, . . . , zN} where N is
the total number of samples. Thus, the problem in (1)
can be rewritten as the Empirical Risk Minimization
(ERM) problem

min
w∈Rd

LN (w) = min
w∈Rd

1

N

N∑
i=1

fi(w), (2)

where fi(w) = f(w, zi).

Many studies have been done on developing optimiza-
tion algorithms to find an optimal solution of the above
problem under different setting. For example, the
studies by [Beck and Teboulle, 2009, Nesterov, 2013,
Drusvyatskiy et al., 2018, Ma et al., 2017] are some of
the gradient-based methods which require at least
one pass over all data samples to evaluate the gra-
dient ∇LN (w). As the sample size N becomes
larger, these methods would be less efficient com-
pared to stochastic gradient methods where the gra-
dient is approximated based on a small number of
samples [Johnson and Zhang, 2013, Roux et al., 2012,
Defazio et al., 2014, Shalev-Shwartz and Zhang, 2013,
Konečnỳ and Richtárik, 2017, Nguyen et al., 2017].

Second order methods are well known to share
faster convergence rate by utilizing the Hes-
sian information. Recently, several papers by
[Byrd et al., 2016, Berahas et al., , Jahani et al., 2019,
Berahas et al., 2016, Schraudolph et al., 2007,
Berahas et al., 2019, Mokhtari and Ribeiro, 2015,
Roosta-Khorasani and Mahoney, 2018] have studied
how to apply second orders methods to solve ERM
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Table 1: Comparison of computational complexity be-
tween different algorithms for convex functions

Method Complexity

AdaNewton O(2Nd2 + d3 log2(N))
k-TAN O(2Nd2 + d2 log2(N) log k )

DANCE Õ((log2(N))3N1/4d2)

problem. However, evaluating the Hessian inverse or
its approximation is always computationally costly,
leading to a significant difficulty on applying these
methods on large-scale problems.

The above difficulty can be addressed by ap-
plying the idea of adaptive sample size meth-
ods by recent works of [Mokhtari and Ribeiro, 2017,
Eisen et al., 2018, Mokhtari et al., 2016], which is
based on the following two facts. First, the empirical
risk and the statistical loss have different minimizers,
and it is not necessary to go further than the differ-
ence between the mentioned two objectives, which is
called statistical accuracy. More importantly, if we
increase the size of the samples in the ERM problem
the solutions should not significantly change as sam-
ples are drawn from a fixed but unknown probability
distribution. The key idea of adaptive samples size
methods is to solve an ERM problem with a small num-
ber of samples upto its statistical accuracy and use the
obtained solution as a warm start for the next ERM
problem which contains more samples. In particular,
[Mokhtari et al., 2016] reduced the complexity of New-
ton’s method by incorporating the adaptive sample size
idea; however, their approach still requires computing
logN Hessian inversions which is costly when the prob-
lem dimension d is large. In order to decrease the cost
of computing the Hessian inverse, [Eisen et al., 2018]
proposed the k-Truncated Adaptive Newton (k-TAN)
approach in which the inverse of Hessian is approxi-
mated by truncating the k largest eigenvalues of the
Hessian. The cost per iteration of this approach is
O((log k + n)d2) which may not be satisfactory either
when d is large or k is close to d.

In this paper, we propose an increasing sample size
second-order method which solves the Newton step in
ERM problems more efficiently. Our proposed algo-
rithm, called Distributed Accumulated Newton Conju-
gate gradiEnt (DANCE), starts with a small number
of samples and minimizes their corresponding ERM
problem. This subproblem is solved up to a specific
accuracy, and the solution of this stage is used as a
warm start for the next stage. We increase the number
of samples in the next stage which contains all the
previous samples, and use the previous solution as a
warm start for solving the new ERM. Such procedure
is run iteratively until either all the samples have been
included, or we find that it is unnecessary to further

