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Abstract

In 2010, Pǎtraşcu proposed a dynamic set-disjointness problem, known as the Multiphase
problem, as a candidate for proving polynomial lower bounds on the operational time of dynamic
data structures. He conjectured that any data structure for the Multiphase problem must make
nε cell-probes in either update or query phases, and showed that this would imply similar
unconditional lower bounds on many important dynamic data structure problems. There has
been almost no progress on this conjecture in the past decade since its introduction. We show
an Ω̃(

√
n) cell-probe lower bound on the Multiphase problem for data structures with general

(adaptive) updates, and queries with unbounded but “layered” adaptivity. This result captures
all known set-intersection data structures and significantly strengthens previous Multiphase
lower bounds, which only captured non-adaptive data structures.

Our main technical result is a communication lower bound on a 4-party variant of Pǎtraşcu’s
Number-On-Forehead Multiphase game, using information complexity techniques. We then
use this result to make progress on understanding the power of nonlinear gates in networks
computing linear operators, a long-standing open problem in circuit complexity and network
design: We show that any depth-d circuit that computes a random m×n linear operator x #→ Ax
using gates of degree k (width-k DNFs) must have Ω(m ·n1/2(d+k)) wires. Finally, we show that
a lower bound on Pǎtraşcu’s original NOF game would imply a polynomial wire lower bound
(n1+Ω(1/d)) for circuits with arbitrary gates computing a random linear operator. This suggests
that the NOF conjecture is much stronger than its data structure counterpart.
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1 Introduction

Proving unconditional lower bounds on the operational time of dynamic data structures has been a
challenge since the introduction of the cell-probe model [Yao79]. In this model, the data structure
needs to support a sequence of n online updates and queries, where the operational cost is measured
only by the number ofmemory accesses (“probes”) the data structure makes to its memory, whereas
all computations on probed cells are completely free of charge. A natural question to study is
the tradeoff between the update time tu and query time tq of the data structure for supporting
the underlying dynamic problem. Cell-probe lower bounds provide a compelling answer to this
question, as they are purely information-theoretic and independent of implementation constraints,
hence apply to any imaginable data structure. Unfortunately, the abstraction of the cell-probe
model also comes at a price, and the highest explicit lower bound known to date, on any dynamic
problem, is merely polylogarithmic (max{tu, tq} ≥ Ω̃(lg2 n), see e.g., [Lar12, LWY18] and references
therein). In 2010, Pǎtraşcu [Pat10] proposed the following dynamic set-disjointness problem, known
as the Multiphase problem, as a candidate for proving polynomial lower bounds on the operational
time of dynamic data structures. The problem proceeds in 3 “phases”:

• PI: Preprocess a collection of m = poly(n) sets !S = S1, . . . , Sm ⊆ [n] in O(mntu) time.

• PII: A set T ⊆ [n] is revealed, and the data structure can update its memory in O(ntu) time.

• PIII: Given i ∈R [m], the data structure must determine if Si ∩ T =? ∅ in O(tq)-time.

Pǎtraşcu conjectured that any data structure solving the Multiphase problem must make
max{tu, tq} ≥ nε cell-probes, and showed that such a polynomial lower bound would imply similar
polynomial lower bounds on many important dynamic data structure problems, including dynamic
reachability in directed graphs and online matrix multiplication (for the broad implications and
further context of the Multiphase conjecture within fine-grained complexity, see [Pat10, HKNS15]).
In the same paper, Pǎtraşcu [Pat10] proposed an approach to prove an unconditional cell-probe
lower bound on the Multiphase problem, by reduction to the following 3-party Number-On-Forehead
(NOF) communication game SELmDISJn , henceforth called the Multiphase Game :

• Alice receives a collection of sets !S = S1, . . . , Sm ⊆ [n] and a random index i ∈R [m].

• Bob receives a set T ⊆ [n] and the index i.

• Charlie receives !S and T (but not i).

Thus, one can think of i as being on Charlie’s forehead, T being on Alice’s forehead, and !S being
on Bob’s forehead. The goal of the players is to determine if Si ∩ T =? ∅, where communication
proceeds in the following way: First, Charlie sends a message (“advice”) U = U(!S, T ) privately to
Bob. Thereafter, Alice and Bob continue to compute DISJn(Si, T ) in the standard 2-party model.
Denoting by Π the second stage protocol, Pǎtraşcu made the following conjecture:

Conjecture 1.1 (Multiphase Game Conjecture, Conjecture 9 of [Pat10]). Any 3-party NOF pro-
tocol for the Multiphase game with |U | = o(m) bits of advice must have |Π| > nε communication.

The (näıve) intuition for this conjecture is that, since Charlie’s advice is independent of i,
it can only provide very little useful information about the interesting subproblem DISJn(Si, T )
(assuming |U | = o(m)), and hence Alice and Bob might as well solve the problem in the stan-
dard 2-party model. This intuition turns out to be misleading, and in fact when Si’s and T are
correlated, it is simply false – Chattopadhyay, Edmonds, Ellen and Pitassi [CEEP12] showed a de-
terministic (2-round) NOF protocol for the Multiphase game with a total of O(

√
n logm) = Õ(

√
n)

1



communication, whereas the 2-party communication complexity of set-disjointness is Ω(n), even
randomized. Surprisingly, they also show that Conjecture 1.1 is equivalent, up to O(logm) com-
munication factor, for deterministic and randomized protocols. Nevertheless, Conjecture 1.1 still
stands for product distributions [CEEP12] (incidentally, the 2-party communication complexity of
set-disjointness under product distributions is Θ̃(

√
n) [BFS86, HW07]).

The technical centerpiece of this paper is an Ω(
√
n) lower bound on the NOF Multiphase game,

for (unbounded-round) protocols in which only the first message of Alice in Π depends on her entire
input !S = S1, . . . , Sm (and i), while in subsequent rounds j > 1, Alice’s messages can depend only
on Si, i and the transcript Π<j (No restriction is placed on Bob and Charlie). Note that Alice’s
messages in subsequent rounds still heavily depend on all sets !S, but only through the transcript of
Π = Π(!S) so far (this feature better captures data structures, which can only adapt based on cells
probed so far). There is a natural way to view such restricted 3-party NOF protocol in terms of
an additional player (Megan, holding !S, i), who, in addition to Charlie’s private advice to Bob, can
broadcast a single message to both Alice and Bob (holding Si, T respectively), who then continue
to communicate in the standard 2-party model (see Figure 5). We define this 4-party NOF model
formally in Section 3.2. Our main technical result is the following tight lower bound on such NOF
protocols:

Theorem 1.2 (Informal). Any Restricted NOF protocol Γ = (U,Π) for the Multiphase game with
|U | = o(m) bits of advice must have |Π| > Ω(

√
n) communication.

This lower bound is tight up to logarithmic factors, as the model generalizes the upper bound
of [CEEP12] (See Section A.2). This suggests that the NOF model we study is both subtle and
powerful. Indeed, while the aforementioned restriction may seem somewhat technical, we show that
removing it by allowing as little as two rounds of Alice’s messages to depend on her entire input !S,
would lead to a major breakthrough in circuit lower bounds – see Theorem 1.6 below. Interestingly,
the Multiphase conjecture itself does not have this implication, since dynamic data structures only
have limited and local access to !S, through the probes (“transcript”) of the query algorithm, and
hence induce weaker NOF protocols.

1.1 Implications to dynamic data structure lower bounds

In contrast to the static cell-probe model, adaptivity plays a dramatic role when it comes to dynamic
data structures. In [BL15], Brody and Larsen consider a variation of the Multiphase problem with
(lg n)-bit updates (i.e., the 2nd phase set is of cardinality |T | = 1), and show that any dynamic
data structure whose query algorithm is non-adaptive1 must make max{tu, tq} ≥ Ω(n/w) cell-
probes when the word-size is w bits. Nevertheless, such small-update problems have a trivial
(tq = O(1)) adaptive upper bound and therefore are less compelling from the prospect of making
progress on general lower bounds. (By contrast, proving polynomial cell-probe lower bounds for
dynamic problems with large poly(n)-bit updates, like Multiphase, even against non-adaptive query
algorithms, already seems beyond the reach of current techniques2).

We prove a polynomial lower bound on the Multiphase problem, against a much stronger class
of data structures, which we call semi-adaptive, defined as follows:

1An algorithm is non-adaptive, if the addresses of probed memory cells are predetermined by the query itself,
and do not depend on content of cells probed along the way.

2While intuitively larger updates |T | = poly(n) only make the problem harder and should therefore only be easier
to prove lower bounds against, the total update time of the data structure in Phase II is also proportional to |T |
and hence the data structure has potentially much more power as it can “amortize” its operations. This is why
encoding-style arguments fail for large updates (enumerating all

!
n
|T |

"
= exp(n) possible updates is prohibitive).
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Definition 1.3 (Semi-Adaptive Data Structures). Let D be a dynamic data structure for the
Multiphase problem with general (adaptive) updates. Let M(!S) denote the memory state of D after
the preprocessing Phase I, and let ∆(M, T ) denote the set of (≤ |T | · tu) cells updated in Phase II.
D is semi-adaptive if its query algorithm in Phase III operates in the following stages (“layers”):

• Given the query i ∈ [m], D may first read Si free of charge.

• D (adaptively) reads at most t1 cells from M.

• D (adaptively) reads at most t2 cells from ∆(M, T ), and returns the answer Si ∩ T =? ∅.

The update time of D is tu, and the query time is tq := t1 + t2.

Thus, the query algorithm has unbounded but “layered” adaptivity in Phase III, in the sense
that the model allows only a single alternation between the two layers of memory cells, M and
∆(M, T ). While this restriction may seem somewhat technical, all known set-intersection data
structures are special cases of the semi-adaptive model (see [DLOM00, BK02, BY04, BPP07, CP10,
KPP15] and references therein). But more importantly, in this model there is actually a nontrivial
upper bound for the Multiphase problem – A semi-adaptive data structure solving it in tu = tq =
O(

√
n lgm) time (based on [CEEP12]’s communication protocol, see Section A.1), indicating that

the model is powerful. We remark that even though the set of modified cells ∆(M, T ) may be
unknown to D at query time, it is easy to implement a semi-adaptive data structure by maintaining
∆(M, T ) in a dynamic dictionary [MPP05] that checks membership of cells in ∆, and returns ⊥ if
the cell is /∈ ∆(M, T ).

