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Abstract

Proving super-logarithmic data structure lower bounds in the static group model has been a fundamen-
tal challenge in computational geometry since the early 80’s. We prove a polynomial (nΩ(1)) lower bound

for an explicit range counting problem of n3 convex polygons in R2 (each with nÕ(1) facets/semialgebraic-
complexity), against linear storage arithmetic data structures in the group model. Our construction and
analysis are based on a combination of techniques in Diophantine approximation, pseudorandomness, and
compressed sensing—in particular, on the existence and partial derandomization of optimal binary com-
pressed sensing matrices in the polynomial sparsity regime (k = n1−δ). As a byproduct, this establishes
a (logarithmic) separation between compressed sensing matrices and the stronger RIP property.
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1 Introduction

Understanding the tradeoff between the query time and storage space of data structures has been a long
and active research endeavor for several decades. In the static model, which is the focus of our paper, the
goal is to represent a database of n elements using the least amount of space s ≥ n (measured in memory
words), so that queries q ∈ R on the input data can be answered quickly, in time t. The most compelling
model for proving such tradeoffs is the cell-probe model [Yao82], in which “query time” is measured only
by the number t of memory accesses required to retrieve the answer to q ∈ R (as in query complexity),
whereas all computations on “probed” memory cells are completely free of charge. Time-space lower bounds
in this model are therefore a purely information-theoretic question, making unconditional lower bounds a
viable possibility. Unfortunately, while a simple counting argument [Mil93] shows that almost all static data
structure problems with |R| queries require either near-trivial time t ≥ n0.99 (t = n is easy by reading all the
input database) or near-trivial space s ≥ |R|0.99 (s = |R| is easy by storing all answers), the highest explicit
cell-probe lower bound known to date is merely

t ≥ Ω

(
log(|R|/n)

log(s/n)

)
. (1)

In the interesting and realistic regime where |R| = poly(n) and the data structure is allowed to use linear
storage space (s = O(n)), (1) yields a t ≥ Ω(log n) lower bound on the query time of several important
data structure problems, such as evaluating hash functions, near-neighbor search, and 2D range counting to
mention a few (see [Sie04, Pǎt08, Lar12] and references therein). Proving an unconditional ω(log n) lower
bound for any explicit static problem (with polynomially many queries) against linear-space data structures,
remains an outstanding open question in the field.

This gloomy state of affairs remains true even in restricted arithmetic models of data structures, which
have been studied extensively over the past several decades, primarily in computational geometry and spatial
databases [Mat94, Aga17]. The most well-studied model in this line of work is the group model and its more
restrictive semigroup variant [Fre81, Cha90], where the canonical problem is that of geometric range counting.
In the group model, the input database is a set of n points x1, . . . , xn ∈ Rd (where d is typically a small
constant), each associated with a weight w(xi) ∈ G from an arbitrary commutative group (e.g., G = Zm),
and the goal is to preprocess these points into small memory (by storing an arbitrary collection of s group
elements), so that the weighted sum

∑
i:xi∈r w(xi) of points in a given query “range” r ∈ R can be reported

efficiently, where summation is over the underlying group. At query time, the data structure can only
manipulate weights through the black-box addition and subtraction of weights stored in memory, and must
work for any choice of the underlying group. The query time is the number of algebraic operations performed
(additions/subtractions of memory elements). In particular, multiplication by scalars other than ±1 is not
allowed at query time. Any other computation, e.g., planning algebraic operations based on coordinates, is
free of charge. The weaker semigroup model is defined in the same way, with the crucial difference that only
addition is allowed, but not subtraction.

Some of the most natural and well-studied examples of range searching problems are orthogonal range
counting (where ranges R are axis-parallel boxes), or counting with respect to more complex geometric
objects such as balls, halfspaces or simplices. In its most general form, a range counting problem is defined by
a family R of subsets of Rd, where a common measure of the “complexity” of the problem is the semialgebraic
complexity of R [AM94], i.e., the number of polynomial inequalities defining a range r ∈ R (Definition 2.3).

Essentially all known range searching data structures can be implemented in the group model1 (see [Mat94,
Aga17] and references therein). Two classic examples of such data structures for orthogonal range counting
in d dimensions are range trees [Lue78], which solve the problem using s = O(n logd n) words of space and
query time t = O(logd−1 n), and Kd-trees [Ben75], which have linear space s = O(n) at the price of polyno-
mial t ≈ n1−1/d query time. The latter upper bound can be achieved for any range counting problem where
ranges have constant semialgebraic complexity [AMS12].

1 Up to poly(log logn) factors, which can be shaved-off using standard word-level parallelism on the RAM.
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For general polytopes or simplex range counting problems [Aga17], such polynomial query times are
believed to be inevitable unless near-trivial storage is used (s ≈ |R|), but this was only proved in rather weak
arithmetic models (or pointer machines [CR95]). In the semigroup model, where only additions are allowed,
the aforementioned data structures are known to be essentially optimal [Cha90, Afs19]—in particular, this
is the only arithmetic model where polynomial lower bounds are known on the query time of static range
searching problems. By contrast, in the group model, where both additions and subtractions are allowed,
the highest static lower bound (against linear storage) remains Ω̃(log n), for 2D orthogonal range counting
[Pǎt07]. This challenge and disparity between the models was summarized by Pǎtraşcu [Pǎt07] as follows:

“Philosophically speaking, the difference in the type of reasoning behind semigroup lower bounds and
group lower bounds is parallel to the difference between understanding geometry and understanding com-
putation. Since we have been vastly more successful at the former, it should not come as a surprise that
progress outside the semigroup model has been extremely slow.”