increase the sample size. Our DANCE method com-
bines the idea of increasing sample size and the inexact
damped Newton method discussed in the works of
[Zhang and Lin, 2015] and [Ma and Takáč, 2016]. In-
stead of solving the Newton system directly, we apply
preconditioned conjugate gradient (PCG) method as
the solver for each Newton step. Also, it is always
a challenging problem to run first order algorithms
such as SGD and Adam by [Kingma and Ba, 2014] in
a distributed fashion. The DANCE method is designed
to be easily parallelized and shares the strong scaling
property, i.e., linear speed-up property. Since it is
possible to split gradient and Hessian-vector product
computations across different machines, it is always
expected to get extra acceleration via increasing the
number of computational nodes. We formally charac-
terize the required number of communication rounds
to reach the statistical accuracy of the full dataset. For
a distributed setting, we show that DANCE is com-
munication efficient in both theory and practice. In
particular, Table 1 highlights the advantage of DANCE
with respect to other adaptive sample size methods
which will be discussed in more details in Section 4.

We organize this paper as following. In Section 2, we
introduce the necessary assumptions and the definition
of statistical accuracy. Section 3 describes the pro-
posed algorithm and its distributed version. Section
4 explores the theoretical guarantees on complexity of
DANCE. In Section 5, we demonstrate the outstanding
performance of our algorithm in practice. In Section 6,
we close the paper by concluding remarks.

2 Problem Formulation

In this paper, we focus on finding the optimal solu-
tion w∗ of the problem in (1). As described earlier,
due to difficulties in the expected risk minimization,
as an alternative, we aim to find a solution for the
empirical loss function LN (w), which is the empir-
ical mean over N samples. Now, consider the em-
pirical loss Ln(w) associated with n ≤ N samples.
In [Bousquet and Bottou, 2008] and [Bottou, 2010], it
has been shown that the difference between the ex-
pected loss and the empirical loss Ln with high prob-
ability (w.h.p.) is upper bounded by the statistical
accuracy Vn, i.e., w.h.p.

sup
w∈Rd

|L(w)− Ln(w)| ≤ Vn. (3)

In other words, there exists a constant ϑ such that the
inequality (3) holds with probability of at least 1− ϑ.
Generally speaking, statistical accuracy Vn depends on
n (although it depends on ϑ too, but for simplicity in
notation we just consider the size of the samples), and is
of order Vn = O(1/nγ) where γ ∈ [0.5, 1] [Vapnik, 2013,
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Bousquet, 2002, Bartlett et al., 2006].

For problem (2), if we find an approximate solution wn
which satisfies the inequality Ln(wn)− Ln(ŵn) ≤ Vn,
where ŵn is the true minimizer of Ln, it is not necessary
to go further and find a better solution (a solution with
less optimization error). The reason comes from the
fact that for a more accurate solution the summation
of estimation and optimization errors does not become
smaller than Vn. Therefore, when we say that wn is a
Vn-suboptimal solution for the risk Ln, it means that
Ln(wn) − Ln(ŵn) ≤ Vn. In other words, wn solves
problem (2) within its statistical accuracy.

It is crucial to note that if we add an additional term
in the magnitude of Vn to the empirical loss Ln, the
new solution is also in the similar magnitude as Vn to
the expected loss L. Therefore, we can regularize the
non-strongly convex loss function Ln by cVn‖w‖2/2
and consider it as the following problem:

min
w∈Rd

Rn(w) :=
1

n

n∑
i=1

fi(w) +
cVn
2
‖w‖2. (4)

The noticeable feature of the new empirical risk Rn
is that Rn is cVn-strongly convex1, where c is a posi-
tive constant depending on the VC dimension of the
problem. Thus, we can utilize any practitioner-favorite
algorithm. Specifically, we are willing to apply the
inexact damped Newton method, which will be dis-
cussed in the next section. Due to the fact that a
larger strong-convexity parameter leads to a faster con-
vergence, we could expect that the first few steps would
converge fast since the values of cVn in these steps are
large (larger statistical accuracy), as will be discussed
in Theorem 1. From now on, when we say wn is an
Vn-suboptimal solution of the risk Rn, it means that
Rn(wn)−Rn(w∗n) ≤ Vn, where w∗n is the true optimal
solution of the risk Rn. Our final aim is to find wN
which is VN -suboptimal solution for the risk RN which
is the risk over the whole dataset.
In the rest of this section, first we define the self-
concordant functions which have the property that
its third derivative can be controlled by its second
derivative. By assuming that function f : Rd → R has
continuous third derivative, we define self-concordant
function as follows.