Our main result is an essentially tight Ω̃(
√
n) cell-probe lower bound on the Multiphase problem

against semi-adaptive data structures. This follows from Theorem 1.2 by a simple variation of the
reduction in [Pat10] :

Theorem 1.4 (Multiphase Lower Bound for Semi-Adaptive Data Structures). Let m > ω(n). Any
semi-adaptive data structure that solves the Multiphase problem, must have either n · tu ≥ Ω(m/w)
or tq ≥ Ω(

√
n/w), in the dynamic cell-probe model with word size w.

1.2 Implications to Network and Circuit Lower Bounds

Can non-linear gates help compute linear operators? A long-standing open problem in
networks and circuit complexity is whether non-linear gates can help computing linear operators
([Lup56, JS10, Dru12]). Specifically, the challenge is to prove a polynomial lower bound on the
number of wires of constant-depth circuits with arbitrary gates for computing any m × n linear
operator x *→ Ax [Juk12]. A random matrix A ∈ {0, 1}m×n easily gives a polynomial Ω(mn/ lgm)
lower bound against linear circuits [Lup56, JS10] (this restricted the interest to finding explicit hard
matrices A, see [Val77]). In contrast, for general circuits, the highest lower bound on the number of
wires, even for computing a random matrix A, is near-linear [Dru12, GHK+13]. Indeed, the current
state of affairs cannot even rule out the possibility that nonlinear networks with O(m · poly log n)
wires suffice to compute all m × n linear operators [Dru12]. As such, a perplexing open question
is whether one can prove the existence of a matrix A which requires a polynomial m1+ε number of
wires for some constant ε > 0 when m = poly(n).

Motivated by this question, we study an intermediate model of non-linear circuits, where each
gate computes a degree-k polynomial on its input wires (more precisely, a width-k DNF) and may
have unbounded fan-in and arbitrary depth. Note that even in this intermediate model, proving
existential lower bounds against linear operators falls short of a counting argument: There are only
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2n
2
possible n×n linear operators, but at least ∼ 2n

k
possible gates/functions of degree k (width-k

DNFs) on n inputs3, hence the counting argument breaks even for k = 3 (!).
We use Theorem 1.2 to prove that most linear operators require a polynomial number of wires,

unless the network computing them is using highly nonlinear gates (k = ω(1)). More formally:

Theorem 1.5. There are linear operators A ∈ {0, 1}m×n such that any depth-d circuit with width-k

DNF gates computing Ax must have W ≥ Ω
!
m · n

1
2(d+k)

"
wires.

Finally, building on a recent reduction of Viola [Vio18], we show that Pǎtraşcu’s NOF Conjec-
ture 1.1, even for 3-round protocols, would prove a polynomial wire lower bound against networks
with arbitrary gates (i.e., k = n), resolving this longstanding open question. This indicates that
Conjecture 1.1 may be much stronger than the Multiphase conjecture itself.

Theorem 1.6 (NOF Game Implies Circuit Lower Bounds). Suppose Conjecture 1.1 holds, even
for 3-round protocols. Then for m = ω(n), there exists a linear 4 operator A ∈ {0, 1}m×n such
that any depth-d circuit computing x *→ Ax (with arbitrary gates and unbounded fan-in) requires
n1+Ω(ε/d) wires. In particular, if d = 2, the conjecture implies that computing Ax for some A
requires n1+ ε

2
−o(1) wires.

Comparison to previous work. The aforementioned work of Brody and Larsen [BL15] proves
essentially optimal (Ω(n/w)) dynamic lower bounds on variations of the Multiphase problem, when
either the update or query algorithms are nonadaptive (or in fact “memoryless” in the former, which
is an even stronger restriction). Proving lower bounds in the semi-adaptive model is a different
ballgame, as the Õ(

√
n/w) upper bound suggests (Section A.1). We also remark that [BL15] were

the first to observe a (similar but different) connection between nonadaptive data structures and
depth-2 circuit lower bounds.

A more recent result of Clifford et. al [CGL15] proves a “threshold” cell-probe lower bound
on general dynamic data structures solving the Multiphase problem, asserting that fast queries
tq = o(logm/ log n) require very high tu > m1−o(1) update time. This result does not rule out data
structures with tu = tq = poly log(n) time for the Multiphase problem (For general data structures,
neither does ours).

As far as the Multiphase NOF Game, the aforementioned work of Chattopadhyay et. al [CEEP12]
proves a tight Θ̃(

√
n) communication lower bound against so-called “1.5-round” protocols, in which

Bob’s message to Alice is independent of the index i, hence he is essentially “forwarding” a small
(o(n)) portion of Charlie’s message to Alice (this effectively eliminates Bob from communicating,
making it similar to a 2-party problem). While our restricted NOF model is formally incomparable
to [CEEP12] (as in our model, Alice is the first speaker), Theorem 1.2 in fact subsumes it by a
simple modification (see Appendix A.2). The model we study seems fundamentally stronger than
1.5-protocols, as it inherently involves multiparty NOF communication.

To best of our knowledge, all previous lower bounds ultimately reduce the Multiphase problem
to a 2-party communication game, which makes the problem more amenable to compression-
based arguments. This is the main departure point of our work. We remark that most of our
information-theoretic tools in fact apply to general dynamic data structures. We discuss this further
in Section 6 at the end of this paper.

3Indeed, even though the degree of each gate is bounded (k), it may have unbounded fan-in.
4Over the boolean Semiring, i.e., where addition are replaced with ∨ and multiplication are replaced with ∧. We

note that there is evidence that computing Ax over the boolean Semiring is easier than over F2 [CGL15], hence in
that sense our lower bound is stronger than over finite fields.
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2 Technical Overview

Here we provide a streamlined overview of our main technical result, Theorem 1.2. As discussed
earlier in the introduction, a näıve approach to the Multiphase Game SELmDISJn is a “round elimi-
nation” approach: Since Charlie’s advice consists of only |U | = o(m) bits and he has no knowledge
of the index of the interesting subproblem i ∈R [m], his advice U to Bob should convey o(1) bits of
information about the interesting set Si and hence Alice and Bob might hope to simply “ignore”
his advice U and use such efficient NOF protocol Γ to generate a too-good-to-be-true 2-party pro-
tocol for set disjointness (by somehow “guessing” Charlies’s message which appears useless, and
absorbing the error). The fundamental flaw with this intuition is that Charlie’s advice is a function
of both players’ inputs, hence conditioning on U(!S, T ) correlates the inputs in an arbitrary way, ex-
tinguishing the standard “rectangular” (Markov) property of 2-party protocols in the second phase
interaction ΠA↔B between Alice and Bob (This is the notorious feature preventing “direct sum”
arguments in NOF communication models). In particular, Chattopadhyay et. al [CEEP12] show
that a small advice (|U | = Õ(

√
n)) can already decrease the communication complexity of the mul-

tiphase problem to at most the 2-party complexity of set-disjointness under product distributions,
yielding a surprising 2-round Õ(

√
n) upper bound on the Multiphase game. (This justifies why

our hard distribution for SELmDISJn will be a product distribution to begin with, i.e., !S ⊥ T ). Alas,

even if the inputs are originally independent (I(!S;T ) = 0), they may not remain so throughout
Π, and it is generally possible that I(Si;T |Π) ≫ 0. This means that, unlike 2-party protocols,
Π = Π(U, !S, T ) introduces correlation between the inputs, and as such, is not amenable to the
standard analysis of 2-party communication techniques.

Nevertheless, one might still hope that if the advice U is small enough, then this correlation
will be small for an average index Si when the inputs are independently chosen. At a high level,
our proof indeed shows that if only the first message of Alice can (directly) depend on her entire
input !S = S1, . . . , Sm (whereas her subsequent messages Πτ are only a function of Si, i and the
transcript history [Π(!S, T, i)]<τ ), then it is possible to simultaneously control the information cost
and correlation of Π, so long as the advice U is small enough (o(m)). This in turn facilitates a
“robust” direct-sum style argument for approximate protocols. More formally, our proof consists of
the following two main steps:

• A low correlation and information random process for computing AND. The first part
of the proof shows that an efficient Restricted NOF protocol Γ for the Multiphase game SELmDISJn

(under the natural product distribution on !S, T ) can be used to design a certain random process
Z(X,Y ) computing the 2-bit AND function (on 2 independent bits ∼ BΘ(1/

√
n)), which simulta-

neously has low information cost w.r.t X,Y and small correlation, meaning that the input bits
remain roughly independent at any point during the process, i.e, I(X;Y |Z) = o(1/n). Crucially,
Z is not a valid 2-party protocol (Markov chain) – if this were the case, then we would have
I(X;Y |Z) = 0 since a deterministic 2-party protocol cannot introduce any additional correlation
between the original inputs (this is also the essence of the the celebrated “Cut-and-Paste” Lemma
[BYJKS02]). Nevertheless, we show that for restricted NOF protocols Γ (equivalently, unrestricted
protocols in our 4-party model, cf. Figure 5), it is possible to design such random variable Z(X,Y )
from Γ, which is close enough to a Markov chain. The design of Z requires a careful choice condi-
tioning variables (to ensure that the correlation ∼ |U |/m doesn’t accumulate over rounds) as well
as a “coordinate sampling” step for reducing entropy, though the analysis of this part ultimately
uses standard tools (the chain rule and subadditivity of mutual information).We first design a Z ′

with similar guarantees for single-copy disjointness, and then use (a variation of) the standard
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direct-sum information cost argument to “scale down” the information and correlation of Z so as
to extract the desired random process for 2-bit AND. An important observation in this last step is
that the direct sum property of information cost holds not just for communication protocols, but
in fact for more general random variables.

