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Abstract—With the rise of more electric and all-electric
aviation power systems, engineering efforts of system optimization
shift to the electrical domain. A substantial amount of time and
resources are dedicated to finding the best system architecture and
design specifications to meet energy efficiency goals and physical
constraints. Current processes utilize models of power system
components to determine the optimal designs. However, such
modeling is computationally expensive as numerous iterations are
required to settle on an optimal design. This paper proposes a
machine learning (ML) enabled constrained multi-objective
optimization solver to drastically reduce the amount of design
iterations required for Pareto set discovery for power systems. The
process contributes significantly to design automation. A heavy-
duty vertical-takeoff-landing (VTOL) unmanned aerial vehicle
(UAYV) power system is selected to demonstrate the efficacy and
limitation of ML enabled optimization. Two extreme trials were
run: 1) a search throughout the entire design space with only 9%
valid designs within constraints; 2) a search throughout the valid
design space. While Trial 1 was unsuccessful in discovering the
Pareto front, Trial 2 uncovered all Pareto optimal designs with a
99% reduction of iterations compared to a brute force method.

Keywords—Power Electronics, Power System Design, Machine
Learning, Multi-Objective Optimization, Design Automation,
Pareto Front, Aviation, UAV, VTOL

L INTRODUCTION

Modern aviation power systems are trending towards more
electric or all-electric. Boeing 787, a more electric aircraft
(MEA), has been in use for a few years; Amazon Prime Air
autonomous unmanned aerial vehicles (UAVs) delivery has
become a reality; NASA N+3 electric passenger aircraft is under
development, to name a few [1]. As aerial vehicles become more
electrified, power systems will require multiple power electronic
converters, electric machines, energy storage, wiring, and
cooling devices. Optimizing system performance, such as
energy efficiency, weight, and size, can be approached at a
component level or a system level. While recent technological
advancements have allowed for power converters to reach 99%+
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efficiency [2], such designs may not be feasible in any
application due to size, weight, temperature constraints, or
integration requirement with the rest of the system. Therefore,
proper sizing of individual components is critical for system-
level optimization.

For an aircraft’s design, an electric power system team
usually works with a multi-disciplinary optimization (MDO)
team by providing necessary modeling pieces of subsystems,
including power converters, electric machines, batteries, and so
on. The MDO team then runs the models on numerous
combination scenarios, sometimes on the order of thousands,
either through brute force looping or Monte Carlo search [3].
Depending on the complexity or interface with other physical
models, such simulation runs can take from hours to several
days, to map the entire design space. After the simulations,
engineers determine a Pareto front to find the system optimality,
usually circling a few final candidates and then picking one by
experience. When a subsystem model is modified, or a new
mission is imposed, such iteration processes occur several times
before an ultimate design can be generated. This represents a
substantial amount of engineering time and effort.

Computer algorithms for solving general Multi-Objective
Optimization (MOO) problems with a reduced number of
simulations exist, discussed in [4]-[5]. Machine learning (ML)
algorithms have been investigated and show promising results to
reduce the time and resources for Pareto set discovery [6-11].
Circuit level design of power electronics utilizing machine
learning has achieved a 90% reduction in the number of
simulations needed to optimize design parameters [12].
However, there has been little research in the development of a
machine learning-based search method to optimize design
parameters at the system level of a power system.

This paper proposes a machine learning algorithm called
Max-value Entropy Search for Multi-objective Optimization
with Constraints (MESMOC) to reduce the number of simulation
iterations required to discover the Pareto set. Experiments using
a prior version of the ML algorithm without constraints, i.e.,
MESMO, consistently outperform state-of-the-art algorithms at
providing an accurate, computationally-efficient, and robust
optimization solver [9]. This work builds upon MESMO with
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Fig. 1. Block diagram of UAV power system showing the interfaces between each component model.

the development of the constraints add-on. The ML algorithm
requires a physical model. A high level static or averaged model
is developed for each component in the power system, including
multiple physics domains in electrical, thermal, and mechanical.
Plenty of research exists on the development and experimental
validity of both static and dynamic models of power subsystems.
A multi-timescale parametric electrical battery model is
described in [13], and [14]-[16] demonstrates the integration of
multiple subsystems for UAVs and MEA. Once the physical
models are combined to form a desired system architecture,
MESMOC can treat the simulation as a black-box function
where the outputs are optimization objectives and constraints,
and the design parameters serve as the function inputs.
MESMOC then evaluates the input design parameters to
maximize the information gain about the optimal Pareto front in
each iteration until an optimal Pareto set is found.