Definition 1. A convex function f : Rd → R is ρf -
self-concordant if for any w ∈ dom(f) and u ∈ Rd

|uT (f
′′′

(w)[u])u| ≤ ρf (uT∇2f(w)u)
3
2 , (5)

where f
′′′

(w)[u] := limt→0
1
t (∇

2f(w + tu)−∇2f(w)).
As it is discussed in [Nesterov, 2013], any self-
concordant function f with parameter ρf can be

1cVn depends on number of samples, probability, and
VC dimension of the problem. For simplicity in notation,
we just consider the number of samples.

rescaled to become standard self-concordant (with pa-
rameter 2). Some of the well-known empirical loss
functions which are self-concordant are linear regres-
sion, Logistic regression and squared hinge loss. In
order to prove our results the following conditions are
considered in our analysis.

Assumption 1. The loss functions f(w, z) are convex
w.r.t w for all values of z. In addition, their gradients
∇f(w, z) are M−Lipschitz continuous

‖∇f(w, z)−∇f(w′, z)‖ ≤M‖w − w′‖, ∀z. (6)

Assumption 2. The loss functions f(w, z) are self-
concordant w.r.t w for all values of z.

The immediate conclusion of Assumption 1 is that
both L(w) and Ln(w) are convex and M -smooth. Also,
we can note that Rn(w) is cVn-strongly convex and
(cVn+M)-smooth. Moreover, by Assumption 2, Rn(w)
is also self-concordant.

3 Distributed Accumulated Newton
Conjugate Gradient Method

The goal in inexact damped Newton method, as dis-
cussed in [Zhang and Lin, 2015], is to find the next
iterate based on an approximated Newton-type update.
It has two important differences comparing to Newton’s
method. First, as it is clear from the word “damped”,
the learning rate of the inexact damped Newton type
update is not 1, since it depends on the approximation
of Newton decrement. The second distinction is that
there is no need to compute exact Newton direction
(which is very expensive to calculate in one step). Al-
ternatively, an approximated inexact Newton direction
is calculated by applying an iterative process to ob-
tain a direction with desirable accuracy under some
measurements.

In order to utilize the important features of ERM, we
combine the idea of increasing sample size and the inex-
act damped Newton method. In our proposed method,
we start with handling a small number of samples, as-
sume m0 samples. We then solve its corresponding
ERM to its statistical accuracy, i.e. Vm0 , using the
inexact damped Newton algorithm. In the next step,
we increase the number of samples geometrically with
rate of α > 1, i.e., αm0 samples. The approximated
solution of the previous ERM can be used as a warm
start point to find the solution of the new ERM. The
sample size increases until it equals the number of full
samples.

Consider the iterate wm within the statistical accuracy
of the set with m samples, i.e. Sm for the risk Rm.
In DANCE, we increase the size of the training set to
n = αm and use the inexact damped Newton to find
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the iterate wn which is Vn-suboptimal solution for the
sample set Sn, i.e. Rn(wn) − Rn(w∗n) ≤ Vn after Kn

iterations. To do so, we initialize w̃0 = wm and update
the iterates according to the following

w̃k+1 = w̃k − 1
1+δn(w̃k)

vk, (7)

where vk is an εk-Newton direction. The outcome of
applying (7) for k = Kn iterations is the approximate
solution wn for the risk Rn, i.e., wn := w̃Kn .