• A “robust” Cut-and-Paste Lemma. The second part is proving that such random variable
Z(X,Y ) cannot exist, i.e., ruling out a random process Z(X,Y ) computing AND (with 1-sided error
under X,Y ∼iid BΘ(1/

√
n)) which simultaneously has low information cost and small correlation

(o(1/n)). The high-level intuition is that, if Z(X,Y ) introduces little correlation, then the distri-
bution over X and Y conditioned on Z(X,Y ) should remain approximately a product distribution,
i.e., close to a rectangle. By the correctness guarantee of Z, the distribution on {0, 1}2 conditioned
on Z(X,Y ) = AND(X,Y ) = 0 must have 0 mass on the (1, 1) entry. But if this conditional distri-
bution does not contain (1, 1) in its support and close to a rectangle, a KL-divergence calculation
shows that Z(X,Y ) must reveal a lot of information about either X or Y (this calculation crucially
exploits the fact that Pinsker’s inequality is loose “near the ends”, i.e., DKL(p||q) ≈ ‖p − q‖1 for
p, q = o(1), and there is no quadratic loss). Our argument can be viewed as a generalization of
the Cut-and-Paste Lemma to more robust settings of random variables (“approximate protocols”).
We remark that while the proof of the original Cut-and-Paste Lemma [BYJKS02] heavily relies
on properties of the Hellinger distance, this technique does not seem to easily extend to small-
correlation random variables. This forces us to find a more direct argument, which may be of
independent interest.

Sketch of nonlinear network lower bound (Theorem 1.5) We prove Theorem 1.5 via
reduction from our communication lower bound (Theorem 1.2). Let A ∈ {0, 1}m×n be the random
matrix where every entry is BΘ(1/

√
n) (i.e., Alice’s input in Theorem 1.2), and respectively, let

x = T ∈ {0, 1}n be Bob’s input in the Multiphase game. We claim that a cheap circuit CA

for computing Ax (over the boolean semiring), with only W wires (where gates compute width-k
DNFs), implies an efficient Restricted NOF protocol for computing (Ax)i = DISJ(Ai, x), which
would violate Theorem 1.2. The key point in this reduction is using Charlie’s advice to kill the
high fanin gates in CA: By a standard averaging argument, there can be o(m) gates with fanin
ω(W/m). Since in Theorem 1.2 Charlie is allowed to send o(m) bits of advice and he sees both A
and x (but not i), his advice to Bob will consist of the outputs of CA on these o(m) high fanin gates
(see Figure 1). Now, all the remaining gates of CA have fanin O(W/m), and since CA has depth
d, there can be at most O((W/m)d) such gates in the induced sub circuit whose root is the ith
output gate (as this is a tree of hight d with branching-factor O(W/m)). Since each gate computes
a degree-k polynomial but has low fan-in, Bob can afford to send the explicit function computed at
this gate using O((W/m)k) bits. This induces a (1-round) Restricted protocol for the Multiphase
game, with |Π| = O((W/m)k+d) communication, after which Bob can compute the output (Ax)i.
By Theorem 1.2, |Π| > Ω(

√
n), which gives the desired bound on the number of wires W .

3 Preliminaries

3.1 Information Theory

In this section, we provide necessary backgrounds on information theory and information complexity
that are used in this paper. For further reference, we refer the reader to [CT06].

First we define entropy of a random variable, which intuitively quantifies how “random” a given
random variable is.
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Figure 1: Overview of the reduction

Definition 3.1 (Entropy). The entropy of a random variable X is defined as

H(X) :=
#

x

Pr[X = x] log
1

Pr[X = x]
.

Similarly, the conditional entropy is defined as

H(X|Y ) := EY

$
#

x

Pr[X = x|Y = y] log
1

Pr[X = x|Y = y]

%
.

Fact 3.2 (Conditioning Decreases Entropy). For any random variable X and Y

H(X) ≥ H(X|Y )

With entropy defined, we can also quantify correlation between two random variables, or how much
information one random variable conveys about the other.

Definition 3.3 (Mutual Information). Mutual information between X and Y (conditioned on Z)
is defined as

I(X;Y |Z) := H(X|Z)−H(X|Y Z).

Similarly, we can also define how much one distribution conveys information about the other dis-
tribution.

Definition 3.4 (KL-Divergence). KL-Divergence between two distributions µ and ν is defined as

DKL(µ||ν) :=
#

x

µ(x) log
µ(x)

ν(x)
.

In order to bound mutual information, it suffices to bound KL-divergence, due to following fact.

Fact 3.5 (KL-Divergence and Mutual Information). The following equality between mutual infor-
mation and KL-Divergence holds

I(A;B|C) = EB,C [DKL(A|B=b,C=c||A|C=c)] .
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We can expect the following inequality near 0 distributions.

Fact 3.6 (Divergence Bound). If DKL(Bq||Bp) < o(p) with p = o(1), then q ∈ [0.99p, 1.01p]

Proof. Since Bq is decreasing as q goes to p, we show that if q = 0.99p or q = 1.01p, D(Bq||Bp) ≥
Ω(p). First if q = 1.01p, then the term is

D(Bq||Bp) = 1.01p log 1.01 + (1− 1.01p) log
1− 1.01p

1− p

≥ 0.01449p+ (1− 1.01p) log

&
1− 0.99p

1− p

'

≥ 0.01449p+ (1− 1.01p) (−0.01443p) ≥ Ω(p)

Similarly, if q = 0.99p, we have

D(Bq||Bp) = 0.99p log 0.99 + (1− 0.99p) log
1− 0.99p

1− p

≥ −0.01436p+ (1− 0.99p) log

&
1− 0.99p

1− p

'

≥ −0.01436p+ (1− 0.99p) (0.01442p) ≥ Ω(p).

We also make use of the following facts on Mutual Information throughout the paper.

Fact 3.7 (Chain Rule). For any random variable A,B,C and D

I(AD;B|C) = I(D;B|C) + I(A;B|CD).

Fact 3.8. For any random variable A,B,C and D, if I(B;D|C) = 0

I(A;B|C) ≤ I(A;B|CD).

Proof. By the chain rule and non-negativity of mutual information,

I(A;B|C) ≤ I(AD;B|C) = I(B;D|C) + I(A;B|CD) = I(A;B|CD).

Fact 3.9. For any random variable A,B,C and D, if I(B;D|AC) = 0

I(A;B|C) ≥ I(A;B|CD).

Proof. By the chain rule and non-negativity of mutual information,

I(A;B|CD) ≤ I(AD;B|C) = I(A;B|C) + I(B;D|AC) = I(A;B|C).
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Figure 2: 3-party NOF Communication

3.2 NOF Communication Models

In Pǎtraşcu’s NOF Multiphase Game SELmf , there are 3 players with the following information on

their foreheads: Charlie: an index i ∈ [m] ; Bob: a collection of sets !S := S1, . . . , Sm ⊆ [n] ;
Alice: a set T ⊆ [n]. I.e., Charlie has access to both !S and T , but not to i. Alice has access to !S
and i, and Bob has access to T and i. The goal is to compute

SELmf (!S, T, i) := f(Si, T ).

The communication proceeds as follows: In the first stage of the game, Charlie sends a message
(“advice”) U = U(!S, T ) privately to Bob. In the second stage, Alice and Bob continue to communi-
cate in the standard 2-party settting to compute f(Si, T ) (see Figure 2). We denote such protocol
by Γ := (U,Πi) where Πi is the second stage transcript, assuming the index of the interesting
subproblem is i.

Unfortunately, lower bounds for general protocols in Pǎtraşcu’s 3-party NOFmodel seem beyond
the reach of current techniques, as we show in Section 5 that Conjecture 1.1, even for 3-round
protocols, would resolve a major open problem in circuit complexity. Fortunately, for dynamic
data structure applications, weaker versions of the NOF model suffice (this is indeed one of the
main messages of this paper).

We consider the following restricted class of protocols. We say that Γ = (U,Π) is a restricted
NOF protocol if Alice is the first speaker in Π (in the second stage of the game) and only her first
message Π1

i to Bob depends on her entire input !S and i, whereas in subsequent rounds, Alice’s
messages Πτ may depend only on Si, i and the history of the transcript Π<τ with Bob. Note that
the latter means that Alice and Bob’s subsequent messages can still heavily depend on S−i, but
only through the transcript (this feature better captures data structures, since the query algorithm
can only adapt based on the information in cells it already probed, and not the entire memory).

Alice
!", $

Bob
%, $

Charlie
!⃗, %

Π"

Megan
!⃗, $

Π
" ℳ )

Figure 3: 4-party NOF Communication
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An equivalent 4-party NOF model. Restricted 3-party NOF protocols are more naturally
described by the following 4-party NOF model. Alice has access only to Si and i, Bob has access
to T and i. Charlie has access to !S and T , but no access to i. Megan has access to !S and i. In the
first stage of the protocol Γ, in addition to Charlie’s private message to Bob U(!S, T ), Megan can
broadcast a message ΠM = ΠM(!S, i) to both Alice and Bob. Thereafter, Alice and Bob proceed
to communicate in the 2-party model as before, denoted ΠA↔B. See Figure 5. We denote 4-party
protocols by Γ = (U,Π) where Π := (ΠM,ΠA↔B). We write Πi := (ΠM

i ,ΠA↔B
i ) to denote the

transcript of Π when the index of the interesting subproblem is i ∈ [m].
It is straightforward to see that Restricted 3-party NOF protocols for the Multiphase Game are

equivalent to (unrestricted) 4-party protocols (by setting Alice’s first message as Megan’s message
ΠM

i , and Charlie remains unchanged). As such, our main technical theorem (Theorem 1.2) can be
restated as follows.

Theorem 3.10 (4-party NOF Lower Bound). Let m > ω(n). For any 4-party NOF protocol
Γ = (U,Π) that solves SELmDISJn with |U | < o(m), there exists i ∈ [m] such that |Πi| > Ω(

√
n).

4 Lower Bound for 4-party NOF Protocols

Notations. We denote by Sj
i the j-th entry of the set Si and analogously for T . We write

S<j
i := S1

i , . . . , S
j−1
i , similarly S−j

i := S1
i , . . . , S

j−1
i , Sj+1

i , . . . , Sn
i , and analogously for T .

For technical reasons, we shall need to carry out the proof on a restricted subset P of the original
[m] coordinates, where P = (i1, . . . , ip) ∈ [m]p. We write i ∈ P if there exists some index ℓ ∈ [p]
such that iℓ = i. We write (i1, . . . , iℓ−1) and (i1, . . . , iℓ) in short hand as i<ℓ and i≤ℓ respectively.
Si<ℓ

refers to Si1 , . . . , Siℓ−1
and ΠM

i<ℓ
refers to ΠM

i1
, . . . ,ΠM

iℓ−1
. Furthermore, SP and ΠM

P refers to

Si1 , . . . , Sip and ΠM
i1
, . . . ,ΠM

ip
respectively. Also Πans

i denotes the output of Γ = (U,Π) when the
index of interest is i ∈ [m].