Indeed, lower bounds in the semigroup model ultimately boil down to arguing that not all query ranges
can be “covered” with a small number of subsets of input objects [Aga17, Kol04]. Unfortunately, no such
property holds for the group model, which makes proving lower bounds in the group model much harder.

Our main result is a polynomial lower bound for an explicit range counting problem in the static group
model for data structures with linear storage:

Theorem 1.1. There is an explicit set Pn of m = n3 convex polygons in the plane R2, and a prime p, such
that any group-model data structure of size s and query time t for range counting with respect to Pn (over
Zp), must have

ts ≥ nn/7.

In particular, any linear storage (s = O(n)) data structure for Pn(over Zp) must have nΩ(1) query time.

Moreover, the semialgebraic complexity of Pn, i.e., number of facets of each convex polygon, is nO((log logn)2).

We remark that Theorem 1.1 holds even when preprocessing is allowed to depend on the specific group,
i.e., for every group and input configuration, the data structure is allowed to store an arbitrary set of s group
elements. In contrast, the standard model in range counting literature (as well as all known upper bounds) is
oblivious: preprocessing uses the group as a black-box. We also note that n-facet polygons arise naturally in
computational geometry, for example in the planar point location problem [CP09] (i.e., 2D nearest-neighbor
search), where the input itself is a collection of O(n)-facet disjoint polygons (Voronoi diagrams).

Lastly, we note that in the stronger linear model of data structures, where multiplication (by scalars)
is allowed as well as addition and subtraction (hence the group is actually a ring), a recent line of results
shows that proving super-logarithmic lower bounds for any explicit (range counting) problem would have
dramatic implications to arithmetic circuit lower bounds and matrix rigidity [DGW19, RR20]. In that sense,
the group model is the strongest arithmetic model in which polynomial lower bounds fall short of major
circuit lower bounds, and Theorem 1.1 meets precisely this frontier.

The conceptual message of this paper is that a range counting problem in Rd is hard for the group model
if (a subset of) its ranges R forms a good pseudorandom generator against affine hyperplanes in R|R|. This
will be explained in the following section. While this may not be the only source of hardness of range counting
in the group model, our work provides a new technique for analyzing such problems and the first substantial
step toward proving (exponentially higher) lower bounds on more natural range counting problems, i.e., with
lower semialgebraic complexity: If such pseudorandom-generators (PRGs) can be realized as (indicators of)
“simple” geometric ranges in reasonably low dimension, then any linear-storage arithmetic data structure
should have high query time for the underlying range counting problem. In Section 4 we formalize this by
defining the notion of Geometric PRGs, which exploit the “geometry” of the d-dimensional input seed in a
simple way. We prove the existence of such PRGs with nontrivial parameters, as a step toward polynomial
lower bounds for halfspace range-counting in very high yet nontrivial dimension. We believe the concept of
Geometric PRGs may have further applications in computational geometry and is of independent interest.

3



Techniques. Our proof introduces a new way to analyze arithmetic data structures (excluding multi-
plications), by combining ideas from Diophantine approximation, compressed sensing, and pseudorandom-
ness (specifically, derandomization of anti-concentration theorems). Our results and analysis of “Geometric
PRGs” (Theorem 4.7) rely on Fourier-analysis and hypercontractivity to establish pseudorandom properties
of halfspace range counting. In the next two sections, we elaborate on these components and the role they
play in our proof.

1.1 Binary compressed sensing and sparse recovery

A key ingredient in the proof of Theorem 1.1 is the construction of binary matrices M ∈ {±1}m×n with
m = nc and c > 1 where every k rows are linearly independent over R (matrices with such property are
commonly known as compressed sensing2 matrices [CT06, DSV12]). If M is allowed to have poly(n)-bit
entries, the optimal value of k = n is easily achievable, for example by taking an nc × n Vandermonde
matrix. However, with binary (or any constant-size) entries, which is crucially the case for our application,
the answer is not clear [Ind08]. One way to construct such explicit binary matrices over the finite field
F2 (which is harder than over R) is to take the parity-check matrix of rate-optimal binary error correcting
codes (e.g., expander codes [SS96, DSV12], see Appendix A), but unfortunately when the number of rows
is polynomial (m > n1+δ) this approach only yields k = O(n/ log n)-wise independence, and this is well
known to be tight [CGH+85] (in fact the latter shows k = O(n/ logq n) for any constant size field Fq). Other
binary constructions in the compressed-sensing and LDPC literature (e.g., [Ind08, XH07, GLW08]) achieve
even worse parameters. As explained in Section 1.3, for the proof of Theorem 1.1 it is crucial to obtain the
optimal value of k = Ω(n) (even settling for a much weaker poly log(n) query lower bound would still require
k = ω(n/ log n)).

This raises a more basic question: Do optimal (k = Ω(n)) binary compressed-sensing matrices over R even
exist? Our first step is showing that a random binary poly(n) × n matrix is indeed Ω(n)-wise independent
over R (and in fact, with some more effort, also over any large enough finite field):

Theorem 1.2 (Optimal Binary Compressed Sensing Matrices). For every c ≥ 1, and every large enough
n, a uniformly random binary matrix M ∈ {±1}nc×n is Ω(n/c)-wise independent over R w.h.p. Moreover,

such binary matrix M̃ can be constructed using only O(cn log n(log log n)2) random bits (instead of nc+1).