Due to the scope of this paper, the focus will be on the
optimization of a vertical-takeoff-landing (VTOL) UAV power
system. However, the proposed ML-based power system design
approach can be abstracted to a variety of complex applications,
such as MEA, on/off-road vehicles, ships, grid-connected
buildings, renewable energy systems, etc. This paper, using a
UAYV system, serves to demonstrate the efficacy of the approach,
especially, the drastic reduction of the number of simulation
iterations towards converging to an optimal design.

II.  POWER SYSTEM MODELING AND SIMULATION

As the intent of this paper is to explore the use of ML to
reduce the number of simulations for electrical power system
optimization, technical details of the power system models will
not be the focus but are discussed in separate literature [14]-[16].
Actually, the type of power system modelling is of little
importance as the optimization algorithm treats it as a black-box
function. Still some level of the physical understanding allows
to better comprehend the application of the ML algorithm. In this
paper, a time-based static simulation capturing averaged power
calculations on the order of seconds is used.

The UAV system architecture consists of a central Li-ion
battery pack, hex-bridge DC-AC inverters, PMSM motors, and
necessary wiring, as shown in Fig. 1. A set of variable design
parameters, such as the battery pack configuration and motor
size, are included in the system models. This set, known as the
design space, will be searched by the machine learning algorithm
to find the optimal designs. Table 1 summarizes the design
parameters and their sweeping ranges.

A mission profile, defining the workload of the UAV, is used
for every simulation run. The mission profile, shown in Fig. 2,
contains 30 minutes of thrust values normalized to the total craft
mass, representing a flight to and from a location. The mass of
the craft frame and its cargo is held constant for all designs.

Additional mass is added to the total craft mass depending on
the number of cells in the battery pack, motor sizing, and the
number of motors. A single motor and an inverter are simulated
to reduce repetitive calculations, where the number of motors
Npotor scales thrust and battery current demand. A single
simulation time-step begins with the power and -current
requirements for the motor and propagates through the inverter
to the battery to calculate the next time-step’s battery voltage and
SOC. Note that power electronics mass is assumed constant for
this study, since the semiconductor weight variation is relatively
small. Other design details may be included, such as heat sinks
or filters. However, this paper focuses on the development of the
ML-physical integrated framework rather than a high-fidelity
model.

TABLE L. UAYV DESIGN SPACE RANGES
Design Parameter Range
Battery cells in series, Nseries (#) [8:18]
Battery cells in parallel, Nparaiiel (#) [12:96]
Quantity of motors, Nuotors (#) [6:10]
Motor stator winding length, Astaror (mm) [4:32]
Motor stator winding turns, Nuyms (#) [145:250]
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Fig. 2. Mission profile thrust values for UAV simulation.

gL_.I._J./P__

To represent the design of a PMSM motor, two parameters
control the motor sizing: 1) Ny, i the number of wire-turns
for a stator coil; 2) hgqror 1S the height of the stator coils and
governs the machine fill factor. The number of pole pairs is held
constant for this study. Motor design is accomplished by
perturbing reference values of stator resistance, synchronous
inductance, back EMF constant, and mass using the
aforementioned design parameters. The motor reference values
are experimentally measured from a specific PMSM family. For
a given Ny and hggior, the maximum wire gauge for the
stator is selected while still satisfying the fill factor limit.



Algorithm 1 MESMOC Algorithm

Input: input space X; K blackbox objective functions fi(z), fa(z),---

, [ (2); L blackbox con-

straints Cy (x), C2(x), - -+, Cr(x); and maximum no. of iterations 7}, 4,

1. Initialize Gaussian process models My, , My, , -+, My, and M, , M., , -

ating at [Ny initial points
2: for each iteration ¢t = Ny + 1 to Ty00 do
3:  Select x; + arg marxex t(X)
s.t (N‘C1 > 07"' s Mey, > O)

-, M., by evalu-

4: «(.) is computed as:

5 for each sample s € 1,--- | S:

