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Abstract— Efficiency of power management system (PMS) is
one of the key performance metrics for highly integrated system
on chips (SoCs). Towards the goal of improving power efficiency
of SoCs, we make two key technical contributions in this paper.
First, we develop a multi-output switched-capacitor voltage
regulator (SCVR) with a new flying capacitor crossing technique
(FCCT) and cloud-capacitor method. Second, to optimize the
design parameters of SCVR, we introduce a novel machine-
learning (ML)-inspired optimization framework to reduce the
number of expensive design simulations. Simulation shows that
power loss of the multi-output SCVR with FCCT is reduced by
more than 40% compared to conventional multiple single-output
SCVRs. Our ML-based design optimization framework is able to
achieve more than 90% reduction in the number of simulations
needed to uncover optimized circuit parameters of the proposed
SCVR.

Keywords— Power management system, Electronic design
automation, Machine Learning, Multi-objective Optimization

L INTRODUCTION

Modern system on chips (SoCs) integrate multiple diverse
sub-blocks, and pose significant challenges in designing
efficient and compact power management system (PMS) for
them. To overcome these challenges, on-chip voltage regulators
are proposed as a promising solution due to their ability to
provide good voltage switching and power delivery [1-5].
However, fully integrated switched-inductor voltage regulators
(SIVRs) suffer from the limitation of on-chip inductors, e.g.,
poor quality factor, and low power density of SIVRs [1]. Low-
dropout regulators (LDOs) can achieve high power conversion
efficiency only within a narrow output voltage range [1], which
limits their applicability in the wide output voltage range.

Recent on-chip capacitors provide better power density when
compared to on-chip inductors [1,5]. Fully integrated switched-
capacitor voltage regulators (SCVRs) have gained popularity as
they can generate wide output voltage range for a specific input
[1-3]. In order to resolve performance-efficiency trade-off,
various sub-blocks in SoCs, e.g., digital, analog, and mixed-
signal blocks, are required to achieve optimal performance
under different voltages [4]. Conventional SCVR-based PMSs
that provide multiple supply voltages are composed of several
independent single-output SCVRs [2-4]. However, this is not
an optimized solution to design PMS with compact size and
high power efficiency. Some recent works proposed dual-

output SCVRs (DOSCVRs) with the benefits of reducing power
electronic components [2], wide input and output voltage range
[3], and increased power efficiency [4]. However, these
DOSCVRs can only improve the power efficiency when two
load currents are different and cannot handle wide range of
output voltages and large load currents. To improve the
efficiency of SCVR for the same and different load current
conditions of multiple outputs, we propose a novel flying
capacitor crossing technique (FCCT) in this paper. The new
technique can improve efficiency without increasing the area of
the chip, when compared with multiple conventional single-
output SCVRs. Thus, this improved efficiency comes with no
additional cost. Besides, the on-chip flying capacitors are
shared “in the cloud” and will be assigned appropriately to
fulfill the time-varying power demands of load tied to a specific
output. Hence, this mechanism guarantees the most efficient
utilization of limited on-chip flying capacitors.

The design and optimization of PMS pose significant
challenges in finding SCVR circuit parameters (e.g., size of
capacitors, power of MOSFETs) to optimize the overall
performance [6,7,8]. First, the design space of circuit
parameters is very large to explore via trial-and-error. Second,
evaluation of candidate circuit configurations in terms of
multiple  optimization objectives involves performing
computationally-expensive simulations. Third, circuit designs
should satisfy some constraints (e.g., output ripple, output
voltage, and efficiency) that cannot be verified without
simulating the circuit. Fourth, the optimal design parameters of
the PMS circuit vary depending on the target output
requirements. Prior work on PMS circuit optimization is
lacking on many fronts. These methods primarily focus on PMS
system-level optimization [6]. Experimental data used by these
approaches come from past PMS design analysis in the
literature. They ignore the performance variation of the PMS
circuit. For example, the data from existing PMS design
analysis is accurate only for the same design environment such
as technology process, input/output voltage, and load
conditions, etc. Also, the optimization procedure needs to be
performed from scratch in the traditional circuit design
methodology if the specification of the PMS changes [1], which
incurs huge design cost.
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Fig. 1. Power stage of the proposed multi-output SCVR and an example of two-output SCVR design with cloud-capacitor technique.