Note that a näıve union bound will not work here: The probability that a fixed set of k rows is linearly
independent is, at best, 2−n (the probability 2 rows are equal), which is not small enough to union bound

over all
(
nc

k

)
= nΘ(n) choices of k-subsets for k = Ω(n). Hence, the proof requires a different analysis

that somehow exploits the fact that we are working over fields of large characteristic, while overcoming the
challenge that there is an unbounded number of linear combinations over R.

A key observation is that our analysis for random matrices turns out to carry over even to certain
pseudorandom binary matrices. This is one of the main insights of this paper, which leads to the partial
derandomization (O(cn log n(log log n)2) random bits) in Theorem 1.2. While a fully explicit construction of
optimal compressed sensing matrices with constant-size entries remains an intriguing question in the context
of sparse recovery (see the next paragraph), the construction in Theorem 1.2 turns out to be enough for

obtaining a fully explicit data structure lower bound for range counting problems with reasonably low (nÕ(1))
semialgebraic complexity. We elaborate on this step in Section 1.3 below.

Implications to Sparse Recovery and separation from RIP. An interesting consequence of Theo-
rem 1.2 is that it provides a (tight) separation between binary compressed sensing matrices in which any k
rows are linearly independent, and the stronger restricted isometry property (RIP), which instead requires
any k rows to be “nearly orthogonal”. Indeed, in the polynomial sparsity regime k = n1−δ, it is well
known that any RIP matrix must have Θ(k log k) rows (and this is tight for random binary matrices, e.g.
[GLW08, BLL+19]). By contrast, Theorem 1.2 asserts that binary compressed sensing matrices only require

2Indeed, it is not hard to see that if the rows of M ∈ Rm×n are k-wise linearly independent, then M> is a compressed
sensing matrix for (k/2)-sparse m-dimensional vectors, with n “measurements”, hence the problem we study is equivalent.
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O(k) linear measurements. To the best of our knowledge, previous binary constructions, even non-explicit
ones, were only guaranteed to work with O(k log k) measurements (see [Ind08] and references therein).

1.2 Related Work in the Group Model

A sequence of papers initiated by Chazelle in the early 90’s proved essentially tight lower bounds in the
semigroup model, for orthogonal and halfspace range counting in any constant dimension [Cha90, BCP93].
Similar bounds were shown in the pointer machine model [CR95]. In the offline group model, where no
preprocessing is allowed, Chazelle [Cha94] proved an Ω(n log n) lower bound for halfspaces. No super-
logarithmic data structure lower bounds were known in the static (i.e., online) setting.

In the dynamic group model [Fre81], where the data structure needs to support insertions and deletions of
points in Rd, polynomial lower bounds (Ω(n1−1/d)) have been proved only recently in a breakthrough result
of Larsen [Lar14] using combinatorial discrepancy arguments, but as the author notes himself, this technique
does not apply to the static case.3 We remark that amortized dynamic lower bounds for “decomposable”data-
structure problems4, such as range counting, also imply (up to a logarithmic loss) lower bounds for static
data structures with efficient preprocessing time p(n) ≈ s [OvL81]. Alas, in the group model this is a very
severe restriction, since storing an arbitrary group element generally requires O(|G|) group operations, which
in the dynamic setting is prohibitive and trivialized the aforementioned reduction. For a broader overview
of arithmetic lower bounds we refer the reader to [Aga17, Section 3.4] and [Lar14].

1.3 Technical Overview

We now provide a streamlined overview of our main result, Theorem 1.1. Recall that a data structure in the
group model must solve the given problem with respect to any underlying group. We will carefully design a
range counting problem such that no (group model) data structure with space s and query time t can solve
our problem even in the additive group of integers modulo p, Zp, for an explicit prime p = Θ(t)s.

Step one: Diophantine approximations. Let us fix the n input points x ∈ (Rd)n to a range counting
problem, and the weights of these input points w ∈ Znp . For this input, the data structure computes and
stores S ∈ Zsp, a set of s elements of the group. Later, for every query range r ∈ R, the data structure will
output a sum of at most t stored elements (or their negations). The first step in our lower bound uses a
basic fact in Diophantine approximation (known as Dirichlet’s simultaneous approximation theorem, which
is an easy application of the pigeonhole principle), which implies that for every set |S| = s of integers from
{0, . . . , p − 1}, there is some 1 ≤ q < p := Θ(t)s such that after multiplication by q, all those s numbers
become smaller than p/(4t) modulo p. This of course means that even t-sums of these numbers (and their
negations) remain small modulo p (this is the only but crucial place where we exploit the restriction that only
±1 coefficients are allowed in the group model at query time). Therefore, every arithmetic data structure
with only s memory cells, on every set of input weights from Znp , must output a set which is small modulo
p after multiplication by some q = q(S) < p.

The obvious next step is to construct an explicit range counting problem R which does not have this
property, i.e., for some configuration of the n inputs points in Rd, there exists an assignment of weights
(w1, . . . , wn) ∈ Znp , s.t. the output set does not become simultaneously too small after multiplication by any
1 ≤ q < p. We formalize this with the notion of diversity : A set of m elements y ∈ Zmp (corresponding to
m range counting queries) is diverse, if for every 1 ≤ q < p there is some element (query answer) i ∈ [m]
such that yi · q ∈

[
p
4 ,

3p
4

]
mod p. Note that, since we aim for a polynomial (t > nε) lower bound on query

time, and trivially s ≥ n, Dirichlet’s theorem dictates that p = Ω(t)s = 2Ω(n logn). This fact will soon be

3The discrepancy argument relies on the fact that dynamic arithmetic data structures induce a factorization of the query
matrix into a product of two sparse matrices, which is not the case in the static setting.