6: Sﬂmple'ﬁ'NMf“ vie{l,--- ,K}

7: Sample C; ~ M., Vie{l,---,L}

8: //Find Pareto front of cheap MOO over (f1, - - - , fx) constrained by (C’l, e C’L)
9: Vi« argwmmwe;((fll- i)

st(C;>0,---,Cp, >0)
10: Compute «+(.) based on the S samples of V) as given in Equation
11:  Evaluate x¢5 y; < (f1(xe), -+, fr(xe)) s¢e < (Cr(xy), -+, Cr(x¢))

12:  Aggregate data: D < D U {(x¢,yt,¢t)}
oMy and M, M,

13:  Update models My, , My,, -
14: t+—t+1
15: end for

M,

16: return Pareto front of fi(z), fo(x), -, fix(x) based on D

Modeling of the motor follows the work from [15].
Calculations of the back EMF, electrical and mechanical power
losses, and modulation index depend on the motor RPM, torque,
and the voltage level of the inverter. Motor RPM and torque
come from the mission profile thrust values, where an
experimentally derived curve fit relates the thrust to RPM and
torque. Steady-state motor temperature is calculated from power
losses, surface area of the motor, and heat transfer coefficient
approximations. For system integration, per-phase current,
required modulation index, and total power used are sent to the
inverter model.

The DC-AC inverter uses a three-phase hex-bridge topology
with specifications from the datasheet of a Toshiba
TPH4R0O0SNH MOSFET and TPH4R10ANL as the diode.
Similar to [15], PWM based switching power loss calculations
use an averaged switching current, derived from the current of
one motor phase. Methods to find switching voltage rise and fall
times are from [17], which results in worst-case scenario
estimations. MOSFET and diode conduction losses depend on
the one-phase current and modulation index from the motor
model. Adding various power losses to the motor output power,
battery current is found. An accurate model of a Li-ion battery
pack must consider the SOC, terminal voltage, and the current
demand. This simulation uses a multi-timescale parametric
electric battery model, based on [14]. The work builds upon
Randle’s equivalent circuit and utilizes multiple RC time
constants to model the transient behavior of a cell’s terminal
voltage and provides the battery cell impedance for power loss
calculations. In this model, voltage and impedance are
dependent on SOC. There are two design parameters considered

in the battery: 1) Ngepies represents the number of cells in series
for one stack, i.e., the battery pack voltage. 2) Npgrauer
represents the number of cell stacks connected in parallel.
Inverter current demand serves as an input to the battery and is
used along with Npgrque; to determine the current of an
individual cell. Individual cell current, along with voltage and
internal resistance, is used to calculate power losses for each
time-step. The new SOC and battery pack voltage can then be
derived from the energy consumed and current demand of the
present time-step.

1. MESMOC ALGORITHM

To overcome the computational overhead of determining an
optimal power system design, MESMOC aims to reduce the
number of simulations required to find the Pareto optimal set of
solutions. A solution is called Pareto optimal when one objective
cannot be improved without compromising another objective. In
the context of power system design, a Pareto optimal set contains
designs that have the best combination of total energy
consumption, weight, and cost.

By treating the physical models and simulation as a black-
box function, Bayesian Optimization (BO) [17], an effective
framework for solving expensive black-box function
evaluations, can be employed. BO begins by building cheap
surrogate models (e.g., Gaussian Process [18]) using simulation
results. Gaussian Processes (GPs) are effective surrogate models
for multi-objective BO. The desired objective functions are
modeled using K independent GP models. Each surrogate model
is learned by using past simulation runs as training data.
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Subsequently, these models are used to define an acquisition
function, which will be used to score the utility of each candidate
design and then select the design with highest utility for design
evaluation. This acquisition function, defined as a, will be used
to intelligently select the next sequence of design parameters for
evaluation to accelerate the discovery of the optimal Pareto
front. Rather than using an input space entropy-based acquisition
function such as the state-of-the-art BO algorithm in [7],
MESMOC utilizes an output space entropy-based acquisition
function. Output space entropy search allows for much tighter
approximations, is significantly cheaper to compute, and
naturally lends itself to robust optimization. MESMOC’s
acquisition function maximizes the information gain about the
optimal Pareto front, which is equivalent to expected reduction
in entropy over the optimal Pareto front.