To overcome the above-mentioned challenges for PMS
circuit design optimization, this paper introduces a novel
machine learning (ML) algorithm referred as Uncertainty
Reduction via Multiple Acquisition Constrained (URMAC) for
multi-objective (MO) circuit design optimization algorithm
with constraints. Output voltage ripple and efficiency are two
main objectives for PMS circuits. We need to find the Pareto
optimal set of circuit designs that satisfy the specified
constraints. A design is called Parefo optimal if it cannot be
improved in any of the objectives without compromising some
other objective [12,13]. The overall goal is to approximate the
true constrained Pareto set by minimizing the number of
expensive circuit simulations. The key idea behind URMAC is
to build a cheap surrogate statistical model (e.g., Gaussian
Process [10]) using the real circuit simulations data; and
employ it to intelligently select the sequence of candidate
circuit designs for undertaking thorough simulations. URMAC
employs a two-stage search procedure to improve the accuracy
and computational-efficiency of sequential decision-making
under uncertainty for selecting candidate circuit designs for
evaluation. First, it solves a cheap constrained MO optimization
problem defined using the statistical models (one for each
unknown objective) to identify a list of promising candidates.
Second, it selects the best candidate from this list based on a
measure of uncertainty.

II.  PROPOSED MULTI-OUTPUT SCVR
A. Power Stage with FCCT and Cloud-Capacitor

In order to fully utilize the limited on-chip flying capacitors,
the FCCT technique is proposed in this paper. The power stage
with FCCT is shown in Fig. 1. The SCVR in Fig.1 can
simultaneously generate two output voltages with 1/3x and 2/3x
of the input voltage. The power stage in the proposed approach
with FCCT is composed of three sub-blocks — (i) a 3:1 SCVR,
(i1) a 3:2 SCVR, and (iii) an SCVR_sh, while the conventional
SCVR only consists of the 3:1 SCVR and the 3:2 SCVR. The
3:1 SCVR generates V¢ of 1/3x of input voltage and the 3:2
SCVR generates V,,, of 2/3x of the input voltage. The FCCT
is achieved by the additional sub-SCVR of SCVR_sh, which is
composed of four power switches and one flying capacitor, Cj.
The SCVR works in two phases as illustrated in Fig. 1. The 3:1
SCVR and 3:2 SCVR work similar to the conventional SCVR:
the flying capacitors are charged in one phase and discharged
in the other phase [1]. For the SCVR_sh, the two terminals of
the flying capacitor Cs are connected to the input voltage source

and V¢, in phasel, and connected to Gnd and V¢, in phase
2. So that C is charged in phasel and discharged in phase2. The
voltage across C is regulated at 1/3x of the input voltage. The
blue arrows in Fig. 1 illustrate the charge flow in phasel, and
the red arrows illustrate the charge flow in phase2. The
additional SCVR_sh provides a parallel current path to both
outputs. This path helps in reducing the portion of charges that
each flying capacitor carries to the output. The reduction in the
flowing charges of the flying capacitors, in turn, decreases the
power loss related to the charging and the discharging of the
capacitors, i.e., charge redistribution loss. Moreover, the charge
passing through the resistive elements also decreases. Hence,
resistive conduction loss is reduced. Compared with the
conventional approach, the proposed FCCT uses an additional
capacitor, Cy, but the total capacitance is kept constant by
reducing the other capacitance values to compensate for the
additional Cy. Thus, there will be no additional area overhead.
We also provide the analysis of the proposed SCVR with FCCT
to demonstrate that the power loss reduction increases the
efficiency without additional penalty.