4A data structure problem P is decomposable if the answer to a query on the union of two input databases X,Y can be
computed as a black-box from the marginal answers P(A,B) = f(P(A),P(B)).
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important. We also remark that constructing an arbitrary diverse vector explicitly is actually quite easy5—
the challenge is that this vector must correspond to an output of a range counting problem, and indeed this
is our next goal.

Step two: Diversity from k-wise independence. For a range counting problem specified by a family
of m ranges R, and a set of input points x = (x1, . . . , xn) ∈ (Rd)n, consider the binary incidence matrix
IR(x) ∈ {0, 1}m×n whose (i, j)th entry indicates whether point xj lies in the ith range ri ∈ R. Note that
for the weights w ∈ Znp , the desired outputs to the m range queries are IR(x) ·w ∈ Zmp . Now our goal is
to find a set of points x, weights w, and ranges R for which IR(x) ·w is a diverse vector. Note that only
the set of ranges R needs to be explicit. The set of weights w and the set of input points x do not need
to be explicit, because the data structure must solve the problem for any choice of input weights w ∈ Znp
and points x ∈ (Rd)n. We observe that if for some input x, the rows of IR(x) are k-wise independent
over the field Fp for a k satisfying (m/k)k/2 > p, then there exist weights w̃ ∈ Znp such that the answer
vector IR(x) · w̃ ∈ Zmp is diverse. This is an easy consequence of Chernoff bounds for k-wise independent
random variables [BR94]. Hence, our problem boils down to designing a k-wise independent binary matrix
over a large field Fp, where k must satisfy (m/k)k/2 > p = 2Θ(n logn). With polynomially many queries
(m = |R| = nO(1)), this condition requires that k = Ω(n) in order to get any useful lower bound6, which is
as high as k can possibly be.

Step three: Binary compressed sensing matrices. As discussed in Section 1.1, such optimal (“com-
pressed sensing”) matrices with constant-size entries were not even know to exist in the polynomial sparsity
regime m = poly(k), and indeed the next step of our proof is showing that a random nc × n binary matrix
M is Ω(n)-wise independent with high probability (the first premise of Theorem 1.2). The intuition for why
random matrices work over R is as follows: For any fixed nonzero linear combination of some fixed k ≈ n
rows of M , the probability that each coordinate i ∈ [n] of this linear combination is equal to 0, is ≈ 1/

√
n,

by the Littlewood-Offord Lemma [Erd45]. (Note that this exploits the fact that we are working over a field
of large characteristic.) Since columns are independent, the overall probability that this linear combination
is the all-0 vector (and hence linearly dependent) is ∼ ( 1√

n
)n = 2−Θ(n logn), which is enough to union-bound

over all
(
nc

k

)
= 2Θ(n logn) subsets of k rows. Alas, there are two substantial flaws in this argument: Most

importantly, it does not rule out sparse linear combinations of rows—indeed, the probability that two rows
are identical is 2−n, which already dooms the entire claim. Fortunately, there are only O(n2c) such pairs,
so intuitively a more careful union bound should work. Indeed, using a certain chaining argument, we can
group the linear combinations by sparsity and handle them separately using some case analysis. The second
flaw is that we “forgot” to union-bound over all possible linear combinations in R as well, which appears
daunting. We circumvent this hurdle using an approach (dating back to Komlós [Kom67]) which exploits
the observation that linear dependency of rows can be “charged” to the existence of a (minimal) square
sub-matrix which is not full rank, making the union bound possible.

Step four: Derandomization. While this argument only shows that a random incidence matrix works
(which implies a lower bound for a “trivial” range-counting problem7), the key observation of our proof is that
the above analysis works even for certain pseudo-random matrices. Indeed, essentially all the above proof
uses about M is that (i) columns are statistically independent, and (ii) that weighted sums of coordinates
in each column are anti-concentrated for any choice of real-valued weights, i.e., each column ε-fools affine
hyperplanes in Rm (see Definition 3.9), for ε = n−0.1 (say). Fortunately, explicit pseudo-random generators
(PRGs) against affine halfspaces (and therefore hyperplanes, see Proposition 3.11) are known, with almost

5Let p = 20.5n logn − 1,m = 0.5n logn, and y ∈ Zmp be a vector with yi = 2i for 0 ≤ i < m. It is easy to see that y is
diverse (indeed, while multiplying q by all powers of 2, we must hit the interval [p/4, 3p/4]). Alas, y is not an output of any
group model problem, as generating it requires summing input weights with multiplicities.

6Even settling for exponentially weaker t > poly log(n) lower bounds using this approach would still require p > 2O(n log logn),
i.e., k > Ω(n log logn/ logn), which is already beyond known compressed sensing constructions with constant-size alphabets.

