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ABSTRACT:   
 
There has been an urgent need to monitor, model, and tackle the extreme deterioration of water pipeline systems 
in the United States and other parts of the world to the quickest and best extent. Since manual pipeline inspection 
takes excessive costs, effort and time to consider most uncertainties, a novel and swift scheme is required to 
engage in asset management, which should ensure the accuracy as well as the quickness of the inspection at 
minimum effort and cost. This paper presents and validates a framework to predict the condition of critical pipeline 
assets using water distribution monitoring data. A benchmark water distribution network is first operationally 
optimized, and its pipe roughness values and diameters are subsequently reduced in a random manner in order to 
create a representation of an old and deteriorated water distribution network. The operational data (i.e., pipe flow 
and pressure) for such deteriorated network as obtained through simulations using EPANET 2.0 is leveraged to 
predict the pipe roughness and effective hydraulic diameter values. Evolutionary optimization algorithms are used 
to predict the roughness and diameter values. The novelty of this study entails: (i) employing modified genetic 
algorithms in MATLAB interface where multiple attempts are made towards finding the optimal solution by 
running on several distinct sets of initial population in conjunction with fine-tuning of mutation and crossover 
parameters; (ii) including an ad hoc function to cut down on the temporal expensiveness of the convergence; and 
(iii) assessing the validity and accuracy of the simulation-based optimization framework using mean absolute 
error (MAE) and mean absolute percentage error (MAPE). Successful outcomes of this study offer a great 
potential in predicting condition of critical water infrastructure assets based on the operational monitoring data 
that is increasingly being collected in the recent times.  
 
 
 
 

1. INTRODUCTION  
 
Asset management in water distribution networks has always been entwined with labor-intensive inspection as 
well as limited budget allocation. Particularly, conventional methods as to how data collection is carried out along 
with time-consuming nature of classic manual inspection lend themselves to an obstacle to the speed and accuracy 
of asset management in water distribution networks (Bastian et al. 2019; Mutikanga et al. 2012; Newton and 
Christian 2015). To put the criticality of novel asset management into perspective, in the United States, the annual 
cost replacement of pipelines through manual inspection is approximated at over $2.5 billion for a rough 
estimation of 7,000 km of pipeline (US EPA National Center for Environmental Assessment and Shaw 2007). 
More importantly, considering uncertainties like roughness and hydraulic diameters in aged pipelines, shedding 
light on how these parameters behave through time has turned out to be a challenge in this field (Meirelles et al. 
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2017; Sivakumar et al. 2016). This paper aims at presenting a novel data-driven SCADA-based scheme for 
predicting the condition of pipeline assets. Specifically, being tough to be delineated and monitored, pipeline 
roughness is deemed as a critical parameter whose behavior contributes to the overall wellbeing of the water 
pipeline system. More particularly, owing to internal corrosion and biofilm growth as well as nitrification that 
results in scaling, metal pipelines are more prone to higher deterioration and poor quality along with tougher 
delineation and monitoring capability as they age, so this adds more difficulty to how a pipeline may behave 
through time (Liu et al. 2016). Moreover, a conventional utilization of data-driven platforms using metaheuristic 
approaches like genetic algorithms has been proven to be extremely time-consuming as it takes several repetitions 
through simulators, which adversely affect the time it takes to achieve the near-optimal solution (Altarabsheh et 
al. 2018). Also, there have been preliminary steps to addressing the criticality and importance of reverse 
engineering data-driven asset management using monitoring data in the literature (Piratla and Momeni 2019). 
However, this needs improvement in terms of how accurate the framework is in case of temporal aspects as well 
as its convergence agility to avoid local optima and thus making the framework more temporally and accurately 
intelligent. Therefore, this paper doubles down on a newfangled data-driven framework to predict pipeline 
roughness in a three-looped benchmark network using an ad hoc function which narrows down on the lower and 
upper bounds of the search span for decision variables in MATLAB that will both speed up the time-consuming 
optimal-solution convergence process and avoid the local optima. Also, in comparison to the contribution 
presented in the literature for cyber-monitoring asset management (Piratla and Momeni 2019), the current study 
specifically closes in on the fine-tuning of algorithmic parameters like crossover and mutation factors through 
longitudinal literature review and reverse engineering as well as the fixed number of monitoring stations for all 
decision variables in the optimization problem, consideration of MAE and MAPE measures, and the temporal and 
accuracy improvement in case we consider multiple initial population/runs. This will pave the way for coming up 
with a universal platform that can be validated and utilized under various circumstances for asset management 
considering high accuracy and speed.  
 