Let C := maxi∈[m] |Πi| be the maximal number of bits exchanged between Megan, Alice and
Bob over all i ∈ [m]. Then in particular, for every i ∈ [m],

|ΠM
i | ≤ |Πi| ≤ C. (1)

Observe that since Megan does not have access to T , for any subset P of coordinates it holds that

I(T ;SPΠ
M
P ) = 0 (2)

assuming !S ⊥ T , since Megan’s message only depends on i and !S. Indeed, I(T ;SPΠ
M
P ) ≤

I(T ; !S,ΠM
P ) = I(T ; !S)+ I(T ;ΠM

P |!S) = 0. It is noteworthy that, by contrast, I(T ;ΠM
P |!S,U) ∕= 0,

since conditioning on U correlates Megan’s message with Bob’s input. Indeed, dealing with this
subtle feature will be the heart of this section and will later explain the choice of ZDISJ.

Hard Distribution. We consider the natural hard product distribution for set-disjointness, ex-
tended to SELmDISJn : For all i ∈ [m] and j ∈ [n], Sj

i and T j are i.i.d. Bernoulli Bγ for γ = 1
1000

√
n
.

4.1 A Low Correlation Random Process for DISJn

The goal of this section is to show that an efficient 4-party NOF protocol Γ for SELmDISJn implies
a low-correlation, low-information random process for computing a single copy of set-disjointness
(under the hard product distribution). For technical reasons, we restrict the proof to a random
subset P = (I1, . . . , Ip) ∈R [m]p of p coordinates, with the constraint that for any k1, k2 ∈ [p], if

10



k1 ∕= k2, then Ik1 ∕= Ik2 where p is a parameter that will be chosen as o(m).5 Let ℓ ∈R [p] be a
uniformly random index. We shall prove the following Lemma:

Lemma 4.1. Let Γ = (U,Π) be a 4-party NOF protocol for SELmDISJn with |Πi| < C for all i ∈ [m].
Then for p = o(m), there exists a random variable ZDISJ containing P and ℓ such that

• If DISJn(SIℓ , T ) = 0, then ZDISJ
ans = 0.

• If DISJn(SIℓ , T ) = 1, then ZDISJ
ans = 1.

• Satisfies the following information cost bound

I(ZDISJT ;SIℓ) ≤ C + o(C) (3)

I(ZDISJ;T ) ≤ C (4)

• Satisfies the following correlation bound

I(Siℓ ;T |ZDISJ) ≤ O

&
|UT |
p

'
. (5)

Intuitively, Lemma 4.1 states that an efficient 4-party NOF protocol for SELmDISJn can be used
to design a random process Z(SIℓ , T ) which for a random P and ℓ computes DISJn on inputs SIℓ

and T , in a way that simultaneously: (i) Z reveals small information on average about both SIℓ

and T , and (ii) creates small correlation between SIℓ and T assuming |UT | = o(p) ≤ o(m) (i.e., it
is in some sense “close” to a 2-party communication protocol). The choice of Z is set to

ZDISJ := ΠIℓSI<ℓ
ΠM

I<ℓ
,P, ℓ = ΠIℓΠ

M
Iℓ
SI<ℓ

ΠM
I<ℓ

,P, ℓ

ZDISJ
ans := Πans

Iℓ
.

where the equality holds for ZDISJ since ΠM
Iℓ

is included in ΠIℓ . Since we do not bound the number

of rounds, we can without loss of generality assume that Πans
Iℓ

is included in ΠIℓ . Note that ΠIℓ ,Π
M
I<ℓ

are random variables that depend on Charlie’s advice U , but importantly U is not included explicitly
in ZDISJ. We begin with the following claim, which morally states that ZDISJ \ ΠIℓ reveals little
information on an average set Si:

Claim 4.2.

I(SIℓ ;SI<ℓ
ΠM

I<ℓ
T,P, ℓ) ≤ p · C

m− p
. (6)

Proof. First, note that we have

I(SIℓ ;SI<ℓ
ΠM

I<ℓ
,P, ℓ) = I(Siℓ ;Si<ℓ

ΠM
i<ℓ

|Pℓ) = EP,ℓ

(
I(Siℓ ;Si<ℓ

ΠM
i<ℓ

|P = i≤p, ℓ = ℓ)
)

where the first equality holds since I(SIℓ ;P, ℓ) = 0 since P, ℓ are independent of !S and T along
with Fact 3.7. Furthermore, for any setting of P and ℓ, we have

I(Siℓ ;Si<ℓ
ΠM

i<ℓ
|P = i≤p, ℓ = ℓ) = I(Siℓ ;Si<ℓ

ΠM
i<ℓ

).

since the choice of P and ℓ are independent of entries in !S and T . Therefore, we have

I(SIℓ ;SI<ℓ
ΠM

I<ℓ
Pℓ) = I(SIℓ ;SI<ℓ

ΠM
I<ℓ

|Pℓ) = EP,ℓ

(
I(Siℓ ;Si<ℓ

ΠM
i<ℓ

)
)
. (7)

5This is equivalent to picking a random ordering over a random p-sized subset in [m]
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Now consider fixed ℓ = ℓ and I<ℓ = i<ℓ. Then we prove the following inequality.

E iℓ,
∀r<ℓ,iℓ ∕=ir

(
I(Siℓ ;Si<ℓ

ΠM
i<ℓ

, T )
)
≤ p · C

m− p
. (8)

First observe that

I(Siℓ ;Si<ℓ
ΠM

i<ℓ
, T |I<ℓ = i<ℓ, I≥ℓ) = I(Siℓ ;Si<ℓ

ΠM
i<ℓ

, T |Iℓ, I<ℓ = i<ℓ)

= Eiℓ

(
I(Siℓ ;Si<ℓ

ΠM
i<ℓ

, T |Iℓ = iℓ, I<ℓ = i<ℓ)
)
= E iℓ,

∀r<ℓ,iℓ ∕=ir

(
I(Siℓ ;Si<ℓ

ΠM
i<ℓ

, T )
)

Now we have that for all i ∈ [m] such that i /∈ (i1, . . . , iℓ−1), Si’s are i.i.d. Therefore we get

E iℓ,
∀r<ℓ,iℓ ∕=ir

(
I(Siℓ ;Si<ℓ

ΠM
i<ℓ

, T )
)
=

1

m− (ℓ− 1)

#

i/∈i<ℓ

I(Si;Si<ℓ
ΠM

i<ℓ
, T )

≤
I(Si/∈i<ℓ

;Si<ℓ
ΠM

i<ℓ
, T )

m− (ℓ− 1)
=

I(Si/∈i<ℓ
;ΠM

i<ℓ
|Si<ℓ

, T )

m− (ℓ− 1)
≤

H(ΠM
i<ℓ

|Si<ℓ
, T )

m− (ℓ− 1)

≤
H(ΠM

i<ℓ
)

m− (ℓ− 1)
≤ (ℓ− 1)C

m− (ℓ− 1)

where the last equality holds since I(Si/∈i<ℓ
;Si<ℓ

, T ) = 0 from our assumption on the hard distri-
bution. Now since we have ℓ ≤ p, we get

E iℓ,
iℓ /∈i<ℓ

(
I(Siℓ ;Si<ℓ

ΠM
i<ℓ

, T )
)
≤ (ℓ− 1)C

m− (ℓ− 1)
≤ p · C

m− p
.

Therefore, we have that (8) holds for any fixed ℓ = ℓ and I<ℓ = (i1, . . . , iℓ−1). Taking expectation
over P and ℓ, we get

EP,ℓ

(
I(Siℓ ;Si<ℓ

ΠM
i<ℓ

T )
)
= Eℓ

(
EI<ℓ

EIℓ

(
I(Siℓ ;Si<ℓ

ΠM
i<ℓ

T )
))

≤ p · C
m− p

.

The next claim, which is another direct application of the chain rule, asserts that for a random
coordinate i ∈ P, Megan’s messages in Πi (Π

M
i ) do not heavily depend on T, U , conditioned on

previous coordinate transcripts.

Claim 4.3. For any fixed P = i≤p, if ℓ is uniformly distributed over [p]

El

(
I(SiℓΠ

M
iℓ
;UT |Si<ℓ

ΠM
i<ℓ

, ℓ = ℓ,P = i≤p

)
≤ O

&
|UT |
p

'
(9)

Proof. Again, since ℓ is picked independently at random (UT is independent of ℓ), we get

I(SiℓΠ
M
iℓ
;UT |Si<ℓ

ΠM
i<ℓ

, ℓ = ℓ,P = i≤p) = I(SiℓΠ
M
iℓ
;UT |Si<ℓ

ΠM
i<ℓ

,P = i≤p)

Then taking expectation over ℓ, we get

Eℓ

(
I(SiℓΠ

M
iℓ
;UT |Si<ℓ

ΠM
i<ℓ

,P = i≤p)
)

=
1

p

#

ℓ∈[p]
I(SiℓΠ

M
iℓ
;UT |Si<ℓ

ΠM
i<ℓ

,P = i≤p)

=
I(Si≤p

ΠM
i≤p

;UT |P = i≤p)

p
≤ |UT |

p
.
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Recall that Πi := (ΠM
i ,ΠA↔B

i ) is the transcript between Megan, Alice and Bob when the
index of the interesting subproblem is i. We now turn to establish the fact that conditioning
on Πi cannot introduce too much correlation between the (originally independent) Si and T . As
discussed in the introduction, if Πi were a standard (deterministic) 2-party protocol, then this
would have indeed been the case (as the rectangle property of communication protocols ensures
that independent inputs Si, T remain so throughout the protocol: I(Si;T |Πi) = 0). Alas, Πi no
longer has the rectangle property anymore (as Charlie’s message U(!S, T ) correlates the inputs in
an arbitrary way). Fortunately, we will be able to show that if Megan’s messages only depend on
!S and i, and Alice’s response only depend on Si, i and previous transcript then we can control the
correlation introduced by ZDISJ (by adding the aforementioned extra variables in the definition of
ZDISJ) without increasing the information cost of ZDISJ with respect to Si and T . We begin with
the following claim, which shows that the effect of conditioning on ZDISJ can be upper bounded by
the following term:

Claim 4.4. For any fixed ℓ ∈ [p], and P = i≤p

I(Siℓ ;T |ΠiℓSi<ℓ
ΠM

i<ℓ
,P = i≤p, ℓ = ℓ) = I(Siℓ ;T |ΠM

iℓ
ΠA↔B

iℓ
, Si<ℓ

ΠM
i<ℓ

,P = i≤p, ℓ = ℓ)

≤ I(SiℓΠ
M
iℓ
;UT |Si<ℓ

ΠM
i<ℓ

,P = i≤p, ℓ = ℓ).

