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Abstract— Efficiency of power management system (PMS) is 
one of the key performance metrics for highly integrated system 
on chips (SoCs). Towards the goal of improving power efficiency 
of SoCs, we make two key technical contributions in this paper. 
First, we develop a multi-output switched-capacitor voltage 
regulator (SCVR) with a new flying capacitor crossing technique 
(FCCT) and cloud-capacitor method. Second, to optimize the 
design parameters of SCVR, we introduce a novel machine-
learning (ML)-inspired optimization framework to reduce the 
number of expensive design simulations. Simulation shows that 
power loss of the multi-output SCVR with FCCT is reduced by 
more than  40%  compared to conventional multiple single-output 
SCVRs. Our ML-based design optimization framework is able to 
achieve more than 90% reduction in the number of simulations 
needed to uncover optimized circuit parameters of the proposed 
SCVR. 

Keywords— Power management system, Electronic design 
automation, Machine Learning, Multi-objective Optimization 

I. INTRODUCTION 

Modern system on chips (SoCs) integrate multiple diverse 
sub-blocks, and pose significant challenges in designing 
efficient and compact power management system (PMS) for 
them. To overcome these challenges, on-chip voltage regulators 
are proposed as a promising solution due to their ability to 
provide good voltage switching and power delivery [1-5]. 
However, fully integrated switched-inductor voltage regulators 
(SIVRs) suffer from the limitation of on-chip inductors, e.g., 
poor quality factor, and low power density of SIVRs [1]. Low-
dropout regulators (LDOs) can achieve high power conversion 
efficiency only within a narrow output voltage range [1], which 
limits their applicability in the wide output voltage range. 

Recent on-chip capacitors provide better power density when 
compared to on-chip inductors [1,5]. Fully integrated switched-
capacitor voltage regulators (SCVRs) have gained popularity as 
they can generate wide output voltage range for a specific input 
[1-3]. In order to resolve performance-efficiency trade-off, 
various sub-blocks in SoCs, e.g., digital, analog, and mixed-
signal blocks, are required to achieve optimal performance 
under different voltages [4]. Conventional SCVR-based PMSs 
that provide multiple supply voltages are composed of several 
independent single-output SCVRs [2-4]. However, this is not 
an optimized solution to design PMS with compact size and 
high power efficiency. Some recent works proposed dual-
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output SCVRs (DOSCVRs) with the benefits of reducing power 
electronic components [2], wide input and output voltage range 
[3], and increased power efficiency [4]. However, these 
DOSCVRs can only improve the power efficiency when two 
load currents are different and cannot handle wide range of 
output voltages and large load currents. To improve the 
efficiency of SCVR for the same and different load current 
conditions of multiple outputs, we propose a novel flying 
capacitor crossing technique (FCCT) in this paper. The new 
technique can improve efficiency without increasing the area of 
the chip, when compared with multiple conventional single-
output SCVRs. Thus, this improved efficiency comes with no 
additional cost. Besides, the on-chip flying capacitors are 
shared “in the cloud” and will be assigned appropriately to 
fulfill the time-varying power demands of load tied to a specific 
output. Hence, this mechanism guarantees the most efficient 
utilization of limited on-chip flying capacitors. 

The design and optimization of PMS pose significant 
challenges in finding SCVR circuit parameters (e.g., size of 
capacitors, power of MOSFETs) to optimize the overall 
performance [6,7,8]. First, the design space of circuit 
parameters is very large to explore via trial-and-error. Second, 
evaluation of candidate circuit configurations in terms of 
multiple optimization objectives involves performing 
computationally-expensive simulations. Third, circuit designs 
should satisfy some constraints (e.g., output ripple, output 
voltage, and efficiency) that cannot be verified without 
simulating the circuit. Fourth, the optimal design parameters of 
the PMS circuit vary depending on the target output 
requirements. Prior work on PMS circuit optimization is 
lacking on many fronts. These methods primarily focus on PMS 
system-level optimization [6]. Experimental data used by these 
approaches come from past PMS design analysis in the 
literature. They ignore the performance variation of the PMS 
circuit. For example, the data from existing PMS design 
analysis is accurate only for the same design environment such 
as technology process, input/output voltage, and load 
conditions, etc. Also, the optimization procedure needs to be 
performed from scratch in the traditional circuit design 
methodology if the specification of the PMS changes [1], which 
incurs huge design cost.  