To properly define the approximate Newton direction
vk, first consider that the gradient and Hessian of the
risk Rn can be evaluated as

∇Rn(w) =
1

n

n∑
i=1

∇fi(w) + cVnw (8)

and

∇2Rn(w) =
1

n

n∑
i=1

∇2fi(w) + cVnI, (9)

respectively. The favorable descent direction would be
the Newton direction −∇2Rn(w̃k)−1∇Rn(w̃k); how-
ever, the cost of computing this direction is prohibitive.
Therefore, we use vk which is an εk-Newton direction
satisfying the condition

‖∇2Rn(w̃k)vk −∇Rn(w̃k)‖ ≤ εk. (10)

As we use the descent direction vk which is an approxi-
mation for the Newton step, we also redefine the New-
ton decrement δn(w̃k) based on this modification. To be
more specific, we define δn(w̃k) := (vTk∇2Rn(w̃k)vk)1/2

as the approximation of (exact) Newton decrement
(∇Rn(w̃k)T∇2Rn(w̃k)−1∇Rn(w̃k))1/2, and use it in
the update in (7).

In order to find vk which is an εk-Newton direction,
we use Preconditioned CG (PCG). As it is discussed
in [Zhang and Lin, 2015, Nocedal and Wright, 2006],
PCG is an efficient iterative process to solve Newton
system with the required accuracy. The precondi-
tioned matrix that we considered is in the form of
P = H̃n + µnI, where H̃n = 1

|An|
∑
i∈An ∇

2Rin(w),

An ⊂ Sn, and µn is a small regularization parameter.
In this case, vk is an approximate solution of the
system P−1∇2Rn(w̃k)vk = P−1∇Rn(w̃k). The reason
for using preconditioning is that the condition number
of P−1∇2Rn(w̃k) may be close to 1 in the case when
H̃n is close to ∇2Rn(w̃k); consequently, PCG can
be faster than CG. The PCG steps are summarized
in Algorithm 2. In every iteration of Algorithm
2, a system needs to be solved in step 10. Due to
the structure of matrix P , and as it is discussed in
[Ma and Takáč, 2016], this matrix can be considered
as |An| rank 1 updates on a diagonal matrix, and

Algorithm 1 DANCE

1: Initialization: Sample size increase constant α,
initial sample size n = m0 and wn = wm0

with
‖∇Rn(wn)‖ < (

√
2c)Vn

2: while n ≤ N do
3: Update wm = wn and m = n
4: Increase sample size: n = min{αm,N}
5: Set w̃0 = wm and set k = 0
6: repeat
7: Calculate vk and δn(w̃k) by Algorithm 2

PCG
8: Set w̃k+1 = w̃k − 1

1+δn(w̃k)
vk

9: k = k + 1
10: until satisfy stop criteria leading to Rn(w̃k) −

Rn(w∗n) ≤ Vn
11: Set wn = w̃k
12: end while

now, using Woodbury Formula [Press et al., 2007] is
a very efficient way to solve the mentioned system.
The following lemma states the required number of
iterations for PCG to find an εk-Newton direction vk
which is used in every stage of DANCE algorithm.

Lemma 1. (Lemma 4 in [Zhang and Lin, 2015]) Sup-
pose Assumption 1 holds and ‖H̃n −∇2Rn(w̃k)‖ ≤ µn.
Then, Algorithm 2, after Cn(εk) iterations calculates
vk such that ‖∇2Rn(w̃k)vk −∇Rn(w̃k)‖ ≤ εk, where

Cn(εk) =


√

(1 + 2µn
cVn

) log

 2

√
cVn+M
cVn

‖∇Rn(w̃k)‖

εk

 .
(11)

Note that εk has a crucial effect on the speed of the
algorithm. When εk = 0, then vk is the exact Newton
direction, and the update in (7) is the exact damped
Newton step (which recovers the update in Ada New-
ton algorithm in [Mokhtari et al., 2016] when the step-
length is 1). Furthermore, the number of total itera-
tions to reach VN -suboptimal solution for the risk RN
is K, i.e. K = Km0

+ Kαm0
+ · · · + KN . Hence, if

we start with the iterate wm0
with corresponding m0

samples, after K iterations, we reach wN with statisti-
cal accuracy of VN for the whole dataset. In Theorem
1, the required rounds of communication to reach the
mentioned statistical accuracy will be discussed.