Proof. The proof is by induction on the number of rounds of ΠA↔B
iℓ

:= Π1
iℓ
, . . . ,ΠC

iℓ
. If at τ ∈ [C],

it is Alice’s turn to speak, then since Alice’s message is a function of SiℓΠ
M
iℓ

and Π<τ
iℓ

, it holds that

I(Πτ
iℓ
;UT |SiℓΠ

M
iℓ
Si<ℓ

ΠM
i<ℓ

,Π<τ
iℓ

,P = i≤p, ℓ = ℓ) ≤ H(Πτ
iℓ
|Siℓ ,Π

M
iℓ
,Π<τ

iℓ
) = 0 (10)

(Note that this would not have been true had Alice’s message been a function of all !S, because U
correlates !S and T . This is where we use the fact that only Megan’s message ΠM

i<ℓ
can depend on

all !S). If it is Bob’s turn to speak at round τ ∈ [C], then it still holds that

I(Πτ
iℓ
;Siℓ |UT, Si<ℓ

ΠM
i<ℓ

,ΠM
iℓ
,Π<τ

iℓ
,P = i≤p, ℓ = ℓ) = 0 (11)

since Bob’s message is determined by UT,ΠM
iℓ

and Π<τ
iℓ

or equivalently

I(Πτ
iℓ
;Siℓ |UT, Si<ℓ

ΠM
i<ℓ

,ΠM
iℓ
,Π<τ

iℓ
,P = i≤p, ℓ = ℓ)

≤ H(Πτ
iℓ
|UT,ΠM

iℓ
,Π<τ

iℓ
) = 0.

Then applying Fact 3.9 iteratively with (10) and (11) for any ℓ ∈ [p], we get

I(Siℓ ;UT |ΠM
iℓ
Π≤C

iℓ
Si<ℓ

ΠM
i<ℓ

,P = i≤p, ℓ = ℓ)

≤ I(Siℓ ;UT |ΠM
iℓ
Π<C

iℓ
Si<ℓ

ΠM
i<ℓ

,P = i≤p, ℓ = ℓ) ≤ . . .

≤ I(Siℓ ;UT |ΠM
iℓ
Π1

iℓ
Si<ℓ

ΠM
i<ℓ

,P = i≤p, ℓ = ℓ)

≤ I(Siℓ ;UT |ΠM
iℓ
Si<ℓ

ΠM
i<ℓ

,P = i≤p, ℓ = ℓ).

We get the final inequality by non-negativity of mutual information or

I(Siℓ ;UT |ΠM
iℓ
Si<ℓ

ΠM
i<ℓ

,P = i≤p, ℓ = ℓ) ≤ I(SiℓΠ
M
iℓ
;UT |Si<ℓ

ΠM
i<ℓ

,P = i≤p, ℓ = ℓ).
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We are finally ready to prove Lemma 4.1 using Claim 4.2, Claim 4.3 and Claim 4.4.

Proof of Lemma 4.1. Recall the definition of ZDISJ(SIℓ , T ) := ΠIℓΠ
M
I<ℓ

,P, ℓ. The correctness

guarantee of DISJn(SIℓ , T ) holds since we set Πans
Iℓ

as ZDISJ
ans , and the original NOF protocol Γ =

(U,Π) was assumed to have 0 error.
To establish (3), we get from Claim 4.2 and Fact 3.7 that

I(ΠIℓSI<ℓ
ΠM

I<ℓ
T,P, ℓ;SIℓ) = I(SI<ℓ

ΠM
I<ℓ

T,P, ℓ;SIℓ) + I(Πiℓ ;Siℓ |SI<ℓ
ΠM

I<ℓ
T,P, ℓ)

≤ p · C
m− p

+ C.

Since we set p := o(m), we get p·C
m−p = o(C).

Next for (4), we write

I(ZDISJ;T ) = I(ΠIℓSI<ℓ
ΠM

I<ℓ
,P, ℓ;T ) = I(P, ℓ;T )* +, -

=0

+I(Si<ℓ
ΠM

i<ℓ
;T |P, ℓ) + I(Πiℓ ;T |Si<ℓ

ΠM
i<ℓ

,P, ℓ)
* +, -

≤C

≤ I(Si<ℓ
ΠM

i<ℓ
;T |P, ℓ)

* +, -
=0

+C ≤ C. (12)

where we used (2) for I(Si<ℓ
ΠM

i<ℓ
;T |P, ℓ) = I(Si<ℓ

ΠM
i<ℓ

;T ) = 0 (recall that P, ℓ are chosen inde-
pendently of the inputs, so conditioning on them does not change things). We remark that here
we (crucially) used the fact that Megan is only allowed to send a single message (i.e., no further
interaction with the player holding !S is allowed).

Finally for (5), from Claim 4.4, we have that for every ℓ ∈ [p] and P,

I(Siℓ ;T |Πiℓ , Si<ℓ
,ΠM

i<ℓ
, ℓ,P) ≤ I(SiℓΠ

M
iℓ
;UT |Si<ℓ

,ΠM
i<ℓ

, ℓ,P). (13)

But from Claim 4.3, we know that over random ℓ ∈R [p], we have

I(SiℓΠ
M
iℓ
;UT |Si<ℓ

ΠM
i<ℓ

, ℓ,P)

= Eℓ,P

(
I(SiℓΠ

M
iℓ
;UT |Si<ℓ

ΠM
i<ℓ

,P)
)
≤ O

&
|UT |
p

'
. (14)

□

4.2 A Random Process for AND with Low Information & Correlation

We now show how to “scale down” the random process ZDISJ (obtained from the NOF protocol Γ in
Lemma 4.1) so as to generate another random process (not a 2-party protocol) that “approximately”
computes the 2-bit AND(X,Y ) function (on independent random bits) under X,Y ∼ Bγ , with
information correlation smaller by a factor of n. This follows the standard “direct sum” embedding
(e.g., [BBCR10, BR11, Bra15]) – the important observation here is that the direct sum property of
the information cost function apply to general interactive processes and not just to communication
protocols. This is the content of the next lemma.

Lemma 4.5. Let Γ = (U,Π) be a 4-party NOF protocol that solves SELmDISJn with |U | < o(p) < o(m)
and |Πi| < C for all i ∈ [m]. Then there exists a random variable ZAND = ZAND(X,Y ) such that

• If AND(X,Y ) = 1, then ZAND
ans outputs 0.

• If AND(X,Y ) = 0, then ZAND
ans outputs 0 with probability at most 0.001.
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• Has following information cost guarantees

I(ZAND;X) ≤ C + o(C)

n
(15)

I(ZAND;Y ) ≤ C

n
(16)

• Has following correlation guarantee

I(X;Y |ZAND) < o(1/n) (17)

Proof. Consider the following embedding of bits X and Y to Γ.

1. Select P, ℓ ∈R [p], j ∈R [n] uniformly at random.

2. Set Sj
Iℓ

= X and T j = Y .

3. Sample the rest of the coordinates all i.i.d. Bγ .

4. Run Γ = (U,Π) with Iℓ as the index. Then return the output.

Protocol 1: Embedding AND(X,Y )

Now we claim that
ZAND := ΠIℓSI<ℓ

ΠM
I<ℓ

T<jjPℓ = ZDISJT<jj

with ZAND
ans set as Πans

Iℓ
satisfies the conditions of Lemma 4.5.

Correctness Suppose AND(X,Y ) = 1. Then ΠIℓ must output 0 since DISJ(SIℓ , T ) = 0 from
embedding. Also note that given AND(X,Y ) = 0, DISJ(SIℓ , T ) = 0 with at most 0.001 probability

since DISJ(S−j
Iℓ

, T−j) = 0 with at most 0.001 probability on our distribution on !S and T for any
setting of j,P, ℓ. Therefore ΠIℓ outputs 0 with at most probability 0.001.

Information Cost Recall that we have from Lemma 4.1, (3), (4), (5) or

I(ZDISJT ;SIℓ) = I(ΠIℓSI<ℓ
ΠM

I<ℓ
T,P, ℓ;SIℓ) ≤ C + o(C)

I(ZDISJ;T ) = I(ΠIℓSI<ℓ
ΠM

I<ℓ
T,P, ℓ;T ) ≤ C

I(Siℓ ;T |ZDISJ) = I(Siℓ ;T |ΠiℓSi<ℓ
ΠM

i<ℓ
T,P, ℓ) ≤ O

&
|UT |
p

'

Now since we embed X and Y in random j ∈ [n], we get

I(ΠIℓSI<ℓ
ΠM

I<ℓ
T<j , j,P, ℓ;X) = EP,ℓEj

(
I(ΠiℓSi<ℓ

ΠM
i<ℓ

T<j ;X|j = j,P, ℓ)
)

≤ EP,ℓEj

(
I(ΠiℓSi<ℓ

ΠM
i<ℓ

T ;Sj
iℓ
|j = j,P, ℓ)

)
= EP,ℓEj

(
I(ΠiℓSi<ℓ

ΠM
i<ℓ

T ;Sj
iℓ
|P, ℓ)

)

= EP,ℓ

.

/ 1

n

#

j∈[n]
I(ΠiℓSi<ℓ

ΠM
i<ℓ

T ;Sj
iℓ
|P, ℓ)

0

1 ≤ EP,ℓ

.

/ 1

n

#

j∈[n]
I(ΠiℓSi<ℓ

ΠM
i<ℓ

T ;Sj
iℓ
|S<j

iℓ
,P, ℓ)

0

1

≤ EP,ℓ

$
I(ΠiℓSi<ℓ

ΠM
i<ℓ

T ;Siℓ |P, ℓ)

n

%
=

I(ΠIℓSI<ℓ
ΠM

I<ℓ
T,P, ℓ;SIℓ)

n

=
I(ZDISJT ;SIℓ)

n
≤ C + o(C)

n
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where the second inequality holds from I(Sj
iℓ
;S<j

iℓ
|P, ℓ) = 0. The second to last equality holds from

I(P, ℓ;SIℓ) = 0 or (7). For (16), analogously, we get

I(ΠIℓSI<ℓ
ΠM

I<ℓ
T<j , j,P, ℓ;Y ) = EP,ℓEj

(
I(ΠiℓSi<ℓ

ΠM
i<ℓ

T<j ;T j |j = j,P, ℓ)
)

≤ EP,ℓEj

(
I(ΠiℓSi<ℓ

ΠM
i<ℓ

T<j ;T j |P, ℓ)
)
= EP,ℓEj

(
I(ΠiℓSi<ℓ

ΠM
i<ℓ

;T j |T<j ,P, ℓ)
)

= EP,ℓ

.