7I.e., when ranges have semi-algebraic complexity 2m, which is the support-size of the columns of a random m× n matrix.
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Figure 1: The family of m = n3 convex polygons R = {gi}mi=1 is generated by mapping each of the 2r =

nO((log logn)2) columns of the incidence matrix M̃ to a point p(j) on a circle in R2. For each i ∈ [m], gi is
the convex hull of all the points (columns) p(j) on which gi outputs 1: {pj ∈ [2r] : gi(sj) = +1}, where gi is
the i’th output bit of the [GKM18] PRG and sj ∈ {0, 1}r is the input seed corresponding to the jth column

of M̃ . The figure illustrates this for m = 3 polygons. Black points on the circle denote the (unknown) n

input points—the submatrix IR(x) ⊂ M̃—for which the range counting problem is guaranteed to be hard.

optimal seed-length r = Õ(log(m/ε)) = Õ(log n) random bits [GKM18]. As such, we can derandomize M
by choosing each of the n columns independently using this PRG g(si) with independent seeds, one per

column. In other words, we can generate this M̃ by sampling n columns from a fully explicit incidence

matrix supported on only 2r = nÕ(1) columns. The “ranges” corresponding to this matrix are defined by
its rows, i.e., R = {gi}mi=1, where gi is the ith output bit of the PRG. Our theorem now guarantees that M̃

contains an induced sub-matrix IR ⊂ M̃ on n columns, which is Ω(n)-wise independent. Recall that these
n columns need not be explicit, so long as they are sampled from a small enough superset (which is indeed

the case for M̃).

Step five: Embedding into R2. The final step of the proof is a simple geometric embedding of the ranges

R into the plane. This is done by laying out 2r = nÕ(1) points on a circle in R2, each corresponding to a
column of M̃ , and observing that for any gi ∈ R, the subset of columns corresponding to inputs x for which
gi(x) = 1, can be trivially encoded as a convex polygon with at most 2r facets, hence the semi-algebraic

complexity of R is nÕ(1), which completes the proof (see Figure 1).

Geometric PRGs. The proof of Theorem 1.1 uses PRGs in a black-box manner – Since PRGs are agnostic
to the representation of the input seed (i.e., treat it as a random bit-string with no underlying geometry),
the semi-algebraic complexity of our range counting problem in Figure 1 (=number of facets of polygons)
can only be as low as 2r where r is the minimal seed length of the PRG, which for affine halfspaces in Rm
must be r ≥ Ω(logm) [MZ13]. A natural question toward lower bounds for more natural range counting
problems (i.e., with lower semi-algebraic complexity), is whether our lower bound approach can exploit the
dimensionality of the input space, to decrease the complexity (number of polynomial equations) defining
the ranges R of the underlying range counting problem. Motivated by this question, we define the notion
of Geometric PRGs: Here, the input “seed” is represented as a (random) point in a d-dimensional grid
[B]d ⊂ Rd as opposed to the standard bit-string representation, and each of the output bits gi of the PRG
is computed as a low-degree d-variate polynomial threshold function (PTF). Such functions generalize (the
incidence function of) geometric ranges such as d-dimensional halfspaces, which are among the most natural
and well-studied range counting problems.

In contrast to standard PRGs, the mere existence of Geometric PRGs (in sublinear dimension d� n) is
a nontrivial question. We establish the existence of geometric PRGs in nontrivial (d = nε) dimension and
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polynomial (∼ nε) degree against affine halfspaces, and make a significant next step en-route to polynomial
lower bounds in the group model for halfspace range counting (degree-1 PTFs): A well known result of
Diakonikolas et al. [DGJ+10] asserts that any k-wise (statistically) independent distribution over {±1}m
Ω̃(1/

√
k)-fools halfspaces in Rm. Our main technical result is showing that, for a typical collection H of

m = poly(d) hyperplanes in Rd, the signed inner-products of H with a random hyperplane r ∈R {±1}d
(the “seed”), forms a distribution on {±1}m which is almost k-wise independent for any k ≤ d1/6, i.e.
‖{sign〈hi, r〉}i∈[k] − Ud‖1 = 1/poly(d) for any subset H′ = {h1, . . . , hk} ⊂ H. This statement is essentially
tight. We prove it by adapting a theorem due to Klartag and Regev [KR11] about random projections
in Gaussian spaces to the setting of caps in the hypercube, using Fourier-analytic techniques. The main
difficulty is that in Boolean space, the hypercontractivity argument of [KR11] is not enough to bound the
desired measure of intersection, hence we use a convolution with the majority function and a “mirroring” trick
to bound this measure (see Theorem 4.7). We leave open the question of finding an explicit construction of
low-degree geometric PRGs, which could lead to group-model lower bounds for more natural range searching
problems using our approach.

2 Preliminaries

We identify the finite field Fp with the set {0, . . . , p − 1}. For a non-negative integer m, we denote by [m]
the set {1, . . . ,m}. For a real number x, we denote by ‖x‖ the distance from x to the nearest integer. All
logarithms are to the base 2. We write |b| < c mod p to mean that b is c-close to an integer divisible by p,
i.e., that there exists an integer k such that |b − kp| < c, or in other words ‖b/p‖ < c/p. All logarithms in
the paper are base 2 unless otherwise stated, and we use the shorthand log x = log2 x.

Definition 2.1 (k-wise independent matrices). A matrix M ∈ Fm×n is k-wise independent if every set of
k rows of M is linearly independent (over F).

2.1 Range counting in the group model

Definition 2.2 (Range counting in group model). Let R = {Ri ⊂ Rd, i ∈ [m]} be a range counting problem
in Rd. A data structure D = (P : (Rd)n ×Gn → Gs, Q : Gs → Gm) is said to be an (s, t) data structure in
the group model for R over an abelian group G, if:

1. For any configuration of n points x1, . . . , xn in Rd, any tuple of n weights w = (w1, . . . , wn) ∈ Gn,
and any index i ∈ [m], it holds that Qi ◦P ((xk)nk=1,w) =

∑
j:xj∈Ri

wj. That is, the answer to the i-th
query is the sum of the weights of the points that fall into the i-th range.