Our proposed method is summarized in Algorithm 1.
We start with m0 samples, and an initial point wm0

which is an Vm0
− suboptimal solution for the risk Rm0

.
In every iteration of outer loop of Algorithm 1, we
increase the sample size geometrically with rate of α
in step 4. In the inner loop of Algorithm 1, i.e. steps
6-10, in order to calculate the approximate Newton
direction and approximate Newton decrement, we use
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Algorithm 2 PCG

1: Master Node: Worker Nodes (i = 1, 2, . . . ,Ki = 1, 2, . . . ,Ki = 1, 2, . . . ,K):
2: Input: w̃k ∈ Rd, εk, and An
3: Let H = ∇2Rn(w̃k), P = 1

|An|

∑
i∈An

∇2Rin(w̃k) + µnI

4: Broadcast: w̃k −→−→−→ Compute ∇Rin(w̃k)
5: Reduce: ∇Rin(w̃k) to ∇Rn(w̃k) ←−←−←−
6: Set r(0) = ∇Rn(w̃k), u(0) = s(0) = P−1r(0)

7: Set v(0) = 0, t = 0
8: repeat
9: Broadcast: u(t) and v(t) −→−→−→ Compute ∇2Rin(w̃k)u(t) and ∇2Rin(w̃k)v(t)

10: Reduce: ∇2Rin(w̃k)u(t) and ∇2Rin(w̃k)v(t) to Hu(t) and Hv(t) ←−←−←−
11: Compute γt = 〈r(t),s(t)〉

〈u(t),Hu(t)〉
12: Set v(t+1) = v(t) + γtu

(t), r(t+1) = r(t) − γtHu(t)

13: Compute ζt = 〈r(t+1),s(t+1)〉
〈r(t),s(t)〉

14: Set Ps(t+1) = r(t+1), u(t+1) = s(t+1) + ζtu
(t)

15: Set t = t+ 1
16: until ‖r(t+1)‖ ≤ εk
17: Output: vk = v(t+1), δn(w̃k) =

√
vTkHv

(t) + γtvTkHu
(t)

PCG algorithm which is shown in Algorithm 2. This
process repeats till we get the point wN with statistical
accuracy of VN . The practical stopping criteria for
Algorithm 1 is discussed in Section A.1.

Distributed Implementation Similar to the algo-
rithm in [Zhang and Lin, 2015], Algorithms 1 and 2
can also be implemented in a distributed environment.
Suppose the entire dataset is stored across K machines,
i.e., each machine stores Ni data samples such that∑K
i=1Ni = N . Under this setting, each iteration in

Algorithm 1 can be executed on different machines in
parallel with

∑K
i=1 ni = n, where ni is the batchsize on

ith machine. To implement Algorithm 2 in a distributed
manner, a broadcast operation is needed at each itera-
tion to guarantee that each machine will share the same
w̃k value. Moreover, the gradient and Hessian-vector
product can be computed locally and later reduce to
the master machine. With the increasing of batch size,
computation work on each machine will increase while
we still have the same amount of communication need.
As a consequence, the computation expense will gradu-
ally dominate the communication expense before the
algorithm terminates. Therefore the proposed algo-
rithm could take advantage of utilizing more machines
to shorten the running time of Algorithm 2.

4 Complexity Analysis

In this section, we study the convergence properties of
our algorithm. To do so, we analyze the required num-
ber of communication rounds and total computational
complexity of DANCE to solve every subproblem up

to its statistical accuracy.

We analyze the case when we have wm which is a
Vm-suboptimal solution of the risk Rm, and we are
interested in deriving a bound for the number of re-
quired communication rounds to ensure that wn is a
Vn-suboptimal solution for the risk Rn.

Theorem 1. Suppose that Assumptions 1 and 2 hold.
Consider wm which satisfies Rm(wm)−Rm(w∗m) ≤ Vm
and also the risk Rn corresponding to sample set Sn ⊃
Sm where n = αm, α > 1. Set the parameter εk (the
error in (10)) as following

εk = β( cVn
M+cVn

)1/2‖∇Rn(w̃k)‖, (12)

where β ≤ 1
20 . Then, in order to find the variable wn

which is an Vn-suboptimal solution for the risk Rn, i.e
Rn(wn)−Rn(w∗n) ≤ Vn, the number of communication
rounds Tn satisfies in the following:

Tn ≤Kn (1 + Cn(εk)) , w.h.p. (13)

where Kn =
⌈
Rn(wm)−Rn(w∗n)

1
2ω(1/6)

⌉
+
⌈

log2( 2ω(1/6)Vn
)
⌉

. Here

dte shows the smallest nonnegative integer larger than
or equal to t.