Another issue of the conventional multi-output SCVR is the
wasting of flying capacitor resource when the load condition of
SCVR differs from that of the SCVR’s highest efficiency point.
This is because of the power stage in the conventional SCVR
cannot adjust to the load variation. In this work, a cloud-
capacitor technique is proposed to address the issue. The on-
chip flying capacitors are shared “in the cloud”: the flying
capacitors will be assigned to meet time-varying power
demands of load tied to a specific output. Hence, this
mechanism guarantees the most efficient utilization of limited
on-chip flying capacitors [1,4]. For example, right part of the
Fig. 1 stands for the flying-capacitor assignment under different
loads. The total on-chip flying capacitors consist of eight units
of flying capacitor. The above portion of the right part of Fig. 1
shows the case that loadl and load2 are under medium load
condition. Both of the loads have three units of flying capacitors
to support the loads’ power requirement. The bottom part shows
the case of loadl is under heavy load, while load2 is under light
load conditions. Thus, five units of flying capacitors are used
for powering load1 and only one unit of the flying capacitor is
used for powering load2. The below analysis will illustrate the
value of the capacitor in SCVR_sh also needs to be re-assigned
based on varying load conditions. This complicated fine-tuning
of various parameters increases the challenge of PMS design,



resulting in sub-optimal PMS hardware.
B. Analysis of Power Loss

Output impedance of the SCVR closely affects power loss
and power efficiency. A reduction in output impedance
decreases power loss, thus increasing efficiency. For the
proposed SCVR, the power loss based on a calculated output
impedance is compared with the power loss of the conventional
approach. The trans-impedance model [5] is used to calculate
the slow-switching limit (SSL) impedance and fast-switching
limit (FSL) impedance of the SCVR with FCCT in Fig. 2. SSL
impedance (Zsg;,) represents the charge redistribution loss and
is obtained by the power loss of flying capacitors. FSL
impedance ( Zggy, ) indicates the conduction loss on the
resistance of the switches and is obtained by the losses
produced in all switches. These two losses contribute to the
majority portion of the power loss of the SCVR.
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between the conventional and the proposed approach when /;=/>.

through the flying capacitors C; and C,; b represents charge
flowing through the flying capacitors C; and C, ; and s
represents charge flowing through the flying capacitors Cs.
Based on the calculated Zsg;,, the power loss Pyggsc,—c,) Of
the proposed SCVR is compared with the power loss of the
conventional approach by simulation. The maximum power
loss reduction versus k is illustrated in Fig. 2, where £ is a
multiplication factor to represent the size of (s compared with
C;. Here, we set the same value to Cy, C,, C3, and C,. For fair
comparison, all of the simulations are performed under the

condition of same total flying capacitor value. The total value
of C;, C,, C5, and C, in conventional SCVR is the same as the
total value of C, C;, C3, C,, and Cs in the SCVR with FCCT. As
the value of & increases, we can reduce more power loss when
compared with the conventional approach. This power loss
reduction is maximized when both output currents are the same
due to Cs. Based on the calculated Zgg,, the power loss Pjys4(s)
of the proposed approach is also presented in Fig. 3, when I; =
I,. As shown in the Fig. 2 and 3, the power loss of the multi-
output SCVR is reduced by more than 40% compared to
conventional multiple single-output SCVRs.