To overcome the above-mentioned challenges for PMS 
circuit design optimization, this paper introduces a novel 
machine learning (ML) algorithm referred as Uncertainty 
Reduction via Multiple Acquisition Constrained (URMAC) for 
multi-objective (MO) circuit design optimization algorithm 
with constraints. Output voltage ripple and efficiency are two 
main objectives for PMS circuits. We need to find the Pareto 
optimal set of circuit designs that satisfy the specified 
constraints. A design is called Pareto optimal if it cannot be 
improved in any of the objectives without compromising some 
other objective [12,13]. The overall goal is to approximate the 
true constrained Pareto set by minimizing the number of 
expensive circuit simulations. The key idea behind URMAC is 
to build a cheap surrogate statistical model (e.g., Gaussian 
Process [10]) using the real circuit simulations data; and 
employ it to intelligently select the sequence of candidate 
circuit designs for undertaking thorough simulations. URMAC 
employs a two-stage search procedure to improve the accuracy 
and computational-efficiency of sequential decision-making 
under uncertainty for selecting candidate circuit designs for 
evaluation. First, it solves a cheap constrained MO optimization 
problem defined using the statistical models (one for each 
unknown objective) to identify a list of promising candidates. 
Second, it selects the best candidate from this list based on a 
measure of uncertainty. 

II. PROPOSED MULTI-OUTPUT SCVR 
A. Power Stage with FCCT and Cloud-Capacitor  

In order to fully utilize the limited on-chip flying capacitors, 
the FCCT technique is proposed in this paper. The power stage 
with FCCT is shown in Fig. 1. The SCVR in Fig.1 can 
simultaneously generate two output voltages with 1/3x and 2/3x 
of the input voltage. The power stage in the proposed approach 
with FCCT is composed of three sub-blocks – (i) a 3:1 SCVR, 
(ii) a 3:2 SCVR, and (iii) an SCVR_sh, while the conventional 
SCVR only consists of the 3:1 SCVR and the 3:2 SCVR. The 
3:1 SCVR generates ����� of 1/3x of input voltage and the 3:2 
SCVR generates ����� of 2/3x of the input voltage. The FCCT 
is achieved by the additional sub-SCVR of SCVR_sh, which is 
composed of four power switches and one flying capacitor, ��. 

The SCVR works in two phases as illustrated in Fig. 1. The 3:1 
SCVR and 3:2 SCVR work similar to the conventional SCVR:  
the flying capacitors are charged in one phase and discharged 
in the other phase [1]. For the SCVR_sh, the two terminals of 
the flying capacitor �� are connected to the input voltage source 

and ����� in phase1, and connected to Gnd and ����� in phase 
2. So that �� is charged in phase1 and discharged in phase2. The 
voltage across �� is regulated at 1/3x of the input voltage. The 
blue arrows in Fig. 1 illustrate the charge flow in phase1, and 
the red arrows illustrate the charge flow in phase2. The 
additional SCVR_sh provides a parallel current path to both 
outputs. This path helps in reducing the portion of charges that 
each flying capacitor carries to the output. The reduction in the 
flowing charges of the flying capacitors, in turn, decreases the 
power loss related to the charging and the discharging of the 
capacitors, i.e., charge redistribution loss. Moreover, the charge 
passing through the resistive elements also decreases. Hence, 
resistive conduction loss is reduced. Compared with the 
conventional approach, the proposed FCCT uses an additional 
capacitor, �� , but the total capacitance is kept constant by 
reducing the other capacitance values to compensate for the 
additional ��. Thus, there will be no additional area overhead.  
We also provide the analysis of the proposed SCVR with FCCT 
to demonstrate that the power loss reduction increases the 
efficiency without additional penalty. 