 

2. METHODOLOGY 
 
In this paper, reverse engineering is utilized in a MATLAB-based genetic algorithm framework to predict the 
roughness values using hydraulic monitoring data. A modified version of Hanoi network (Fujiwara and Khang 
1990) shown in Figure 2  is developed to represent an actual aged water pipeline system by reduction in pipe 
roughness (C) values as well as effective internal pipe diameters, which is assumed to result from corrosion-
related scaling through time. This modified version of the network known hereby as Alt#1 is used to characterize 
the condition assessment prediction platform (Piratla and Momeni 2019). Monitoring locations of flow rate and 
pressure heads are placed on Alt#1 network to characterize the real-time data acquisition. As per Figure 1, where 
there are 34 links and 31 nodes, pressure head monitoring stations are placed at eight nodes and flow monitoring 
stations in seven pipes. Admittedly, these monitoring stations would make possible the collection of pressure and 
flow data by assuming these locations are provided with smart monitoring devices in reliance to the consumption 
rate at any time scale. To characterize the real-world scenario, the water network behavior is meant to vary with 
time including nodal demands and the operability of water network components. The base demands at all the 
nodes are supposed to be considered the inputs and the outputs would include pressure heads and flow rates at the 
monitoring locations respectively, assuming there will be no failure or pipe breaks in the system. The principle 
idea is to leverage the inherent relationship between these input and output data, as measured through smart water 
meters and smart monitoring devices placed in the distribution system, to predict the pipeline roughness values. 
A total of 200 datasets of inputs (i.e., nodal demands) and corresponding pressure heads and flow rates at the 
predetermined nodes and links are produced to represent the synthetic monitoring data to capture the dynamics of 
the water distribution network (Piratla and Momeni 2019). The nodal demands are randomized within ±20% of 
the base nodal demands of the original Hanoi network (Piratla and Momeni 2019). Conventionally, EPANET 2.0 
software simulator is coupled with MATLAB interface by using open-source EPANET 2.0 extension toolkit 
library to leverage the hydraulic simulations. Ultimately, considering the decision variables are the pipe roughness 
coefficients, a genetic-algorithm optimization framework is formed. This algorithm is meant to minimize the 
absolute difference (quantified through mean squared error – MSE) between the calculated and actual (i.e., 
synthetic) values for pressure heads and flow rates in the predetermined nodes and links mentioned above over 
the 200 demand scenarios. However, in this study, a newfangled idea is utilized to pare down the time-consuming 
convergence process of optimization in MATLAB. In this case, a function is added to the conventional genetic 
algorithm framework that narrows down the search span boundaries on each iteration of the optimization to make 
sure optimal solution can be achieved. It has shown that the probability required for obtaining the optimal solution 
rises significantly using adjusted boundary conditions.  
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Consequently, correlation between the predicted pipe roughness coefficients and the actual pipe roughness 
coefficients will assess the accuracy of the proposed approach using correlation function including mean absolute 
error (MAE) (Willmott and Matsuura 2005) and mean absolute percentage error (MAPE) (de Myttenaere et al. 
2016). Figure 1 shortly represents the steps as to how the approach works all the way through the results.  
 