As a result, the update in (7) needs to be done for
Kn = O(log2 n) times in order to attain the solution
wn which is Vn-suboptimal solution for the risk Rn.
Also, based on the result in (13), by considering the risk
Rn, we can note that when the strong-convexity param-
eter for the mentioned risk (cVn) is large, less number
of iterations (communication rounds) are needed (or
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equally faster convergence is achieved) to reach the
iterate with Vn-suboptimal solution; and this happens
in the first steps. More importantly, DANCE is a multi-
stage algorithm which any stage of DANCE converges
linearly (the reason is that in every stage of our DANCE
method, we use ineaxt damped-Newton method, and
as it is shown in [Zhang and Lin, 2015] that with εk in
(12), the ineaxt damped-Newton method converges lin-
early). Furthermore, if we consider DANCE as 1-stage
algorithm with full samples in each iteration, it covers
DiSCO which converges linearly.

Corollary 1. Suppose that Assumptions 1 and 2 hold.
Further, assume that wm is a Vm-suboptimal solution
for the risk Rm and consider Rn as the risk correspond-
ing to sample set Sn ⊃ Sm where n = 2m. If we set
parameter εk (the error in (10)) as (12), then with high
probability T̃n communication rounds

T̃n ≤
(⌈(3+(1− 1

2γ

)(
2+

c
2‖w

∗‖2
))
Vm

1
2ω(1/6)

⌉
+
⌈

log2( 2ω(1/6)
Vn

)
⌉)

(
1 +

⌈√
1 + 2µ

cVn
) log2

(
2(cVn+M)
βcVn

)⌉)
, (14)

are needed to reach the point wn with statistical accu-
racy of Vn for the risk Rn.

Corollary 2. By assuming α = 2, the total number
of communication rounds to reach a point with the
statistical accuracy of VN of the full training set is
w.h.p.

T̃ = Õ(γ(log2N)2
√
Nγ log2N

γ) (15)

where γ ∈ [0.5, 1].

The rounds of communication for DiSCO in
[Zhang and Lin, 2015]2 is T̃DiSCO = Õ((RN (w0) −
RN (w∗N ) + γ(log2N))

√
Nγ log2N

γ) where γ ∈ [0.5, 1].
Comparing these bounds shows that the communi-
cation complexity of DANCE is independent of the
choice of initial variable w0 and the suboptimality
RN (w0)−RN (w∗N ), while the overall communication
complexity of DiSCO depends on the initial subopti-
mality. In addition, implementation of each iteration
of DiSCO requires processing all the samples in the
dataset, while DANCE only operates on an increasing
subset of samples at each phase. Therefore, the compu-
tation complexity of DANCE is also lower than DiSCO
for achieving the statistical accuracy of the training
set.
Theorem 2. The total complexity of DANCE Algo-
rithm in order to reach a point with the statistical ac-
curacy of VN of the full training set is w.h.p.

Õ((log2(N))3N1/4d2) (16)
2In order to have fair comparison, we put f = RN ,

ε = VN , and λ = cVN in their analysis, and also the
constants are ignored for the communication complexity.

Table 1 shows that the total complexity of the
k−Truncated method [Eisen et al., 2018] is lower than
the one for AdaNewton [Mokhtari et al., 2016]. Fur-
ther, as (log2(N))3 � N3/4, the total complexity of
DANCE is lower than both AdaNewton and k−TAN
methods. All in all, the theoretical results highlight
that DANCE is more efficient than DiSCO in terms of
communication, and has lower complexity than previ-
ous adaptive sample size methods including AdaNewton
and k−TAN.