Another issue of the conventional multi-output SCVR is the 
wasting of flying capacitor resource when the load condition of 
SCVR differs from that of the SCVR’s highest efficiency point. 
This is because of the power stage in the conventional SCVR 
cannot adjust to the load variation. In this work, a cloud-
capacitor technique is proposed to address the issue. The on-
chip flying capacitors are shared “in the cloud”: the flying 
capacitors will be assigned to meet time-varying power 
demands of load tied to a specific output. Hence, this 
mechanism guarantees the most efficient utilization of limited 
on-chip flying capacitors [1,4]. For example, right part of the 
Fig. 1 stands for the flying-capacitor assignment under different 
loads. The total on-chip flying capacitors consist of eight units 
of flying capacitor. The above portion of the right part of Fig. 1 
shows the case that load1 and load2 are under medium load 
condition. Both of the loads have three units of flying capacitors 
to support the loads’ power requirement. The bottom part shows 
the case of load1 is under heavy load, while load2 is under light 
load conditions. Thus, five units of flying capacitors are used 
for powering load1 and only one unit of the flying capacitor is 
used for powering load2. The below analysis will illustrate the 
value of the capacitor in SCVR_sh also needs to be re-assigned  
based on varying load conditions. This complicated fine-tuning 
of various parameters increases the challenge of PMS design, 
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Fig. 1.  Power stage of the proposed multi-output SCVR and an example of two-output SCVR design with cloud-capacitor technique. 



resulting in sub-optimal PMS hardware. 
B. Analysis of Power Loss 

Output impedance of the SCVR closely affects power loss 
and power efficiency. A reduction in output impedance 
decreases power loss, thus increasing efficiency. For the 
proposed SCVR, the power loss based on a calculated output 
impedance is compared with the power loss of the conventional 
approach. The trans-impedance model [5] is used to calculate 
the slow-switching limit (SSL) impedance and fast-switching 
limit (FSL) impedance of the SCVR with FCCT in Fig. 2. SSL 
impedance (����) represents the charge redistribution loss and 
is obtained by the power loss of flying capacitors. FSL 
impedance ( ���� ) indicates the conduction loss on the 
resistance of the switches and is obtained by the losses 
produced in all switches. These two losses contribute to the 
majority portion of the power loss of the SCVR. 
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where �����(�����) is the loss due to ���� and �����(�) is the loss 

due to ����. The ��� presents the switching frequency; �� is the 
turn-on resistance of switch i; a  represents charge flowing 

through the flying capacitors ��  and �� ; b  represents charge 
flowing through the flying capacitors ��  and �� ; and s 
represents charge flowing through the flying capacitors ��.  

Based on the calculated ����, the power loss �����(�����)  of 

the proposed SCVR is compared with the power loss of the 
conventional approach by simulation. The maximum power 
loss reduction versus k is illustrated in Fig. 2, where k is a 
multiplication factor to represent the size of �� compared with 
��. Here, we set the same value to  ��, ��, ��, and ��. For fair 
comparison, all of the simulations are performed under the 

condition of same total flying capacitor value. The total value 
of ��, ��, ��, and �� in conventional SCVR is the same as the 
total value of ��, ��, ��, ��, and �� in the SCVR with FCCT. As 
the value of k increases, we can reduce more power loss when 
compared with the conventional approach. This power loss 
reduction is maximized when both output currents are the same 
due to ��. Based on the calculated ����, the power loss �����(�)  

of the proposed approach is also presented in  Fig. 3, when �� =
��. As shown in the Fig. 2 and 3, the power loss of the multi-
output SCVR is reduced by more than  40%  compared to 
conventional multiple single-output SCVRs.  