/ 1

n

#

j∈[n]
I(ΠiℓSi<ℓ

ΠM
i<ℓ

;T j |T<j ,P, ℓ)

0

1 ≤ EP,ℓ

$
I(ΠiℓSi<ℓ

ΠM
i<ℓ

;T |P, ℓ)

n

%

=
I(ΠIℓSI<ℓ

ΠM
I<ℓ

,P, ℓ;T )

n
=

I(ZDISJ;T )

n
≤ C

n
.

where the second equality holds from I(T<j ;T j |P, ℓ) = I(T<j ;T j) = 0.

Low Correlation Now for (17), we again take expectation over j.

I(X;Y |ΠiℓSi<ℓ
ΠM

i<ℓ
T<j , j,P, ℓ) = EP,ℓEj

(
I(Sj

iℓ
;T j |ΠiℓSi<ℓ

ΠM
i<ℓ

T<j ,P, ℓ, j = j)
)

= EP,ℓEj

(
I(Sj

iℓ
;T j |ΠiℓSi<ℓ

ΠM
i<ℓ

T<j ,P, ℓ)
)

≤ EP,ℓ

.

/ 1

n

#

j

I(Siℓ ;T
j |ΠiℓSi<ℓ

ΠM
i<ℓ

T<j ,P, ℓ)

0

1

= EP,ℓ

$
I(Siℓ ;T |ΠiℓSi<ℓ

ΠM
i<ℓ

P, ℓ)

n

%
=

I(SIℓ ;T |ZDISJ)

n
≤ O

&
|UT |
pn

'
≤ o(1/n).

where the last bound follows from Lemma 4.1 with |UT | < o(p).

4.3 An Information Lower Bound for Low-Correlation AND Computation

In this section, we rule out a random process that computes the 2-bit AND function with simulta-
neously low information cost and small correlation. The proof can be viewed as a generalization of
the classic Cut-and-Paste Lemma [BYJKS02] from 2-party protocols to a more general setting of
low-correlation random variables.

A Robust “Cut-and-Paste” Lemma for Product Distribution. Instead of restricting to
a two-party protocol, we generalize celebrated “cut-and-paste” lemma to any random process.
We prove the following general structural bound for any random process Z when X and Y are
distributed Bγ independently with γ = o(1).

Lemma 4.6 (Robust Cut and Paste). Suppose X and Y are distributed i.i.d. Bγ with γ = o(1).
Then consider a random variable Z containing Zans such that

• If AND(X,Y ) = 1 then Zans = 0. Otherwise Pr[Zans = 0] < 0.001.

• Pr[Zans = 1] ≥ 1/2

• Satisfies following two inequalities

I(X;Y |Z) ≤ o(γ2) (18)

I(Z;X) ≤ o(γ) (19)
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Then it must be the case I(Y ;Z) ≥ Ω(γ).

We remark that in the usual cut-and-paste setting introduced in [BYJKS02], one requires
I(X;Y |Z) = I(X;Y ). And this follows from Z being a 2-party communication protocol. It is
crucial in standard cut-and-paste argument that I(X;Y |Z) = I(X;Y ). Otherwise, one cannot
make a connection between Hellinger distance and KL-divergence. For communication model in
Figure 2 which crucially introduces correlation between two inputs conditioned on the protocol,
the usual cut-and-paste will not give the desired bound.

Instead, in Lemma 4.6, we show that ifX and Y are under product distribution, one can actually
relax this condition and make the argument robust to small correlation between inputs (even when
Z is not a communication protocol). In particular Z can be an arbitrary random process!

Proof of Lemma 4.6. Towards the proof we make use of the following notation for distribution
on X,Y conditioned on Z = z assuming Zans = 1.

az := Pr[X = 0, Y = 0|Z = z]

bz := Pr[X = 0, Y = 1|Z = z]

cz := Pr[X = 1, Y = 0|Z = z]

Note that Pr[X = 1, Y = 1|Z = z] = 0, since we have the guarantee that if AND(X,Y ) = 1 then
Zans = 0. We prove the following claim on az, bz, cz.

! = 0 ! = 1

% = 0 &' ('
% = 1 )' 0

Figure 4: Resulting prior conditioned on Z = z with Zans = 1

Claim 4.7. If DKL(Xz||X) ≤ o(γ), and I(X;Y |Z = z) ≤ o(γ2), then DKL(Yz||Y ) ≥ Ω(γ).

Proof. First, observe that cz = Θ(γ). If DKL(Xz||X) ≤ o(γ), then from Fact 3.6 we have

Pr[X = 1|Z = z] = cz = Θ(γ). (20)

Next, we expand and lower bound the term I(X;Y |Z = z).

I(X;Y |Z = z) = Pr[Y = 0|Z = z] · DKL(XY=0,z||Xz)

+ Pr[Y = 1|Z = z] · DKL(XY=1,z||Xz)

≥ (1− bz) · DKL(B cz
1−bz

||Bcz) + bz · DKL(B0||Bcz)

≥ bz · DKL(B0||Bcz) = bz log
1

1− cz
≥ Ω (bzcz) .

where the last bound holds from − log(1− x) ≥ x/2 for x < 1/2. Rewriting the inequality we get,

bzcz ≤ O (I(X;Y |Z = z)) (21)
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Now we have that cz = Θ(γ) from (20). Therefore we can rewrite (21) as

bz ≤ O

&
I(X;Y |Z = z)

γ

'
(22)

Since we assumed I(X;Y |Z = z) ≤ o(γ2), we obtain

bz ≤ o (γ) (23)

Then combining (23) with Fact 3.6, we get

DKL(Yz||Y ) ≥ Ω(γ).

To complete the proof of Lemma 4.6, take “good” z such that

• zans = 1

• DKL(Xz||X) ≤ o(γ)

• I(X;Y |Z = z) ≤ o(γ2)

By union bound, the mass on such Z must be at least Ω(1). Furthermore, for these z, Claim 4.7
holds, and DKL(Yz||Y ) ≥ Ω(γ). Then

I(Z;Y ) = Ez∼Z [DKL(Yz||Y )] ≥ Pr[z is good] · Ω(γ) = Ω(γ)

where the expectation sum is only taken over good z. □

4.4 Proof of the Main Theorem

The proof of Theorem 3.10 now follows easily by combining Lemma 4.5 and Lemma 4.6.

Theorem 4.8 (Restated). Let Γ = (U,Π) be a 4-party NOF protocol (c.f. Figure 5) that solves
SELmDISJn with |T | < |U | < o(m). Then there exists some i ∈ [m] such that |Πi| ≥ Ω(

√
n).

Proof. Suppose otherwise. Then for all i ∈ [m], we have |Πi| < o(
√
n). Then by Lemma 4.5,

there is some random variable ZAND(X,Y ) for solving AND(X,Y ) with the following guarantees
by setting C = o(

√
n) :

I(ZAND;X) < o(1/
√
n)

I(ZAND;Y ) < o(1/
√
n)

I(X;Y |ZAND) < o(1/n).

Furthermore, ZAND
ans = 0 whenever AND(X,Y ) = 1. But Pr[AND(X,Y ) = 1] = O(1/n). While if

AND(X,Y ) = 0, Pr[ZAND
ans = 0] < 0.001. Therefore, Pr[ZAND

ans = 1] ≥ 1/2. But this is in direct
contradiction to Lemma 4.6 with γ := 1

1000
√
n
. Hence such ZAND cannot exist.
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4.5 Multiphase Lower Bound for Semi-Adaptive Data structures

Here we prove Theorem 1.4, asserting a polynomial lower bound on the Multiphase problem against
Semi-Adaptive dynamic data structures (Definition 1.3):

Theorem 4.9 (Main Result). Let m = ω(n). Any semi-adaptive data structure solving the Mul-
tiphase problem must have (total) update time tun ≥ Ω(mw ) or query time tq ≥ Ω(

√
n/w), in the

cell-probe model with word size w.

Proof. We use a simple variation of the reduction from [Pat10] to show that an efficient semi-
adaptive data strucutre implies a too-good-to-be-true 4-party NOF protocol, contradicting Theorem
4.8. To this end, suppose we have a semi-adaptive dynamic data structure with tun < o

2
m
w

3
and

tq < o(
√
n/w).

We argue that this implies a cheap 4-party NOF protocol. First we set the update transcript
as U – which can be generated by Charlie who has access to both !S and T . We then have
|U | = O(tunw) < o(k). Set ΠM

i as addresses and the contents of cells in M that are accessed by
the query algorithm. Set subsequent Alice’s message Πτ

i as the cell address of ∆(M, T ) that are
accessed. This is determined by ΠM

i ,Π<τ
i , i, Si. Set Bob’s message Πτ+1

i as the cell content. This

is determined by ΠM
i ,Π≤τ

i , UT, i. It is immediate that this is a valid 4-party protocol. We also
have the length of 4-party NOF protocol Γ = (U,Π) as

|U |+ |T | ≤ o(m)

|Πi| = |ΠM
i |+ |ΠA↔B

i | ≤ 4tqw < o(
√
n)

But this is in contradiction to Theorem 4.8.

5 Lower Bounds on Nonlinear Networks for computing Linear
Operators

Circuits with arbitrary gates As mentioned in Section 1, a long-standing open problem in
circuit complexity is whether non-linear gates can significantly (polynomially) reduce the number
of wires of circuits computing linear operators [JS10]. We consider Valiant’s depth-2 circuit model
[Val77] with arbitrary gates, and its generalizations to arbitrary depths. More formally, consider a
circuit computing a linear operator x *→ Ax where A is an m× n matrix with m = poly(n), using
unbounded fan-in, and where gates are allowed to be arbitrary functions. Clearly, such circuits can
trivially compute any f with m gates. As such, the interesting complexity measure in this model
is the minimum number of wires (W ) to computing the function f . This measure captures how
much “information” needs to be transferred between different components of the circuit, in order
to compute the function. For a more thorough exposition and motivation on circuits with arbitrary
gates, we refer the reader to [Juk12].