2. Each query function Qi computes a group sum of at most t memory elements or their negations,
possibly with repetitions: Qi(g1, . . . , gs) = Σj≤tξjgij , with ξj ∈ {±1}. Note that the function Qi can be
adaptive (i.e., a depth-t decision-tree over the s memory elements).

While this arithmetic model seems rather restrictive, all known data structures for range searching
problems fall into this setting8. We remark that here we allow the preprocessing function P to depend on
the specific group, i.e., for every group and every input x ∈ Rd, the data structure is allowed to compute
and store an arbitrary set of s group elements. By contrast, in the standard “oblivious” definition of the
group model [Aga17, Cha90], as well as in all known upper bounds, the preprocessing function treats the
group as a black-box: the s group elements are computed using a fixed set of group operations.

We use the common notion of semialgebraic sets to quantify the complexity of a range counting problem:

Definition 2.3 (Semialgebraic Sets [AMS12, Aga17]). A semialgebraic set is a subset of Rd obtained from
a finite number of sets of the form {x ∈ Rd | p(x) ≥ 0}, where p is a d-variate polynomial with integer

8See Footnote 1.
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coefficients, using arbitrary intersections, unions, and complementations. Γd,∆,s denotes the collection of all
the semialgebraic sets in Rd obtained from at most s d-variate polynomials of total degree at most ∆ each.

For brevity, when we say that a range counting problem R ⊆ Rd has semialgebraic complexity K we
mean that the number of linear inequalities defining each range r ∈ R is at most K. For example, a K-facet
polytope in Rd has semialgebraic complexity K under this convention.

The ranges we construct in Theorem 1.1 are (convex) polygons in two dimensions with at most n(log logn)2

sides, so they will lie in Γ2,1,n(log log n)2 .

2.2 Anti-concentration inequalities

We will use the following versions of the Littlewood-Offord Lemma.

Lemma 2.4 ([Erd45]). Suppose that x1, . . . , xk ∈ R \ {0}, y ∈ R. Then∣∣∣∣∣
{
ε ∈ {−1, 1}k

∣∣∣∣∣
k∑
i=1

εixi = y

}∣∣∣∣∣ ≤
(

k

bk/2c

)
≤ 2k√

k
.

Lemma 2.5 ([NW18, Theorem 6.3], [NP18, Theorem A.21]). Let Fp be a prime field of order p > 2. Suppose
that x1, . . . , xk ∈ Fp \ {0} and y ∈ Fp. Then∣∣∣∣∣

{
ε ∈ {−1, 1}k

∣∣∣∣∣
k∑
i=1

εixi = y

}∣∣∣∣∣ ≤ 2k

(
1

p
+

√
8

k

)
.

3 Proof of Theorem 1.1

3.1 Efficient Data Structures are Not Diverse

Let us fix the input points (x1, . . . , xn) ∈ (Rd)n, and vary their weights. Let us look at the possible answers
that the composition Q ◦ P ((x1, . . . , xn), ·) can produce. We will show that Q ◦ P always has structure (the
resulting vectors are not “diverse”), while some range counting problems do not have this structure (are
“diverse”), thus, cannot be computed by efficient data structures in the group model.

Definition 3.1 (Diversity). We call a set S ⊂ Zp diverse if for any q ∈ Zp \ {0}, q ·S 6⊆ [−p/4, p/4] mod p.
Similarly, we say that a vector w ∈ Zmp is diverse if the set of its coordinates is diverse.

Lemma 3.2 (Outputs of an efficient DS are not diverse). For any (4t)s < p, any (s, t) data structure
D = (P : ([n]d)n×Znp → Zsp, Q : Zsp → Zmp ) in the group model, any points x1, . . . , xn ∈ [n]d, and any weights
w1, . . . , wn ∈ G, the set of answers to queries

{Qj ◦ P ((xi)
n
i=1,w)}mj=1

is not diverse.

To compute each output coordinate, Q only adds and subtracts t of the memory cells, counting repetitions,
so it is enough to show that there is a 1 ≤ q ≤ (4t)s such that each of the memory cells is at most p/(4t)
modulo p after multiplication by q. The following lemma shows that such a q exists for any set of s integers.

Lemma 3.3 (Dirichlet’s Simultaneous Approximation Theorem). For any set of s integer numbers x1, . . . , xs,
a natural number Q ≥ 1, and a natural number p > 1, there exists an integer 1 ≤ q ≤ Qs such that

∀i ∈ [s], |xi · q| < p/Q mod p .

Or, in greater generality: given s real numbers r = (r1, . . . , rs) and an integer Q, there is an integer
1 ≤ q ≤ Qs such that for every i, ‖q · ri‖ < 1/Q, i.e. all the given real numbers can be approximated by
rational fractions ki/q with some denominator 1 ≤ q ≤ Qs up to an error strictly less than 1/(qQ).
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Proof. The second statement implies the first one when ri := xi/p.
Split the interval [0, 1) into Q sub-intervals [k/Q, (k+1)/Q). Multiply the vector r by numbers 0, . . . , Qs,

take the fractional part of each coordinate, and map it to the index of the sub-interval it falls into. There
are only Qs distinct vectors of this form, but we got Qs + 1 vectors corresponding to 0, r, 2 · r, . . . , Qs · r, so
two of them will be the same. Let those two vectors be q1 ·r and q2 ·r for q1 < q2. Then, 1 ≤ (q2− q1) ≤ Qs
and ‖(q2 − q1) · ri‖ < 1/Q for all i, as desired.