III. MACHINE LEARNING ALGORITHM FOR MULTI-
OBJECTIVE CIRCUIT DESIGN OPTIMIZATION 

A. Circuit Design Space of the Proposed SCVR 
We choose a four-output SCVR to optimize the parameters 

of the proposed multi-output SCVR with FCCT and cloud-
capacitor method. This SCVR circuit generates two outputs of 
Vout1 and Vout2 at 1/3x of the input voltage, and the other two 
outputs of Vout3 and Vout4 at 2/3x of the input voltage. There will 
be eight sub-SCVRs: two 3:1 SCVRs for Vout1 and Vout2, two 
3:2 SCVRs for Vout3 and Vout4 , and four SCVR_shs (connected 
between Vout1 and Vout3, Vout1 and Vout4, Vout2 and Vout3, Vout2 and 
Vout4 respectively). Our proposed ML algorithm aims to 
optimize the performance of PMS by finding the optimized 
values of flying capacitors in these sub-SCVRs based on the 
load requirements (output voltages and output currents) by 
keeping the total capacitor value constant using the cloud-
capacitor method. Let ��, ��, ��, ��, ���, ���, ���, ��� stand for 
the capacitor values in the eight sub-SCVRs. Since our aim is 
to optimize the circuit under real-conditions, the SCVR is 
implemented at transistor-level in the TSMC 180-nm CMOS 
technology. Each value of those metal insulator metal (MIM) 
capacitors is dependent on three variables: unit capacitor width 
��, unit capacitor length ��, and the number of unit capacitors 
�� , for each �  ∈ {1,2,3,4,13,14,23,24} . ��  and ��  are set 
within the range of 5um to 30um; and �� is set to within the 
range of 1 to 999.  The power switches and the driver buffers 
are also sized according to the geometry of MIM capacitors. 
Additionally, our optimization involves the four reference 
voltages ���� and four load resistances �, which are the most 
important design variables. The reference voltages are within 
the range of 500 mV to 630 mV and 1.05 V to 1.23 V due to the 
conversion ratios of 3:1 and 3:2 under the input voltage of 1.8V. 
The load resistance is set within 10 Ohms to 2000 Ohms for the 
maximum output power of the SCVR to be around 300 mW. 
Since we use output voltages and load currents as design 
variables, the trained model can generate the optimized SCVR 
circuit for any output voltages and load currents conditions. 
Thus, there are 32 design variables in total. 
B. Multi-Objective Constrained Optimization Problem 
Given the circuit design space �, a circuit simulator that can 
evaluate candidate designs, and a set of constraints CS, our goal 
is to closely approximate the optimal Pareto set �∗ ⊂ �  by 
minimizing the number of circuit simulations. A solution is 
called Pareto optimal if it cannot be improved in any of the 
objectives without compromising some other objective [12,13]. 
In our specific case, each circuit simulation with a candidate 

 
Fig. 2.  Relationship between the power loss (Ploss(C1-CS)) reduction  and k.  

 
Fig. 3.  Relationship between the power loss (Ploss(S)) and k. Comparison 
between the conventional and the proposed approach when I1=I2.  
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combination of the design variables will result in the following 
objective function evaluations: four output ripples, four output 
voltages, and efficiency of the circuit. Our goal is to find the 
circuit designs that will maximize the output voltages and 
efficiency, and minimize the output ripples while satisfying the 
following set of constraints CS. 
Constraint ���: ������  ≃ 20 ��             
Constraint ���to ���:  ��� ≥ �����

 for all � ∈ {1 ⋯ 4} 
Constraint ��� to ��� :  ���� ≤ ��� ≤ ���� for all � ∈ {1 ⋯ 4} 
Constraint ���: ���������� ≤ 100% 
where Ov is the output voltage, ���� is the associated reference 
voltage, the optimized SCVR will be able to generate output 
voltages higher than the reference voltages; Or is the output 
ripple, ����  and ���� are the output ripple upper bound and 
lower bound respectively. With the requirement of high-
performance computing cores as loads of SCVR, we set the 
constraint for output voltage ripples within the range of 0-100 

mV. We set the value of total on-chip flying capacitors to 20 uF 
due to the limited chip area in practice.  
C. Uncertainty Reduction via Multiple Acquisition 
Constrained (URMAC) Optimization Algorithm 
We propose a novel constrained multi-objective optimization 
approach referred as URMAC to optimize the parameters of our 
novel SCVR circuit. The main challenge in solving this 
optimization problem is that the evaluation of each candidate 
circuit design involves performing computationally-expensive 
simulation. The key insight behind our URMAC algorithm is to 
build statistical models [10] using the circuit designs evaluated 
in the past and employ them to intelligently select the next 
circuit design for evaluation to be able to reduce the uncertainty 
of our models. A simple illustration of URMAC with two 
objectives, namely, efficiency and voltage ripple, is shown in 
Fig. 4. URMAC is an iterative algorithm, which involves four 
key components (steps) as described below. For the example in 
figure, we used efficiency and ripple as two black-box objective 
functions to be optimized over the design space of SCVR circuit 
parameters. It is noteworthy that two objectives are used here 
for example, the real framework will include nine objectives 
that were defined in the problem definition section earlier. 
1. Learning statistical models: we build statistical models 
(e.g., Gaussian Processes [10]) ��, ⋯ , �� for the nine objective 
functions corresponding to efficiency, output voltages, and 
output ripples from the training data in the form of past circuit 
design evaluations. These statistical models can predict the 
output of unknown circuit designs and also quantify their 
uncertainty for those predictions. In each iteration of URMAC, 
the learned statistical models are employed to select the next 
candidate circuit design for evaluation via the circuit simulator. 
2. Constructing a constrained cheap MO problem: We 
select a set of promising candidate circuit designs for evaluation 
by solving a constrained cheap multi-objective (MO) 
optimization problem defined using the statistical models 
��, ⋯ , �� . The objective functions in this optimization 
problem are cheap because they rely on the learned statistical 
models instead of expensive simulations. We can employ a 
wide variety of acquisition functions from the literature to 
construct this cheap MO problem. An acquisition function (AF) 
parameterized by the statistical model is a cheap scoring 
function that measures the utility of evaluating a candidate 
circuit design for optimizing the corresponding black-box 
objective function. Some example acquisition functions include 
upper confidence bound (UCB) [11], expected improvement 
(EI), and Thompson sampling (TS). In the example illustrated 
in Fig. 4, we will have two cheap objective functions for a 
specified acquisition function AF: AF(M1) and AF(M2). 