III. MACHINE LEARNING ALGORITHM FOR MULTI-

OBJECTIVE CIRCUIT DESIGN OPTIMIZATION

A. Circuit Design Space of the Proposed SCVR

We choose a four-output SCVR to optimize the parameters
of the proposed multi-output SCVR with FCCT and cloud-
capacitor method. This SCVR circuit generates two outputs of
Voutt and Vour at 1/3x of the input voltage, and the other two
outputs of Vous and Voua at 2/3x of the input voltage. There will
be eight sub-SCVRs: two 3:1 SCVRs for Voutt and Vouz, two
3:2 SCVRs for Vous and Vous, and four SCVR_shs (connected
between Vourl and Vouss, Voutt and Vouw, Vourz and Vouss, Vourz and
Vous respectively). Our proposed ML algorithm aims to
optimize the performance of PMS by finding the optimized
values of flying capacitors in these sub-SCVRs based on the
load requirements (output voltages and output currents) by
keeping the total capacitor value constant using the cloud-
capacitor method. Let Cy, C;, C3, Cy, Cy3, Cyy4, Cy3, Cy4 stand for
the capacitor values in the eight sub-SCVRs. Since our aim is
to optimize the circuit under real-conditions, the SCVR is
implemented at transistor-level in the TSMC 180-nm CMOS
technology. Each value of those metal insulator metal (MIM)
capacitors is dependent on three variables: unit capacitor width
W;, unit capacitor length L;, and the number of unit capacitors
M;, for each i € {1,2,3,4,13,14,23,24}. W; and L; are set
within the range of Sum to 30um; and M; is set to within the
range of 1 to 999. The power switches and the driver buffers
are also sized according to the geometry of MIM capacitors.
Additionally, our optimization involves the four reference
voltages ref, and four load resistances r, which are the most
important design variables. The reference voltages are within
the range of 500 mV to 630 mV and 1.05 V to 1.23 V due to the
conversion ratios of 3:1 and 3:2 under the input voltage of 1.8V.
The load resistance is set within 10 Ohms to 2000 Ohms for the
maximum output power of the SCVR to be around 300 mW.
Since we use output voltages and load currents as design
variables, the trained model can generate the optimized SCVR
circuit for any output voltages and load currents conditions.
Thus, there are 32 design variables in total.
B. Multi-Objective Constrained Optimization Problem
Given the circuit design space X, a circuit simulator that can
evaluate candidate designs, and a set of constraints CS, our goal
is to closely approximate the optimal Pareto set X* < X by
minimizing the number of circuit simulations. A solution is
called Pareto optimal if it cannot be improved in any of the
objectives without compromising some other objective [12,13].
In our specific case, each circuit simulation with a candidate
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Fig 4. Example illustration of URMAC framework for two objectives
(e.g., efficiency and voltage ripple).

Algorithm 1 : URMAC Framework

Input: X input design space; F; (X), F,(X), -+, F(X), k
blackbox objective functions; AF acquisition function;
Tnax maximum no. of iterations; CS set of constraints
1: Initialize training data of function evaluations D

2: Initialize statistical models M, M5, -+-, M}, from D

for cach iteration t =1 to Ty
//Solve constrained cheap MO problem with objectives to get
candidate circuit designs

3 X, < mingex (AF(My,x),-,AF(M,x))

s.t CSg,""",CSqg
/I Pick the candidate design with maximum uncertainty

4:  Select x;yq < argmaxyex, U g, (X)

5:  Evaluate X,11:Yerq < (F1(Xes1), ) Fie(Xe11))
6: Aggregate data: D « D U {(X¢41, Yis1)}

7:  Update models My, -+, M using D

8: t<t+1

end for

return Pareto set and Pareto front of D

combination of the design variables will result in the following
objective function evaluations: four output ripples, four output
voltages, and efficiency of the circuit. Our goal is to find the
circuit designs that will maximize the output voltages and
efficiency, and minimize the output ripples while satisfying the
following set of constraints CS.

Constraint ¢sg: Crorqr = 20 uF

Constraint csyto cs,: Ov; 2 ref,, foralli € {1---4}
Constraint css to csg: Ory, < 0Or; < Oryy, foralli € {1---4}
Constraint csq: ef ficiency < 100%

where Ov is the output voltage, ref,, is the associated reference
voltage, the optimized SCVR will be able to generate output
voltages higher than the reference voltages; Or is the output
ripple, Ory,, and Ory, are the output ripple upper bound and
lower bound respectively. With the requirement of high-
performance computing cores as loads of SCVR, we set the
constraint for output voltage ripples within the range of 0-100

mV. We set the value of total on-chip flying capacitors to 20 uF
due to the limited chip area in practice.