3.2 k-wise Independence Implies Diversity

We have shown above that any set of outputs from an (s, t) data structure for range counting in the group
model is not diverse if (4s)t < p. Now we show that it is possible to construct a matrix M ∈ Zm×np , such
that if it is an incidence matrix of m shapes and n points, then there is a way to assign weights w to those
points so that the answers Mw to the m queries form a diverse set.

The idea is that if w is uniformly random, then for a fixed 1 ≤ q < p the probability of q · (Mw)i being at
most p/4 modulo p is 1/2, and if the coordinates of Mw were independent, the probability of all of q · (Mw)i
being at most p/4 would be 2−m. Of course, if n < m, some coordinates of Mw will be linearly, and thus
statistically, dependent, but we can make do with a weaker requirement: that the coordinates are k-wise
independent. Then the probability that all q · (Mw)i are at most p/4 modulo p can be bounded by 1/p by a
version of a Chernoff bound for k-wise independent variables. After applying union bound over all possible
q ∈ [1, p − 1], this gives the existence of w that produces a diverse Mw. And the k-wise independence of
the coordinates of Mw follows from the k-wise independence of the rows of the matrix M if it is viewed as
a matrix in Fm×np , so then we are left with the problem of finding a binary matrix M with k-wise linearly
independent rows over Fp and a set of shapes and points for which M is an incidence matrix.

We will use the following form of the Chernoff bound for k-wise independent variables.

Theorem 3.4 ([BR94]). Let k ≥ 4 be an even integer. Suppose that X1, . . . , Xn are k-wise independent
random variables taking values in [0, 1]. Let X = X1 + · · ·+Xn, and µ = E[X], and let A > 0. Then

Pr[|X − µ| > A] < 2

(
nk

A2

)k/2
.

Theorem 3.5 (k-wise independence implies diverse weights). Let M ∈ Fm×np be k-wise independent and

p ≤ 0.5
(
m

16k

)k/2
, then there exists w ∈ Fnp such that Mw is diverse.

Proof. For a fixed 1 ≤ q < p, let Pq be the probability that q is a “witness” of non-diversity of a random
input w. That is,

Pq := Pr
w

[
∀i ∈ [m], |q · (Mw)i| < p/4 mod p

]
.

We will show that Pq ≤ 1/p which, by the union bound, will imply the theorem statement. Let Wq,i be the
indicator variable of the event |q · (Mw)i| ≥ p/4 mod p. Then Ew[Wq,i] > 1/2 since there is at least one
non-zero coordinate in Mi, and Pq = Pr[

∑m
i=1Wq,i = 0]. Note that from k-wise independence of M , we have

k-wise independence of Wq,i: indeed, k-wise independence of M implies that any k rows Mi1 , . . . ,Mik of M
are linearly independent, so the tuple (Mi1w, . . . ,Mikw) is distributed uniformly in Fkp. From Theorem 3.4
with A = m/4, we have

Pq = Pr

[
m∑
i=1

Wq,i = 0

]
< 2(16k/m)k/2 ≤ 1/p .

3.3 Existence of k-wise Independent Binary Matrices

In this section, we prove that almost all matrices from {±1}nc×n are Ω(n)-wise independent (for every c ≥ 1).
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Theorem 3.6. For every ε ∈ (0, 1/2], every large enough n ≤ m ≤ n
1
2ε , every prime field Fp of order

p ≥
√
n, a uniformly random matrix M ∈ {−1, 1}m×n is k := εn-wise independent over Fp with probability

1− o(1).

We remark that k-wise independence of M over Fp implies k-wise independence over R. Indeed, k-wise
independence of M implies that any k rows of M contain a non-singular k × k submatrix over Fp, this
submatrix is also non-singular over R, which in turn implies k-wise independence over R.

In the proof of Theorem 3.6 we will use the following claim.

Claim 3.7. Any k-dimensional subspace L ⊂ Fnp contains at most 2k vertices of the hypercube {±1}n.

Proof. Fix any k spanning vectors x1, . . . ,xk of L and find k coordinates m1, . . . ,mk ∈ [n] such that the
matrix C ∈ Fk×kp , where Ci,j = (xi,mj ) is invertible. Then there are exactly 2k vectors v in L whose
coordinates vmj are all ±1.

Now we are ready to prove the main result of this section.

Proof of Theorem 3.6. For a matrix M ∈ {−1, 1}m×n, denote by Mi ∈ {−1, 1}n its ith row, and denote by
MA×B a submatrix of M formed by taking cells with indices in the cartesian product A×B. Let P be the
probability that a random matrix M ∈ {−1, 1}m×n is not k-wise independent. That is equivalent to saying
that there is a subset S ⊂ [m] of indices of size |S| ≤ k such that MS×[n] is not full-rank.

Let us take a minimal such S: MS×[n] is not full-rank, while all its submatrices obtained by removing
one of the rows are full-rank. In particular, this implies that MS×[n] has rank |S| − 1, but it is a stronger
condition than that. To describe this event succinctly, denote by sp(H) the row spark of a matrix: the
smallest number of linearly dependent rows of a matrix H, defined to be ∞ when all the rows are linearly-
independent.9 Then the condition above is equivalent to sp(MS×[n]) = |S|. We will bound the probability
of that happening for some fixed subset S of rows, and then use union bound to bound P .