Two key algorithmic steps of the acquisition function are (a)
computing the Pareto front samples; and (b) computing entropy
with respect to a given Pareto front sample. Pareto front samples
are computed by sampling the posterior GP models via random
Fourier features for use in cheap MOO over the K sampled
functions. The sample Pareto fronts are used to compute the
information gain. The algorithm will select the input design that
maximizes the information gain to be evaluated next. The
information gain equation is given in equation (1). Details about
the mathematical derivation will not be covered due to the scope
of the paper, but can be found in [9]. A complete description of
the MESMOC algorithm is given in Algorithm 1. The blue
colored steps correspond to computation of the output space
entropy-based acquisition function via sampling.

IV. PHYSICAL MODEL-ML INTEGRATION

Power system design is a constraint heavy optimization
problem within a large design space. Even the comparably
simple electrical architecture of a UAV can include hundreds of
thousands of design parameter combinations. However, the
design space consists of many invalid parameter combinations.
Some designs may not be capable of providing the motor the
necessary power for flight, the power rating of the motors or
electronics may be too low and cause overheat, or there is
insufficient energy storage to complete the mission, etc. A set of
constraints are thus required to ensure a valid design.

Throughout a simulation, each constrained model variable is
monitored. For example, a maximum temperature for the motors
and inverters is selected to ensure no overheating. The
modulation index of the inverter switching control is constrained
as the DC bus voltage can only be utilized a limited amount. In
the large design space, many designs do not include energy
storage capable of supplying the required current demand. Too
much current drawn from the battery at any instant will
significantly decrease the battery terminal voltage, which in-turn
increases the load current further, creating a positive feedback
loop. A minimum battery cell voltage is thus required for a valid
design. The battery pack must also contain enough energy to
complete a mission. A Depth of Discharge (DOD) limit is then
set to match the common maximum discharge of Li-ion
batteries. Table II outlines the set of constraints used for
optimization. With these constraints, the set of valid designs are
only a small subset of the entire design space.

As MESMOC treats the simulations as a black-box function,
it has no knowledge of what occurs during the simulation. Even
if a design exceeds one of the constraints, the algorithm will still
use the simulated results in its search of the Pareto front. An
invalid design simulation must therefore provide useful
information as well. Unfortunately, each electrical subsystem is
modeled in a way that assumes valid operation. If a constrained
variable exceeds the limit by too much, the models will
breakdown and cause the simulation to return results with values
that can be misleading to the algorithm, thereby decreasing its
ability to find the Pareto front. To mitigate this issue, a ‘soft
limit’ is set for the previously discussed constraints. During a
simulation, a constrained variable which exceeds a certain value
is suppressed exponentially as to remain within the operating
bounds of the model. A hyperbolic tangent-like curve is
employed as the ‘soft limit” which will only activate when the
constrained variables exceed the limits listed in Table II. This
technique is more favorable than holding these variables at a
‘hard limit’ (saturation) as little information of the Pareto front
is gained when many unique designs return the same results.
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Fig. 3. Mass vs energy plot of the brute force and MESMOC results using
the entire design space.
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At the end of a simulation, results are sent to the machine
learning algorithm for analysis. The results include constrained
variables along with the optimization objectives. The surrogate
models for each objective are updated in MESMOC and the next
set of design parameters are chosen, which will maximize the
information gain about the Pareto front.
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TABLE IL DESIGN CONSTRAINTS AND LIMITS
Constraint l;ii:f::’
Maximum final DOD 75%
Minimum cell voltage 3.0V
Maximum motor temperature 125°C
Maximum inverter temperature 120°C
Maximum modulation index 13

V. EXPERIMENTAL RESULTS AND DISCUSSION

To demonstrate the efficacy of the ML-based power system
MO optimization solver, minimization of total energy used and
vehicle mass are selected as the objectives. For a design to be
valid, the simulated UAV must be capable of completing the
specified mission without violating the constraints in Table II. A
reference base is required to determine the accuracy of the Pareto
front found by MESMOC. Thus, a brute force approach
simulated a total of approximately 250,000 combinations of
design parameters. Out of the entire design space, only 9% of
design combinations passed all the constraints. As the valid
points are only a small subset of the design space, two separate
Pareto search trials were done over the entire set and the subset
of passing designs, respectively.