C. Uncertainty Reduction via Multiple Acquisition
Constrained (URMAC) Optimization Algorithm

We propose a novel constrained multi-objective optimization
approach referred as URMAC to optimize the parameters of our
novel SCVR circuit. The main challenge in solving this
optimization problem is that the evaluation of each candidate
circuit design involves performing computationally-expensive
simulation. The key insight behind our URMAC algorithm is to
build statistical models [10] using the circuit designs evaluated
in the past and employ them to intelligently select the next
circuit design for evaluation to be able to reduce the uncertainty
of our models. A simple illustration of URMAC with two
objectives, namely, efficiency and voltage ripple, is shown in
Fig. 4. URMAC is an iterative algorithm, which involves four
key components (steps) as described below. For the example in
figure, we used efficiency and ripple as two black-box objective
functions to be optimized over the design space of SCVR circuit
parameters. It is noteworthy that two objectives are used here
for example, the real framework will include nine objectives
that were defined in the problem definition section earlier.

1. Learning statistical models: we build statistical models
(e.g., Gaussian Processes [10]) My, ---, Mg for the nine objective
functions corresponding to efficiency, output voltages, and
output ripples from the training data in the form of past circuit
design evaluations. These statistical models can predict the
output of unknown circuit designs and also quantify their
uncertainty for those predictions. In each iteration of URMAC,
the learned statistical models are employed to select the next
candidate circuit design for evaluation via the circuit simulator.
2. Constructing a constrained cheap MO problem: We
select a set of promising candidate circuit designs for evaluation
by solving a constrained cheap multi-objective (MO)
optimization problem defined using the statistical models
M;,+--,Mgy . The objective functions in this optimization
problem are cheap because they rely on the learned statistical
models instead of expensive simulations. We can employ a
wide variety of acquisition functions from the literature to
construct this cheap MO problem. An acquisition function (4F)
parameterized by the statistical model is a cheap scoring
function that measures the utility of evaluating a candidate
circuit design for optimizing the corresponding black-box
objective function. Some example acquisition functions include
upper confidence bound (UCB) [11], expected improvement
(EI), and Thompson sampling (TS). In the example illustrated
in Fig. 4, we will have two cheap objective functions for a
specified acquisition function AF: AF(M}) and AF(M:).

UCB(x) = u(x) + pY%a(x) A3)

LCB(x) = u(x) — p*?0(x) 4)

(Eﬁ(") = o(x)(a®(a) + ¢p(a)) )
T—u(x

where a = , u(x), and o (x) correspond to the mean and

a(x)
standard deviation of the prediction from the statistical model,
and represent exploitation and exploration scores respectively;
B is a parameter that balances exploration and exploitation
which is automatically specified depending on the iteration



number t based on the theoretical analysis of convergence from
[11]; T is the best-uncovered function value; and @ and ¢ are
the CDF and PDF of normal distribution respectively.

3. Solving the constrained cheap MO problem: We use the
popular NSGA-II algorithm [13] in its constrained version to
solve the cheap MO problem to obtain the Pareto set
representing the most promising candidate circuit designs for
evaluation that satisfies the constraints. The constraints for our
optimization problem are defined as follows:

Constraint csy =+ €S4: Uoy,(X) < Tefy;, foralli € {1---4}
Constraint ¢ss -+ ¢sg : 01y, < por,(X) < O1yypy, foralli €
{14}

Constraint ¢Sq : Uefficiency(¥) < 100%

The acquisition functions for each black-box objective function
tells us the utility of evaluating a candidate circuit design. For
example, a design might have a high utility for efficiency but
may have a lower utility for optimizing the output ripple.
Therefore, the Pareto set found by solving the constrained
cheap MO problem captures the trade-off between the utility
for all objective functions by satisfying the constraints.
X, < min (AF(My,x), -+, AF (M, x))
5.t ¢Sy, ***,CSq
4. Uncertainty maximization: From the promising candidate
designs obtained by solving the constrained cheap MO
problem, we need to select the best circuit design such that it
will guide the overall search towards the goal of quickly
approximating the true Pareto set. We employ an uncertainty
measure defined in terms of the statistical models to select the
most promising candidate circuit design for evaluation. We
define the uncertainty measure as the volume of the uncertainty
hyper-rectangle (via lower-confidence bound and upper-
confidence bound obtained from statistical models). We
compute the uncertainty measure for each promising candidate
circuit design obtained from step 3 as follows.
Up,(x) = VOL(LCB(M;,x), UCB(M;, x)¥-,
We select the one with maximum uncertainty for evaluation via
circuit simulation.
Xees = Argm axyex, Up, (1)
Finally, the selected circuit design is used for evaluation via
simulator to get the corresponding evaluations for different
objective functions. The next iteration starts after the statistical
models are updated using the new training example (input is the
circuit design and output is a vector of objective evaluations).
IV. EXPERIMENTAL RESULTS
A. Effectiveness of ML-based Circuit Design Optimization
CADENCE Simulation Setup. We build the circuit schematic
in Cadence simulation tool in TMSC 180-nm CMOS
technology. The schematic consists of the SCVR power stage,
controller, and test bench schematic. All design variables are
set as the parameters of the circuit component symbols. All the
circuit performance objectives are plotted, measured, and
calculated from Cadence to ensure the accuracy of the results.
Baselines. We compare our URMAC algorithm with the state-
of-the-art multi-objective evolutionary algorithms NSGA-II
[13]and MOEA/D [14]. We also compare to an evaluation over