Previous Works In contrast to arithmetic circuit models (e.g., [Val77] where allowed functions
are simple functions such as AND, OR or PARITY), it is a long-standing open problem [JS10,
Juk12, Dru12] whether non-linear circuits can compute any linear operator A with near-linear
(Õ(m)) number of wires. Indeed, for linear circuits, this is a simple counting argument. Counting
argument shows that Ω(mn/ log(mn)) wires are necessary for linear circuits, and this is tight

6This is for depth 2 circuit. For any depth, [Dru12] gives Ω(m log n) lower bound.
7This is for depth 2 circuit, square matrix
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Circuit Model Non-Explicit Matrix Explicit Matrix

Linear (⊕) Gates Ω(mn/ log n) [Lup56] Ω
!
n log3/2 n

"
[Fri93, PR94, SSS97]

Arbitrary Gates Ω(n(log n/ log log n)2) [GHK+12]6 Ω(n log n/ log log n) [Juk10]7

Width-k DNFs Ω
!
mn

1
2(d+k)

"
[This Work] Same as above [Juk10]

Table 1: Wire lower bounds for computing m×n linear operators x *→ Ax in various circuit models.

[Lup56]. But once again, for arbitrary circuits, counting argument completely fails. The number of
possible functions over n bits is already doubly exponential in n. In fact, counting argument fails
even when we consider only width-3 DNFs. While there are only 2mn different linear operators,
there are at least 2n

3
different width-3 DNF gates.

[Juk10] initiated works on analyzing the complexity of representing a random matrix, that is
computing Ax when x is restricted to having only one 1. In other words, compute Aei for i ∈ [n].
[Dru12] showed that when restricted to representing a matrix, Ω(m logm) is necessary for depth 2
circuit, complementing the previous upper bound of O(m logm) by [Juk10].

The lower bound of [Dru12] immediately implies Ω(m logm) lower bound for computing a
matrix using depth 2 circuit, since any circuit that computes a matrix must represent a matrix
as well. But no better bounds were known in case of computing the linear operator A. Table 1
summarizes known results on wire lower bounds for circuits computing linear operator.

Our Result First, we show that our communication lower bound (i.e. Theorem 3.10) implies a
trade-off between degree of gates, depth and number of wires required to compute a random linear
operator (over the Boolean semi-ring) using a variant of a reduction in [Vio18]. To the best of
our knowledge, this is the first polynomial lower bound on the number of wires for any non-linear
circuit model.

We then show that Conjecture 5.4 implies a polynomial lower bound on nonadaptive static
data structures against a “semi-explicit” static problem—computing set-disjointness queries w.r.t
n2 random sets. Using the reduction of [Vio18] once again, we show that this static data structure
lower bound implies a polynomial wire lower bound on depth-d circuits with arbitrary gates (k = n)
for computing random linear operators. This is the content of the next two subsections.

5.1 Width-k DNF Lower Bound

First we show that if there exists a circuit with width-k DNF gates and small number of wires,
then there exists a good 4-party communication protocol.

Lemma 5.1. If there exists a depth-d circuit with width-k DNF gates with W -wires for computing
Ax where A ∈ {0, 1}m×n with m = poly(n). Then there exists a 4-party communication protocol
for computing Aix (for any given i ∈ [m]) with |U | ≤ o(m), |ΠM

i | ≤ O
2
(W/m)k+d

3
and |Πi| ≤

O
2
(W/m)d log n

3

Proof. Suppose we have a depth-d circuit with width-k DNF gates with W wires. Then we argue
that this induces an efficient 4-party communication protocol.

First set Megan’s input as the linear operator A and index in question i, Bob’s input as x and
i, Merlin’s input as A and x, Alice’s input as Ai and i.
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Merlin and Megan’s message We set Merlin and Megan’s message in the following manner.
Consider the set of gates G with fan-in ω(W/m). Since there are total of W wires, we know that
|G| < o(m). Also note that G has no dependence on i.

Set Megan’s message ΠM
i as the description of circuit computing Aix, without gates in G. Note

that ΠM
i contains at most O((W/m)d) gates since each gate not in G has fan-in at most O(W/m).

Furthermore, description of each gate requires at most O
2
(W/m)k + (W/m) log(m+ (W/m)d)

3

bits, O
2
(W/m)k

3
bits for describing the function and O

2
(W/m) log(m+ (W/m)d)

3
bits for de-

scribing the inputs.
Therefore with m = poly(n), we get

|ΠM
i | ≤ O((W/m)k+d + (W/m)d+1 log(m+ (W/m)d)) = O((W/m)k+d). (24)

Furthermore we set Merlin’s message U as the value of gates inG. Therefore we have |U | ≤ o(m).

Alice and Bob’s message Alice queries Bob the gate values of xi’s and G required for computing
Aix as given by ΠM

i . Bob can answer Alice’s query since Bob knows x and gate value of G from
U . Since fan-in is bounded as O(W/m) and it is a depth-d circuit, we know there are at most
O((W/m)d) gate values required for computing Aix. Therefore we have

|ΠA↔B
i | ≤ O((W/m)d log(n+ |G|)) = O((W/m)d log n) (25)

With Bob’s message, Alice can compute Aix by using the circuit from ΠM
i with Bob’s response as

the input.

Now our 4-party communication lower bound (Theorem 3.10) yields the following circuit lower
bound via the reduction given in Lemma 5.1.

Theorem 5.2. There exists a linear operator A ∈ {0, 1}m×n such that any depth-d circuit with

width-k DNF gates computing Ax must have wire W ≥ Ω
!
m · n

1
2(d+k)

"
.

Proof. Suppose for all A, there exists a circuit for A with wire W ≤ o(m ·n
1

2(d+k) ). Then this yields
a 4-party communication for SELmDISJn with |ΠM

i | < o(
√
n), |U | < o(m) and |ΠA↔B

i | < o(
√
n) from

Lemma 5.1. But this is a contradiction to Theorem 4.8.

Remark 5.3. We remark that it is possible to obtain a weaker Ω(m+n1+1/(k+d)) lower bound more
directly without using our communication lower bound Theorem 4.8. The proof was discovered
in personal communication with Swastik Kopparty and Sepehr Assadi, and is based on a certain
random-restriction argument for eliminating high fan-in gates, combined with the error-correcting
properties of random linear operators. This argument, however, can only eliminate o(n) gates (since
every elimination shrinks the remaining input space {0, 1}n by half), and thus quickly becomes trivial
when the number of outputs is m > n1.1 (say). By contrast, our lower bound can eliminate o(m)
gates, which allows us to prove a polynomial lower bound in the number of outputs so long as
m = poly(n).

5.2 NOF conjecture implications

In this section, we show that Pătraşcu’s NOF Conjecture on the original Multiphase Game, even
against 3-round protocols, would imply a breakthrough in circuit complexity. This complements our
restricted NOF model, as it shows that allowing even two of Alice’s messages to depend arbitrarily
on her entire input !S, i, would resolve a decades-old open problem in circuit lower bounds. It also
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suggests that attacking the Multiphase conjecture for (general) dynamic data structures via the the
NOF Game, should exploit the fact that data structures induce highly restricted NOF protocols.

First, note that Conjecture 1.1 in particular implies the following special case:

Conjecture 5.4 (3-round NOF Conjecture). Any 3-round NOF protocol for the 3-party Multiphase
Game with |U | = o(m) bits of advice must have |Π| > nε communication for some constant ε > 0.

Static Data Structure Lower Bound First, we consider the following class of static data
structure problems Pf

A(x) defined by a query matrix A ∈ {0, 1}m×n and a function f : {0, 1}2n →
{0, 1}:

1. Given a fixed matrix A with rows A1, . . . , Am, preprocess an input database x ∈ {0, 1}n.
2. Given i ∈ [m] as a query, the data structure needs to output f(Ai, x).

Note that A is hard-wired to the problem, i.e., the data structure can access A for free during
both preprocessing and query stage8. In particular with word size w, with s = m/w cells, one
can store the (boolean) answers for all possible queries and the problem becomes trivial (t = 1),
whereas without any preprocessing, the query algorithm needs to read x (but not A) to compute
the answer f(Ai, x), giving (worst case) query time t ∼ n/w. Accordingly, the query algorithm is
non-adaptive if the cell addresses that are probed only a function of i ∈ [m] and A.

We show that Conjecture 5.4 implies the following lower bound on Pf
A(x) where f := DISJn.

Lemma 5.5 (Polynomial Static Lower Bound for Random Set Disjointness Queries). Suppose
Conjecture 5.4 holds. Let m = ω(n). Then there exists a collection of m sets A := A1, . . . , Am ⊆
[n]m such that any non-adaptive static data structure solving PDISJn

A must either use s ≥ Ω(mw )
space, or have t ≥ Ω(nε/w) query time, in the cell-probe model with word size w.

Proof. Suppose for any A ∈ {0, 1}m×n there is a non-adaptive static data structure DA computing
PDISJn
A with s ≤ o(mw ) space and t ≤ o(nε/w) cell probes. We show that this induces a too-good-

to-be-true (3-round) NOF protocol for the Multiphase game SELmDISJn , violating Conjecture 5.4.
Indeed, consider the following simple 3-party protocol for simulating DA:

Charlie’s “advice” U in Phase 1 of the Multiphase game will be the contents of the s memory
cells of DA, Alice’s message during Phase 2 (i.e., ΠA→B

i ) will be the memory addresses probed by
the DA for answering DISJ(Ai, x), and Bob’s messages ΠB→A

i are the contents of cells probed by
Alice. Note this protocol is well defined: Indeed, by the definition of PDISJn

A , U only depends on
A and x at preprocessing time, and if DA is non-adaptive, then ΠA→B

i is only a function of A and
i; Finally, ΠB→A

i depends on the previous transcript and U = U(A, x) which Bob possesses. We
therefore have a valid 3-round NOF protocol for SELmDISJn with

|U |+ |x| ≤ sw + n ≤ o(m) + n = o(m), and

|Πi| = |ΠA→B
i |+ |ΠB→A

i | ≤ 2tw ≤ o(nε)

bits, which contradicts Conjecture 5.4.