   

 
 
 
 
 
 
 
 
 
 

Figure 1. Flowchart for the proposed methodology 
 

 
Table 1. Hanoi Original and Alternative Network Alterations (Piratla and Momeni 2019) 

 

Pipe 
Index 

Original Network Alt #1 

Pipe Diameter(mm) Pipe Roughness (C) Pipe Diameter (mm) Pipe Roughness (C) 

1 1066.8 130.0 1023.8 82.0 
2 1524.0 130.0 1482.0 90.0 
3 1066.8 130.0 1036.8 89.0 
4 1066.8 130.0 1029.8 85.0 
5 1066.8 130.0 1029.8 69.0 
6 914.4 130.0 870.4 66.0 
7 762.0 130.0 716.0 88.0 
8 914.4 130.0 869.4 70.0 
9 762.0 130.0 722.0 63.0 
10 762.0 130.0 752.0 68.0 
11 609.6 130.0 598.0 81.0 
12 609.6 130.0 599.2 80.0 
13 508.0 130.0 473.0 72.0 
14 609.6 130.0 569.6 87.0 
15 508.0 130.0 474.0 70.0 
16 914.4 130.0 879.4 69.0 
17 1066.8 130.0 1030.8 65.0 
18 914.4 130.0 878.4 75.0 
19 914.4 130.0 884.4 80.0 
20 1066.8 130.0 1028.8 65.0 
21 508.0 130.0 476.0 76.0 
22 762.0 130.0 722.0 88.0 
23 914.4 130.0 869.4 80.0 
24 508.0 130.0 467.0 73.0 
25 508.0 130.0 466.0 64.0 
26 457.2 130.0 423.2 77.0 
27 609.6 130.0 573.6 64.0 
28 762.0 130.0 719.0 88.0 
29 762.0 130.0 728.0 85.0 
30 914.4 130.0 873.4 82.0 
31 914.4 130.0 865.4 74.0 
32 508.0 130.0 471.0 67.0 
33 914.4 130.0 864.4 68.0 
34 609.6 130.0 559.6 75.0 

Generating 
Alt#1 from 

Hanoi 

Placing 
Monitoring 
Stations on 

Links and Nodes

Randomizing 
Nodal Demands 
within ±20% of 

the Original

Generating 200 
Random 

Scenarios as 
Synthetic Data

Launching 
Optimization 
Framework

Embedding 
EPANET toolkit 
simulator (Non-

ANN)
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3. BENCHMARK PROPERTIES 
 
In the Alt#1 network, the diameters are randomly reduced by values between 30 and 50 mm whereas the roughness 
values of each pipe are randomly reduced to be in the range of 60 and 90 from the original value of 130 (Piratla 
and Momeni 2019). Table 1 above shows the pipe diameters and roughness coefficient values in the original Hanoi 
network as well as the Alt#1 network. It is made sure that the minimum pressure required for the network is met 
during the reduction in pipe sizes and roughness coefficient values to well represent a real-world network. As 
shown in Figure 2 below, the Alt#1 network comprises of 31 nodes, 34 pipelines and one reservoir (Fujiwara and 
Khang 1990).  
 

Figure 2. Alt#1 (Hanoi) Water Distribution Network Layout 
 
3.1 Optimization Formulation and Calculations 
 
The algorithm randomizes a set of roughness coefficients as decision variables into the 200 scenarios and 
minimizes the results by calculating the difference of predicted and actual roughness values. Then, hydraulic 
simulation is carried out using EPANET toolkit in MATLAB, and the outputs for the calculation of the objective 
function would be flow rate and pressure at the monitoring locations. Ultimately, the mean squared error (MSE) 
between the actual and predicted flow and pressure head has been formulated as the objective in Equation 1 below 
(Piratla and Momeni 2019). 
 

A. Decision variables: {x1, x2,…., x34} where, x1 is the roughness coefficient of pipe 1 and so on. 
The decision variables are constrained to vary between 50 and 130.  