a grid sampled uniformly at random from the given design
space. NSGA-II evaluates the objective functions at several
input designs and sorts them into a hierarchy of sub-groups
based on the ordering of Pareto dominance. The similarity
between members of each sub-group and their Pareto
dominance is used by the algorithm to move towards more
promising parts of the input space. MOEA/D decomposes a
multi-objective optimization problem into a number of scalar
optimization sub-problems and optimizes them simultaneously.
Each sub-problem is optimized by only using the information
from its neighboring sub-problems. We employ the NSGA-II
and MOEA/D code from the known python library Platypus.
Prior work has proposed surrogate models based optimization
methods in the context of circuit optimization [13,14].
However, none of these algorithms consider constrained
optimization setting. Consequently, we cannot compare
URMAC with these methods in a fair manner.

Setup for URMAC. We employ a Gaussian process (GP)
based statistical model with squared exponential (SE) kernel in
all our experiments. The SE kernel is defined as k(x,x') = s -

712
—=|X=X
exp( |262 l ), where s and o correspond to scale and

bandwidth parameters. These hyper-parameters are estimated
after every 10 function evaluations. We initialize the GP model
using five inputs chosen randomly.

Evaluation Metrics. To measure the performance of baselines
and URMAC, we employ two different metrics, one measuring
the accuracy of solutions and another one measuring the
efficiency in terms of the number of simulations. 1) Pareto
hypervolume (PHV) is a commonly employed metric to
measure the quality of a given Pareto front [12]. PHV is defined
as the volume between a reference point and the given Pareto
front. After each iteration t (or the number of circuit
simulations), we measure the PHV for all algorithms. We
evaluate all algorithms for 100 circuit simulations.

2) Percentage gain in simulations is the fraction of simulations
our ML-based optimization algorithm (URMAC) is saving to
reach the PHV accuracy of solutions at the convergence point
of baseline algorithm employed for comparison.

Grid MOEAD NSGA-IL

% gain in simulations | 94.8% 90.7% 93.3%

Table 1: Percentage gain in simulations achieved by our URMAC algorithm
when compared with each baseline.
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Fig 5: Results of different multi-objective algorithms including URMAC. The
hypervolume metric is a function of the number of circuit design simulations.



Results and Discussion. We evaluate the performance of
URMAC with two different acquisition functions (EI and LCB)
to show the generality and robustness of our approach. We also
provide results for the percentage gain in simulations achieved
by URMAC when compared to each baseline method in Table
1. Fig. 5 shows the PHV metric achieved by different multi-
objective methods including URMAC as a function of the
number of circuit simulations. We make the following
observations: 1) URMAC with both EI and LCB acquisition

functions perform significantly better than all baseline methods.