We consider the following parameter for the circuit lower bound.

Corollary 5.6. If m = ω(n), and s = o(m/w) then t ≥ Ω(nε/w).

8This is a generalization of Valiant’s model [Val77] in that the circuit itself is allowed to depend arbitrarily on A.
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Circuit Lower Bound Now we show that Conjecture 5.4 implies circuit lower bounds using
reduction by [Vio18] from Lemma 5.5. We use the following translation theorem for lower bounds
in arbitrary depths.

Theorem 5.7 ([Vio18]). Suppose function f : {0, 1}n → {0, 1}m has a circuit of depth d with
W wires, consisting of unbounded fan-in, arbitrary gates. Then for any r there exists a static
data structure (with non-adaptive query) with space s = n + r, query time (W/r)d, and word size
max{log n, log r}+ 1 which solves the following problem

1. Preprocess input x depending on x and f

2. Given i ∈ [m], output fi(x).

For completeness, we attach the proof here. Though [Vio18] did not remark on queries being
non-adaptive, we remark that data structures derived from circuits are intrinsically non-adaptive,
i.e. the memory cells probed only depends on query itself and f (but not on the content of cells
probed along the way).

Proof of Theorem 5.7. Consider circuit Cf which computes f . Now set G as the set of gates
with fan-in > W/r. Since the number of wires are bounded by w, |G| < r. Now given x, store the
values of these gates G in space r.

Now we argue inductively on the level of the gate. We show that if the gate is at level ℓ, that
the number of non-adaptive queries made to compute the value of the gate is at most (W/r)ℓ. As
base case, suppose if it were a level 1 gate. If it lies in G, then the non-adaptive query required
is 1, by calling to its address in G, which requires log |G|-bits. Otherwise, the query required is at
most W/r, each of which requires log n-bits for the address, and they are non-adaptive. Therefore,
the word size required is max{log n, log r}+ 1.

Now as induction step, suppose for any j < ℓ, level j gates require at most (W/r)j non-adaptive
queries to compute its value with word size max{log n, log r}+1. Consider a level ℓ gate. If the gate
lies in G, again it only requires 1 non-adaptive query, by calling to its address in G. Otherwise, it
can be answered by computing at most W/r level ℓ− 1 gates, and these queries are non-adaptive.
Each of these level ℓ− 1 gates require (W/r)ℓ−1 non-adaptive queries by induction hypothesis, and
the word size required is max{log n, log r}+ 1. Therefore, the total non-adaptive query required is
at most (W/r) · (W/r)ℓ−1 = (W/r)ℓ.

Since the final output gate that we are interested in is at level d, we get (W/r)d as the upper
bound on the number of queries. □

Here we crucially used the fact that wirings are fixed if we fix Cf . Note that G is determined
by Cf . Then a contrapositive of Theorem 5.7 then states that data structure lower bound with
non-adaptive query implies circuit lower bounds. When restricted to o(m) additional space usage
(i.e. r = o(m), f(n) query time lower bound translates to Ω

2
mf(n)1/d

3
lower bound for W . Using

the contrapositive along with Corollary 5.6, we show the following circuit lower bound.

Corollary 5.8. Assuming Conjecture 5.4 and m = ω(n), there exists a matrix A ∈ {0, 1}m×n such
that any depth-d circuit that computes9 Ax requires m · nΩ(ε/d) wirings. In particular, if d = 2,
there exists A that requires m · n ε

2
−o(1) wirings.

Proof. We use contrapositive of Theorem 5.7, that is data structure lower bound implies circuit
lower bounds. Consider Corollary 5.6. Setting r = o(m), and m = ω(n). Then Corollary 5.6 with
Theorem 5.7 implies that for some A, (W/r)d ≥ Ω(nε/ log n). Since r = o(m), rewriting in terms
of W , we get

W ≥ Ω
!
m · n

ε
d
− log logn

d logn

"
= m · nΩ( ε

d).

9Over the Boolean semi-ring, with addition as OR and multiplication as AND
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Now setting d = 2, we get W ≥ m · n ε
2
−o(1).

6 Discussion

Extending our techniques to fully adaptive queries It is natural to ask whether our tech-
nical approach can be extended to fully adaptive queries as well, so as to resolve the Multiphase
Conjecture for general data strucutres. Our results suggest that any attack on this problem via
NOF communication should exploit the fact that data structures induce restricted NOF protocols
for the Multiphase Game – namely, that the query algorithm only has limited local access to its
memory M(!S, T ), through previously probed cells (unlike Alice in the NOF game, who has general
access to !S).

Let ΠD be a NOF protocol induced by an efficient dynamic data structureD for SELmDISJn . Recall
that the main technical challenge in our proof is to use Π to design a random variable Z(X,Y )
computing AND(X,Y ), while simultaneously controlling I(Z;Y )+I(Z;X) and I(X;Y |Z). It is not
clear to us whether one could hope for such Z = Z(ΠD) when D is a fully adaptive data structure,
hence we believe the following question is interesting:

Is it possible to design a r.v. Z where I(Z;Y ), I(Z;X) and I(X;Y |Z) are all small?
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A Tight Bounds from [CEEP12]

A.1 Upper Bound

First, we show that there is a non-trivial o(n)-query time semi-adaptive data structure for SELkDISJn ,
derived from a protocol of [CEEP12] given that the querier has access to i and Si from the beginning.

Theorem A.1. There exists tq = Õ(
√
n) semi-adaptive data structure with |U | ≤ Õ(

√
n).

Proof. Consider U(!S, T ) constructed by Chattopadhyay et al. [CEEP12]. They construct U(!S, T )
with |U | ≤ Õ(

√
n) independent of i that has the following nice property: If Alice learns U , Alice

(just with i and Si) can decode that either |Si∩T | > 1, therefore DISJn(Si, T ) = 0; or learns about
potential set of elements in P ⊂ (Si ∩ T ) with |P | ≤

√
n. Alice can transmit this set P using√

n log n bits to Bob, then Bob can announce the answer as DISJn(Si, T ) = DISJn(P, T ).
We can translate their protocol to data structure if the querier has access to both i and Si in

the beginning.

1. During the update phase, the data structure writes U and T separately.

2. Querier (i, Si) reads all cells with U using |U |/w queries, then either learns that DISJn(Si, T ) =
0 or learns about the candidate set P ⊂ Si.

3. Querier checks DISJn(P, T ) by accessing corresponding entries for T .

Since |P | ≤
√
n, the total number of queries made is |P |+ (|U |/w) =

√
n+ (|U |/w) = Õ(

√
n).

Furthermore, the query is semi-adaptive. Querier only accesses updated cells. The total number of
alternation is 1.

A.2 Lower Bound

In this section, we showed that a modified 4-party model subsumes 1.5-round protocol. Recall that
a “1.5-round protocol” [CEEP12] for SELkDISJn proceeds in the following way:

1. Charlie sends message U(!S, T ) to Bob privately.

2. Bob forwards a message U ′(!S, T ) ⊆ U to Alice (hence this message is independent of i).

3. Alice sends message ΠA→B
i to Bob, which is dependent on U ′, !S and i.

4. Bob solves DISJn(Si, T ) from U, T, i and ΠA→B
i .

Then [CEEP12] (Theorem 1.2) show a 1.5-protocol for SELkDISJn with Õ(
√
n) overall communica-

tion. They then complement this upper bound with a lower bound when restricted to a 1.5-protocol.
In general, this model is incomparable to our 4-party model. However, a 1.5-round protocol can
be simulated by a modified 4-party protocol where Charlie is allowed to send Megan a message
U ′ prior to Megan sending messages to Alice and Bob. Formally the 4-party protocol proceeds in
following manner

1. Charlie sends message U(!S, T ) to Bob privately.

2. Charlie sends message U ′(!S, T ) to Megan.

3. Megan broadcasts ΠM
i (!S, i, U ′) to Alice and Bob

4. Alice and Bob communicates and compute DISJn(Si, T ).

Now Megan’s message is allowed to depend on i, !S and U ′.
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Figure 5: Modified 4-party NOF Communication

Claim A.2. A 1.5-round protocol where |U ′| < C and |ΠA→B
i | < C can be simulated by modified

4-party NOF communication with |ΠM
i | < 2C.

Proof. Under this model, 4-party can then simulate 1.5-protocol via Megan simulating Alice in
1.5-protocol by sending ΠA→B

i and U ′ as her message ΠM
i . Bob can then decode DISJn(Si, T ) from

Megan’s message, with no communication between Alice and Bob.

Now the question is whether the same lower bound for modified 4-party NOF holds as well.
Below we argue that our lower bound (Theorem 1.2) in fact applies to 4-party protocols with
Charlie sending a short message to Megan hence also to 1.5-protocols, establishing that our lower
bound subsumes [CEEP12] lower bound.

Theorem A.3. Any modified 4-party NOF protocol Γ = (U,Πi) with Πi = (U ′,ΠM
i ,ΠA↔B

i ) that
solves SELkDISJn with |U | < o(k) require |Πi| > Ω(

√
n).

Proof Sketch. This follows from the observation that in such 4-party protocols, Lemma 4.1 still
holds (up to factor 2) and rest of the proof remains unchanged. To see why, observe that since
U ′ from step 2 does not depend on the index i, Equation (12) in the proof of Theorem 1.2 can be
bounded instead by the following inequality:

I(T ;Si<ℓ
,ΠM

i<ℓ
) ≤ I(T ; !S,ΠM

i<ℓ
, U ′)

= I(T ; !S)* +, -
=0

+ I(T ;U ′|!S)* +, -
|U ′|

+ I(T ;ΠM
i<ℓ

|!S,U ′)
* +, -

=0

≤ |U ′|,

where I(T ;ΠM
i<ℓ

|!S,U ′) = 0 since U ′, !S and the index i determine ΠM
i .

Equation (12) is the only step where the proof used the assumption that Megan speaks first.
Now in a 4-party protocol, if we assume further that |U ′| < C, then by (12), instead of (4) in
Lemma 4.1, we get the same bound up to factor 2, i.e., I(ZDISJ ;T ) < 2C. Then rest of the proof
remains unchanged, hence it shows a C ≥ Ω(

√
n) lower bound for 4-party protocols. □

As such, the Õ(
√
n) 1.5-protocol of [CEEP12] shows that our Theorem 1.2 is in fact tight up

to logarithmic factors.
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