���(�) = �(�) + ��/��(�)                       (3) 
���(�) = �(�) − ��/��(�)                        (4) 

��(�) = �(�)��Φ(�) + �(�)�                    (5) 

where  � =
���(�)

�(�)
 , �(�), and �(�) correspond to the mean and 

standard deviation of the prediction from the statistical model, 

and represent exploitation and exploration scores respectively; 

�  is a parameter that balances exploration and exploitation 

which is automatically specified depending on the iteration 

Uncertainty Maximization

�� (�)

�� (�)

Multiple 
Blackbox
Functions

Statistical Models
Learning

�∗ Selected 
circuit design

Pareto set
of circuit 
deigns

��

�∗, ��
∗

�∗, ��
∗

��

Acquisition Function Choice

�� (�. �, ��, ���, … )

Construct Constrained
Cheap MO problem

Cheap MO Solver

�

Circuit simulator

 
Fig 4. Example illustration of URMAC framework for two objectives 
(e.g., efficiency and voltage ripple). 

Algorithm 1 : URMAC Framework 
Input: � input design space; ��(�), ��(�), ⋯ , ��(�), � 
 blackbox objective functions; �� acquisition function; 
���� maximum no. of iterations; CS set of constraints 
1: Initialize training data of function evaluations � 
2: Initialize statistical models ��, ��, ⋯ , �� from � 
for each iteration � = �   to   ���� 
          //Solve constrained cheap MO problem  with objectives to get     
          candidate circuit designs 

3:      �� ← ����∈�   ���(��, �), ⋯ , ��(��, �)� 

                                                  �. � ���, ⋯ , ��� 
           // Pick the candidate design with maximum uncertainty 

4:      Select ���� ← ��� � ���∈��
 ���

(�) 

5:      Evaluate ����: ���� ← ���(����), ⋯ , ��(����)� 

6:      Aggregate data: � ← � ∪ {(����, ����)} 
7:      Update models ��, ⋯ , ��using � 
�:       � ← � + � 
end for 
return Pareto set and Pareto front of � 

 



number � based on the theoretical analysis of convergence from 

[11]; � is the best-uncovered function value; and Φ and � are 

the CDF and PDF of normal distribution respectively.  

3. Solving the constrained cheap MO problem: We use the 
popular NSGA-II algorithm [13] in its constrained version to 
solve the cheap MO problem to obtain the Pareto set 
representing the most promising candidate circuit designs for 
evaluation that satisfies the constraints. The constraints for our 
optimization problem are defined as follows: 

Constraint ��� ⋯ ���:  ����
(�) ≤ �����, for all � ∈ {1 ⋯ 4} 

Constraint ��� ⋯ ��� : ���� ≤ ����
(�) ≤ ����, for all � ∈

{1 ⋯ 4} 
Constraint ��� ∶ �����������(�)  ≤ 100% 

The acquisition functions for each black-box objective function 
tells us the utility of evaluating a candidate circuit design. For 
example, a design might have a high utility for efficiency but 
may have a lower utility for optimizing the output ripple. 
Therefore, the Pareto set found by solving the constrained 
cheap MO problem captures the trade-off between the utility 
for all objective functions by satisfying the constraints. 