5 Numerical Experiments

In this section, we present numerical experiments on
several large real-world datasets to show that our
restarting DANCE algorithm can outperform other ex-
isted methods on solving both convex and non-convex
problems. Also, we compare the results obtained from
utilizing different number of machines to demonstrate
the strong scaling property for DANCE. All the al-
gorithms are implemented in Python with PyTorch
[Paszke et al., 2017] library and we use MPI for Python
[Dalcin et al., 2011] distributed environment3. For all
plots in this section, vertical pink dashed lines represent
restarts in our DANCE method.

Convex problems. First, we compare DANCE
with two algorithms SGD (mini-batch)4 and DiSCO
[Zhang and Lin, 2015], for solving convex problems.
The experiments in this section are performed on a
cluster with 16 Xeon E5-2620 CPUs (2.40GHz).

We use logistic regression model for two binary
classification tasks based on rcv1 and gisette
[Chang and Lin, 2011] datasets for our convex test
problem. We use logistic loss function defined as
fi(w) := log(1 + exp(−yiwTxi)), where xi ∈ Rd is
data sample and yi ∈ {−1, 1} is binary label corre-
sponding to xi, i ∈ [m]. Then we minimize the em-
pirical loss function as (4). Note that there is a fixed
`2-regularization parameter in DiSCO and SGD and
we set c = 0.1 in (4) to form the `2-regularization pa-
rameter for our DANCE method. In Section C.1, we
numerically show that DANCE is robust w.r.t. different
setting of hyper-parameters5.

We run our algorithm and compare algorithms with
different datasets using 8 nodes. The starting batchsize
on each node for our DANCE algorithm is set to 16
while other two algorithms go over the whole dataset at
each iteration. For DANCE implementation, number
of samples used to form the new ERM loss are doubled
from previous iteration after each restarting.

3All codes to reproduce these experimental results are
available at https://github.com/OptMLGroup/DANCE.

4The batch size is 10 in our experiments
5Please see Figures 6, 7, 8 and 9

https://github.com/OptMLGroup/DANCE
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Figure 1: Performance of different algorithms on a logistic regression problem with rcv1 and gissete datasets. In
the left two figures, the plot DANCE* is the training accuracy based on the entire training set, while the plot
DANCE represents the training accuracy based on the current sample size.

Figure 2: Comparison between DANCE and SGD with various hyper-parameters setting on Cifar10 dataset
and vgg11 network. vgg11 represents simonyan2014very a 28 layers convolutional neural network (see details
at Appendix B). Figures on the top and bottom show how loss values, training accuracy and test accuracy are
changing with respect to epochs and running time. Note that we force both algorithms to restart (double training
sample size) after achieving the following number of epochs: 0.2, 0.8, 1.6.3.2, 6.4, 12, 24, 48, 96. For SGD, we varies
learning rate from 0.01, 0.001, 0.0001 and batchsize from 128, 512.

In Figure 1, we observe consistently that DANCE has
a better performance over the other two methods from
the beginning stages (please see Figure 5 for additional
results). Both training and test accuracy for DANCE
converges to optimality after processing a small number
of samples. This observation suggests that DANCE
finds a good initial solution and updates it over time.
Compared with DiSCO, our restarting approach helps
to reduce computational cost for the first iterations,
where the second order methods usually performs less
efficiently comparing to first order methods. The key
difference comes from utilizing the idea of increasing
sample size where DANCE goes over small number
of samples and finds a suboptimal solution, and use
it as a warm-start for the next stage. In this way,
less passes over data is needed in the beginning but
with satisfactory accuracy. On the other hand, DiSCO
uses total number of samples from the beginning which
some passes over data is needed in order to reach the
neighborhood of global solution. Therefore, DANCE
behaves efficiently and reaches the optimal solution
with less passes over data.