A. Trial 1: Entire Design Space

Employing MESMOC on the entire design space resulted in
none of the Pareto optimal points discovered after more than
1000 iterations. Due to the sparsity of valid designs only 50% of
the simulated parameters passed the constraints, highlighting the

Cells in series (#)

Fig. 6. Percent of designs which pass all constraints for motor sizing
parameters (top) and battery sizing parameters (bottom).

difficulty of this algorithm with a highly constrained design
space. Interestingly, the best Pareto front was found within the
first 100 iterations. Fig. 3 shows these results compared to the
brute force method. The most optimal designs are located at the
bottom left corner, as the axes are the two objectives to
minimize.

B. Trial 2: Valid Design Space

By allowing MESMOC to search the subset of valid design
parameters, it discovered all 5 points of the Pareto front in only
270 iterations. This implies that 1% of the iterations are required
compared to the brute force. This considerable reduction in ML-
based iterations still retains the search accuracy.

Similar to Fig. 3, a mass vs. energy plot in Fig. 4 shows the
results of valid designs from the brute force approach along with
the points MESMOC tested. A few points are numbered to show
the iteration steps of the ML search. The set of points considered
as the Pareto front can be seen in Fig. 5, a close up of the optimal
design region of the mass vs. energy plot. Fig. 5 also includes
the Pareto front found in Trial 1 to show its distance from the
true Pareto front.

Note that in these plots the discrete boundaries seen on the
distribution of brute force points are due to a few factors: 1) Fig.
3,4,5 show only valid design points and many designs are not
valid due to the temperature and DOD constraints, or an inability
to provide sufficient voltage to the motor to maintain the



necessary RPM. 2) The energy requirement and vehicle mass of
n-motored UAVs, all shown in the plot, are inherently different.
3) The battery parameters, Npqrqiier and Ngepies, cause discrete
changes to the vehicle mass and therein the total energy used.

C. Discussion

In application, the subset of valid designs is unknown to the
optimization algorithm. However, it serves as a demonstration
of the capability of MESMOC. In a non-constrained search,
MESMOC drastically reduces the number of iterations required
to discover the Pareto front.

The primary challenge MESMOC has with this multi-
objective optimization is the quantity of invalid points in the
design space. Only 50% of the points sampled by the algorithm
were valid, with an unsuccessful discovery of the true Pareto
front after more than 1000 evaluations. The ratio of valid designs
for a given motor size or battery pack configuration, shown in
Fig. 6, helps realize the sparsity of the design space. 50.1% of all
motor sizes never resulted in a valid design. Within the motor
sizes which can result in a valid design, more than half of the
possible designs will still fail due to other design parameters.
Similarly, 65.4% of battery pack configurations never resulted
in a valid design. By removing the chance of sampling an invalid
design, all Pareto optimal points were found in 270 iterations,
which is about 0.11% of the entire design space. Therefore, the
two ftrials suggest any reduction of invalid designs would
improve Pareto front discovery. Note that these two trials are
extreme cases for a majority non-valid design space and an all-
valid design space.

VI. CONCLUSIONS AND FUTURE WORK

This paper demonstrated the potential of ML algorithms to
considerably reduce the number of design iterations to discover
the Pareto front for MOO of power electronic systems. Utilizing
a physical model simulation, the capability of MESMOC was
demonstrated with a search through the entire design space and
the valid sub-space. The unsuccessful Pareto front discovery due
to 91% of designs failing the constraints showcased the
limitations of the algorithm. A more robust optimization search
is enabled by reducing the number of invalid designs within the
design space. For example, when the search is limited to valid
designs only, the capability of MESMOC is demonstrated by a
successful Pareto front discovery with a substantial reduction in
iterations. This ML enabled search is a promising solution to
saving many hours of engineering effort to determine an optimal
power system design, although challenges still exist.

Future work to investigate the reliability of the search and
ways to improve full Pareto front discovery is under way. A
reduction in the number of invalid points in the design space is
expected to increase this discovery. Additional work will
improve the physical models. The simulation currently utilizes
only static component models of the power system. Dynamic
models of each power system component are to be added, which
will allow for a more detailed analysis of system behaviors such
as current and voltage transients, motor controls, and so on.
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