�� ← min
�∈�

  ���(��, �), ⋯ , ��(��, �)�                                            
                                �. � ���, ⋯ , ��� 

4. Uncertainty maximization: From the promising candidate 
designs obtained by solving the constrained cheap MO 
problem, we need to select the best circuit design such that it 
will guide the overall search towards the goal of quickly 
approximating the true Pareto set. We employ an uncertainty 
measure defined in terms of the statistical models to select the 
most promising candidate circuit design for evaluation. We 
define the uncertainty measure as the volume of the uncertainty 
hyper-rectangle (via lower-confidence bound and upper-
confidence bound obtained from statistical models). We 
compute the uncertainty measure for each promising candidate 
circuit design obtained from step 3 as follows. 

���
(�) = �������(��, �), ���(��, �)���

� � 
We select the one with maximum uncertainty for evaluation via 
circuit simulation.  

���� = arg � ���∈��
 ���

(�) 
Finally, the selected circuit design is used for evaluation via 
simulator to get the corresponding evaluations for different 
objective functions. The next iteration starts after the statistical 
models are updated using the new training example (input is the 
circuit design and output is a vector of objective evaluations).  

IV. EXPERIMENTAL RESULTS 
A. Effectiveness of ML-based Circuit Design Optimization 
CADENCE Simulation Setup. We build the circuit schematic 
in Cadence simulation tool in TMSC 180-nm CMOS 
technology. The schematic consists of the SCVR power stage, 
controller, and test bench schematic. All design variables are 
set as the parameters of the circuit component symbols. All the 
circuit performance objectives are plotted, measured, and 
calculated from Cadence to ensure the accuracy of the results.    
Baselines. We compare our URMAC algorithm with the state-
of-the-art multi-objective evolutionary algorithms NSGA-II 
[13] and MOEA/D [14].  We also compare to an evaluation over 

a grid sampled uniformly at random from the given design 
space. NSGA-II evaluates the objective functions at several 
input designs and sorts them into a hierarchy of sub-groups 
based on the ordering of Pareto dominance. The similarity 
between members of each sub-group and their Pareto 
dominance is used by the algorithm to move towards more 
promising parts of the input space. MOEA/D decomposes a 
multi-objective optimization problem into a number of scalar 
optimization sub-problems and optimizes them simultaneously. 
Each sub-problem is optimized by only using the information 
from its neighboring sub-problems. We employ the NSGA-II 
and MOEA/D code from the known python library Platypus. 
Prior work has proposed surrogate models based optimization 
methods in the context of circuit optimization [13,14]. 
However, none of these algorithms consider constrained 
optimization setting. Consequently, we cannot compare 
URMAC with these methods in a fair manner. 
Setup for URMAC. We employ a Gaussian process (GP) 
based statistical model with squared exponential (SE) kernel in 
all our experiments. The SE kernel is defined as �(�, ��) = � ⋅

��� �
�������

�

��� � , where �  and �  correspond to scale and 

bandwidth parameters. These hyper-parameters are estimated 
after every 10 function evaluations. We initialize the GP model 
using five inputs chosen randomly. 
Evaluation Metrics. To measure the performance of baselines 
and URMAC, we employ two different metrics, one measuring 
the accuracy of solutions and another one measuring the 
efficiency in terms of the number of simulations.  1) Pareto 
hypervolume (PHV) is a commonly employed metric to 
measure the quality of a given Pareto front [12]. PHV is defined 
as the volume between a reference point and the given Pareto 
front. After each iteration �  (or the number of circuit 
simulations), we measure the PHV for all algorithms. We 
evaluate all algorithms for 100 circuit simulations.  

2) Percentage gain in simulations is the fraction of simulations 
our ML-based optimization algorithm (URMAC) is saving to 
reach the PHV accuracy of solutions at the convergence point 
of baseline algorithm employed for comparison.  

 Grid MOEAD NSGA-II 
% gain in simulations 94.8% 90.7% 93.3% 

Table 1: Percentage gain in simulations achieved by our URMAC algorithm 
when compared with each baseline. 

 
Fig 5: Results of different multi-objective algorithms including URMAC. The 
hypervolume metric is a function of the number of circuit design simulations. 