Non-convex problems. Even though the complex-
ity analysis in Section 4 only covers the convex case,
the DANCE algorithm is also able to handle nonconvex
problems efficiently. In this section, we compare our
method with several stochastic first order algorithms,
stochastic gradient descent (SGD), SGD with momen-
tum (SGDMom), and Adam [Kingma and Ba, 2014],
on training convolution neural networks (CNNs) on
two image classification datasets Mnist and Cifar10.
The details of the datasets and the CNNs architecture
applied on each dataset are presented in Appendix B.
To perform a fair comparison with respect to first order
variants, we assume data comes in an online streaming
manner, e.g., only a few data samples can be accessed
at the beginning, and new data samples arrives at a
fixed rate. Such setting is common in industrial pro-
duction, where business data is collected in a streaming
fashion. We feed new data points to all algorithms only
if the amount of new samples is equal to the number
of existing samples. The experiments in this section
are run on an AWS p2.xlarge instance with an NVIDIA
K80 GPU.

In Figure 2, we compare DANCE with the build-in
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Figure 3: Comparison between DANCE and Adam on
Mnist dataset and NaiveCNet. For DANCE, the initial
batchsize is 1024. For Adam, the learning rate is 10−4

and the batchsize is either 64 or 128.

SGD optimizer in pyTorch on Cifar dataset to train a
28 layers CNN (Vgg11) architecture. Note that there
are several hyper-parameters we need to tune for SGD
to reach the best performance, such as batch size and
learning rate, which are not required for DANCE. Since
we have the online streaming data setting, we don’t
need to determine a restarting criterion. The results
show that SGD is sensitive to hyper-parameters tun-
ing, i.e., different combination of hyper-parameters
affect the performance of SGD a lot and tune them
well to achieve the best performance could be painful.
However, our DANCE algorithm does not have such
weakness and its performance is comparable to SGD
with the best parameters setting. We also show that
the DANCE algorithm leads to a faster decreasing on
the loss value, which is similar to our convex experi-
ments. Again, this is due to fast convergence rate of
the second order methods. One could also found the
additional experiments regarding the comparison with
SGD with momentum and Adam in terms of Mnist
with NaiveCNet at Appendix C.

Regarding Figure 3, the performance of build-in Adam
optimizer and our DANCE algorithm are compared
regarding Mnist dataset and a 4 layer NaiveCNet (see
the details in Appendix B). In this experiment, we
do not assume that the data samples follow an online
streaming manner for Adam, i.e., the Adam algorithm
does not have a restarting setting and therefore it runs
on whole dataset directly. Also, this experiment is
performed only on CPUs. We set the learning-rate for

Adam as 10−4 and varies the running batch-size from
64 and 128. The evolution of loss, training accuracy,
testing accuracy with respect to epochs and running
time regarding the whole dataset are reported in Fig-
ure 3 for different algorithms. One could observe that
under the same epochs, Adam eventually achieves the
better testing accuracy, while if we look at running
time, our DANCE algorithm would be faster due to
the distributed implementation.

Strong scaling Moreover, we demonstrate that our
DANCE method shares a strong scaling property. As
shown in Figure 4, whenever we increase the number
of nodes, we obtain acceleration towards optimality.

Figure 4: Performance of
DANCE w.r.t. different
number of nodes.

We use the starting
batchsize from 256
upto 4096, and the
speed-up compared to
the serial run (1 node)
is reported. It indi-
cates that as we in-
crease the batchsize,
the speed-up becomes
closer to ideal linear
speed-up. The advan-
tage of the setting is
to utilize the large batch over multiple nodes efficiently
but not sacrifice the convergence performance. Re-
garding first order methods like SGD, it is hard to
achieve nice linear scaling since the small batch is of-
ten required, which makes the computation time to be
comparable with communication cost.

6 Conclusion

We proposed DANCE an efficient distributed Hessian
free algorithm with an increasing sample size strategy
to solve the empirical risk minimization problem. Our
algorithm obtains a solution within the statistical ac-
curacy of the ERM problem in very few epochs and
also can be implemented in a distributed environment.
We analyzed the communication-efficiency of DANCE
and highlighted its efficiency with respect to DiSCO
[Zhang and Lin, 2015] in term of communication and
relative to AdaNewton and k−TAN methods in terms
of total computational complexity. The presented nu-
merical experiments demonstrated the fast convergence
of DANCE for both convex and non-convex problems.
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