B. Objective: Minimize the following 
 

Minimum of ሾሺܽ௜െܲ16௜ሻଶ ൅ ሺܽ௜െܲ23௜ሻଶ ൅ ሺܽ௜െܲ27௜ሻଶሿ for all i + Minimum of ሾሺ݀௜െ5ܨ௜ሻଶ ൅ ሺ ௜݁െ27ܨ௜ሻଶ ൅
ሺ ௜݂െ29ܨ௜ሻଶሿ for all i        [1] 
 
Where, i is the simulation number (i.e., the scenario number ranging from 1 to 200); ai, bi, ci, di, ei, fi are estimated 
pressures and flows during optimization; ai is the pressure at node 16 in simulation i; bi is the pressure at node 23 
in simulation i, ci is the pressure at node 25 in simulation i; di is the flow in pipe 5 in simulation i; ei is the flow in 
pipe 27 in simulation i; fi is the flow in pipe 29 in simulation i; 
 
Where, P16i, P23i, P25i, F5i, F27i, F29i are actual pressures and flows; P16i is the pressure at node 16 in simulation 
i, P23i is the pressure at node 23 in simulation i, P25i is the pressure at node 25 in simulation i; F5i is the flow in 
pipe 5 in simulation i, F27i is the flow in pipe 27 in simulation i; F29i is the flow in pipe 29 in simulation i; 
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C. Constraint Function: The only constraint that might cause trouble halfway through the 

optimization process has turned out to be the pressure values that intermittently violate the minimum 
pressure limits. So, by considering penalty functions, the optimization model is secured to yield 
reliable results. The minimum pressure head value to consider has been 10 meters. 

 
 

4. RESULTS 
 
The output of the optimization framework is a set of 34 roughness values that need to be compared to the actual 
one. The outcome of the simulation-based optimization, whose characteristics can be seen in Table 2, is assessed 
through MAE and MAPE. These metrics are shown in Equations 2 and 3 below that represent the calculation 
process of the MAE and MAPE for both predicted and simulated values. The lower the value of MAPE and/or 
the closer the value of MAE to one, the more accurate the results of the optimization will be. 
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Where pr is the predicted value and sim is the simulated value, i is the associated node or link for a specific 
scenario as outputs, and j represents the number of scenarios. Also, m is associated with number of scenarios and 
n is the number of inputs, which is the number of decision variables in this matter. 
 
 
 

1.1. Simulation-based Results 

Using multiple initial population to resolve the problem with local optima, the model narrows down on the 
boundary conditions to shrink the vast search area that will be extremely time-consuming. Table 2 represents the 
optimization properties.    

 

Table 2. Optimization Properties 

 

Optimization results (optimal solution for predicted roughness coefficient) are listed in Table 3 where MSE for 8 
pressure head monitoring stations and 7 flow rate monitoring stations has functioned as the objective function. 
Table 3 also shows that our model predictions are off by approximately 2.47 in terms of mean absolute error and 
3.19% in terms of mean absolute percentage error (MAPE). 

Number  
of Generations 

Number  
of Population Size 

Boundary  
Tuning Function 

Crossover  
Factor 

85 
100 - 600  

(each new run will 
increase the population) 

Yes/ 
Searching for optimal 

solution over a span of a 
difference of five 

between lower and upper 
bounds  

0.85 
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Table 3. Results of Simulation-based Analysis for actual and predicted roughness values 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 
 

 
 
 

5. DISCUSSION AND FUTURE WORK 
 

Primarily, the fine-tuning of genetic algorithm parameters as well as re-initializing the optimization process 
through multiple initial populations assist the convergence trend in both avoiding getting stuck in local optima 
and covering better spans of search areas. Also, the tuning function that accounts for lowering the boundaries of 
the search span contributes to taking care of all feasible solutions, thus increasing the probability of achieving the 
near-optimal solution. Furthermore, apart from the behavior of optimization model, the novelty in this study 
suggests that the scheme could be an acceptable substitute for expensive and time-consuming methods of asset 
management. Also, since these methods rely on the operational and physical alterations and variations of the water 
distribution network, an accurate model for asset management can be developed by only relying on cyber-
monitoring data that would both cut down on expenses and time that conventional methods would take. In terms 
of future work, in order for this study to be applicable to all water systems, different methods are needed to 
decrease the time it takes for the model to optimize the problem by, for instance, adding neural networks that can 
be trained to eliminate the lengthy simulator-based optimization, thus speeding up the process. Also, a 
comprehensive sensitivity analysis on different criteria such as the number of scenarios or number and location 
of monitoring stations is required to make certain the model is as accurate as possible.   
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