2) URMAC produces better quality Pareto designs than all
baselines using less number of circuit simulations. 3) URMAC
is able to uncover the best Pareto solutions from baselines using
significantly less number of circuit simulations. This result
shows the efficiency of our ML based optimization approach.
URMAC achieves percentage gain in simulations w.r.t baseline
methods ranging from 90% to 95%. The SCVR is implemented
in the industry-provided process design kit (PDK) and shows
better efficiency and output ripples. Due to the huge number of
parameters and design specs in the analog circuit design
optimization, traditional methods will be very expensive. Our
results show huge practical benefits in terms of faster
convergence and better quality Pareto designs. Since MOEAD
is the best performing baseline optimization method, we use it
for the rest of the experimental analysis.
B. Quality of Optimized SCVR Circuits via ML-based Circuit

Design Optimization
Table 2 illustrates the simulated performance of four-output
SCVR with FCCT and cloud-capacitor method optimized by
MOEAD (best baseline) and URMAC-EI (best variant of our
proposed algorithm). Veer(1-4) and Ry_y) are the reference
voltages and load resistances of the four outputs. V(,1_,4) and
OR(1-4) are simulated output voltages and ripples. “Eff” stands
for the overall efficiency of the four-output SCVR (total output
power vs. input power). Results of both algorithms meet the
voltage reference and ripple requirements (100mV) . Compared
to MOEAD, the optimized SCVR with URMAC-EI can
achieve a higher conversion efficiency of 76.2% (5.25% higher
than MOEAD, highlight in red color) with similar output
ripples. The optimized SCVRs can generate the target output
voltages within the range of 0.52V-0.61V (1/3x ratio) and
1.07V-1.12V (2/3x ratio) under the loads varying from 140hms
to 16970hms (highlight in black and green colors). Thus, the
capability of URMAC to optimize the parameters of SCVR
under different output voltage/current conditions is clearly
verified. Importantly, our ML-based optimization framework
combined with the proposed SCVR provides a scalable solution
to find optimized on-chip PMS designs for complex high-
performance computing systems.

V.  CONCLUSIONS

This paper studied a novel multi-output SCVR combined with
a flying capacitor crossing technique (FCCT), cloud-capacitor
method, and a novel ML-based circuit design optimization
framework towards the goal of improving the efficiency of
PMS for highly integrated SoCs. Results show that power loss
of the proposed SCVR is reduced by more than 40% when
compared to conventional multiple single-output SCVRs. Our

ML-based circuit design optimization framework is able to
achieve more than 90% reduction in the number of simulations
needed to find optimized circuit parameters of the proposed
SCVR, and is also able to uncover significantly efficient circuit
designs when compared to baseline optimization algorithms.

SPECS MOEAD URMAC-EI (Proposed)

Veerr(V) | 053] 06 [ 06 0.52 [ 053 | 036

Vier2(V) | 055 [ 051 [ 059 | 055 [ 061 | 057

Vier3(V) 1.14 1.06 1.07 1.07 1.12 1.11

Veers(V) | 122 [ 116 [ 114 [ 109 | 106 [ 11

R;(Ohm) 144 1668 1012 207 1198 619

R,(Ohm) | 758 | 620 | 559 306 | 1697 | 89
Ry(Ohm) | 247 | 66 10 67 1379 | 70
R,(Ohm) | 222 | 144 [ 1830 42 14 | 301
V,,(mV) | 551.5 | 702.18 | 775.01 | 677.10 | 760.60 | 656.9
V., (mV) | 6122 | 671.01 | 912.22 | 690.70 | 725.70 | 569.4

V(V) | 117 | 1.09 [86796 | 108 | 115 | 1.14

V,,(V) |17 | 12 [ 112 | res | 099 | 113
ORI(mV) | 52.69 | 1139 | 0496 | 250 | 420 | 1130
OR2(mV) | 932 | 452 | 0984 | 350 | 5.00 | 15.90
OR3(mV) | 64.96 | 96.57 | 28199 | 589 | 87.1 | 757

OR4(mV) | 475 | 480 | 105 | 807 | 251 | 743

Eff (%) | 7095 | 65.94 | 64.61 | 76.2003 | 74.82 | 73.71

Table 2: Comparison table of optimized four-output SCVR parameters obtained
by MOEAD and URMAC-EI implemented in TSMC 180nm CMOS
technology. (designs are selected from the Pareto set prioritized by efficiency)
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