Results and Discussion. We evaluate the performance of 
URMAC with two different acquisition functions (EI and LCB) 
to show the generality and robustness of our approach. We also 
provide results for the percentage gain in simulations achieved 
by URMAC when compared to each baseline method in Table 
1. Fig. 5 shows the PHV metric achieved by different multi-
objective methods including URMAC as a function of the 
number of circuit simulations. We make the following 
observations: 1) URMAC with both EI and LCB acquisition 
functions perform significantly better than all baseline methods. 
2) URMAC produces better quality Pareto designs than all 
baselines using less number of circuit simulations. 3) URMAC 
is able to uncover the best Pareto solutions from baselines using 
significantly less number of circuit simulations. This result 
shows the efficiency of our ML based optimization approach. 
URMAC achieves percentage gain in simulations w.r.t baseline 
methods ranging from 90% to 95%. The SCVR is implemented 
in the industry-provided process design kit (PDK) and shows 
better efficiency and output ripples. Due to the huge number of 
parameters and design specs in the analog circuit design 
optimization, traditional methods will be very expensive. Our 
results show huge practical benefits in terms of faster 
convergence and better quality Pareto designs. Since MOEAD 
is the best performing baseline optimization method, we use it 
for the rest of the experimental analysis. 
B. Quality of Optimized SCVR Circuits via ML-based Circuit 

Design Optimization 
Table 2 illustrates the simulated performance of four-output 
SCVR with FCCT and cloud-capacitor method optimized by 
MOEAD (best baseline) and URMAC-EI (best variant of our 
proposed algorithm). ����(���)  and �(���)  are the reference 

voltages and  load resistances of the four outputs. �(�����) and 

OR(1-4) are simulated output voltages and ripples. “Eff” stands 
for the overall efficiency of the four-output SCVR (total output 
power vs. input power). Results of both algorithms meet the 
voltage reference and ripple requirements (100mV) . Compared 
to MOEAD, the optimized SCVR with URMAC-EI can 
achieve a higher conversion efficiency of 76.2% (5.25% higher 
than MOEAD, highlight in red color) with similar output 
ripples. The optimized SCVRs can generate the target output 
voltages within the range of 0.52V-0.61V (1/3x ratio) and 
1.07V-1.12V (2/3x ratio) under the loads varying from 14Ohms 
to 1697Ohms (highlight in black and green colors). Thus, the 
capability of URMAC to optimize the parameters of SCVR 
under different output voltage/current conditions is clearly 
verified. Importantly, our ML-based  optimization framework 
combined with the proposed SCVR provides a scalable solution 
to find optimized on-chip PMS designs for complex high-
performance computing systems. 

V. CONCLUSIONS 
This paper studied a novel multi-output SCVR combined with 
a flying capacitor crossing technique (FCCT), cloud-capacitor 
method, and a novel ML-based circuit design optimization 
framework towards the goal of improving the efficiency of 
PMS for highly integrated SoCs. Results show that power loss 
of the proposed SCVR is reduced by more than 40% when 
compared to conventional multiple single-output SCVRs. Our 

ML-based circuit design optimization framework is able to 
achieve more than 90% reduction in the number of simulations 
needed to find optimized circuit parameters of the proposed 
SCVR, and is also able to uncover significantly efficient circuit 
designs when compared to baseline optimization algorithms. 

SPECS MOEAD URMAC-EI (Proposed) 
�����(V) 0.53 0.6 0.6 0.52 0.53 0.56 

�����(V) 0.55 0.51 0.59 0.55 0.61 0.57 

�����(V) 1.14 1.06 1.07 1.07 1.12 1.11 

�����(V) 1.22 1.16 1.14 1.09 1.06 1.1 

��(Ohm) 144 1668 1012 207 1198 619 

��(Ohm) 758 620 559 306 1697 89 

��(Ohm) 247 66 10 67 1379 70 

��(Ohm) 222 144 1830 42 14 301 

���(mV) 551.5 702.18 775.01 677.10 760.60 656.9 

��� (mV) 612.2 671.01 912.22 690.70 725.70 569.4 

��� (V) 1.17 1.09 867.96 1.08 1.15 1.14 

��� (V) 1.117 1.12 1.12 1.08 0.99 1.13 

OR1(mV) 52.69 11.39 0.496 2.50 4.20 11.30 

OR2(mV) 9.32 4.52 0.984 3.50 5.00 15.90 

OR3(mV) 64.96 96.57 28.199 58.9 87.1 75.7 

OR4(mV) 4.75 4.80 1.05 80.7 25.1 74.3 

Eff (%) 70.95 65.94 64.61 76.2003 74.82 73.71 
Table 2: Comparison table of optimized four-output SCVR parameters obtained 
by MOEAD and URMAC-EI implemented in TSMC 180nm CMOS 
technology. (designs are selected from the Pareto set prioritized by efficiency) 
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