Let PS for S ⊂ [m] be the probability of the event sp(MS×[n]) = |S|. For this event to happen, MS×[n]

has to at least have a full-rank (|S| − 1) × (|S| − 1) submatrix MS′×T in its first |S| − 1 rows, where S′ is
obtained from S by removing the largest element, and T is some (|S| − 1)-element subset of [n].

Let PS,T , with S ⊂ [m], T ⊂ [n] and |T | = |S|−1, be the probability of the intersection of sp(MS×[n]) = |S|
and the submatrix MS′×T being full-rank. By union bound:

PS ≤
∑
T

PS,T =

(
n

|S| − 1

)
PS,[|S|−1] ,

P ≤
∑
|S|≤k

PS =

k∑
i=2

(
m

i

)(
n

i− 1

)
P[i],[i−1] .

Now it remains to bound P[i],[i−1]. Since the corresponding event depends only on the first i rows of the
matrix, let us look at those rows separately.

Consider the matrix A = M[i]×[n] ∈ {−1, 1}i×n, and call its upper-left (i − 1) × (i − 1) submatrix Q.
P[i],[i−1] is the intersection of three events:

• EQ — Q is a full-rank ±1-matrix;

• Esp≥i — any i− 1 rows of A are linearly independent;

• Erk=i−1 — the rank of A is i− 1.

9Note that spark is often defined as the smallest number of linearly dependent columns, not rows.
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To upper bound P[i],[i−1] = Pr[EQ ∧ Esp≥i ∧ Erk=i−1], we replace it with conditional probability: Pr[EQ ∧
Esp≥i ∧ Erk=i−1] ≤ Pr[Esp≥i ∧ Erk=i−1|EQ].

Assuming EQ holds, i.e. assuming that the submatrix Q is full-rank, there is exactly one way to combine
the rows of the invertible matrix Q to get the first i−1 coordinates of the ith row of A. That is, there is exactly
one set of coefficients α1, . . . , αi−1, αi with αi = 1 such that

∑i
k=1 αkA{k}×[i−1] = A{i}×[i−1] +

∑i−1
k=1 αkQk

is zero. Introduce the new event Eα: intersection of EQ and the event that all the coefficients α1, . . . , αi
are non-zero. Conditioned on EQ, the intersection Esp≥i ∧ Erk=i−1 implies Eα: since spark of A is exactly its
number of rows, there is a linear combination with non-zero coefficients of the A’s first i− 1 rows that gives
Ai, and since Q is invertible, this combination gives the only possible list of α1, . . . , αi. So conditioning on
Eα can only increase the probability of Esp≥i ∧ Erk=i−1.

Moreover, Eα and EQ are determined only by the first i− 1 columns of the matrix A. So

Pr [Esp≥i ∧ Erk=i−1|EQ] ≤ Pr [Esp≥i ∧ Erk=i−1|EQ ∧ Eα]

≤ Pr [Erk=i−1|Eα]

≤ Pr

[
i∑

k=1

αkA{k}×([n]\[i−1]) = 0

∣∣∣∣∣ Eα
]
,

where α1, . . . , αi with αi = 1 are determined by Eα. Note that Eα depends only on the first i− 1 columns of
the matrix, while the event under the probability sign is determined by all the other columns and coefficients
α obtained from the first i−1 columns. Also note that we have not relied on any properties of the distribution
of M so far.

Now we use the fact that the columns are i.i.d.:

P[i]×[i−1] ≤ Pr

[
i∑

k=1

αkA{k}×([n]\[i−1]) = 0

∣∣∣∣∣ Eα
]

= Pr

[
i∑

k=1

αkξk = 0

∣∣∣∣∣ Eα
]n−i+1

, (2)

where ξk are the entries in a column of A, and all αk are non-zero by Eα. We highlight again the fact that
the vector ξ is independent from the condition Eα and the vector of coefficients α1, . . . , αk as long as the
columns are independent. The upper bound on this exact probability for the uniform ±1 vector ξ is then
given by a version of the Littlewood-Offord lemma for finite fields:

For fixed non-zero α1, . . . , αi ∈ Fp \ {0}, let Ri be the probability that a uniformly random column

A[i]×{t} ∈ {−1, 1}i×1 satisfies
∑i
j=1 αjAj,t = 0. Then we have

P[i] ≤
(

n

i− 1

)
·Rn−(i−1)

i .

Now we show that P ≤
∑k
i=2

(
m
i

)
P[i] = o(1) by showing that each term in this sum is o(1/k) = o(1/(εn)).

• For 2 ≤ i ≤ n/(4 logm), for every choice of the values of some (i − 1) linearly independent rows,
by Claim 3.7, there exist at most 2i−1 values of the i-th row which will create a linear dependence.

Therefore, P[i] ≤ 2i−1

2n , and (
m

i

)
P[i] ≤

mi

i!
· 2i−1

2n
≤ 2i logm−n ≤ 2−3n/4 .

• For n/(4 logm) < i ≤ k = εn, from the Littlewood-Offord Lemma over finite fields (Lemma 2.5), we
have that

Ri ≤

(
1

p
+

√
8

i

)
≤

(
1√
n

+

√
32 logm

n

)
≤ O(logm)√

n
.

Then

P[i] ≤
(

n

i− 1

)
R
n−(i−1)
i ≤ 2n ·R(1−ε)n

i ≤ 2O(n log logm)−0.5(1−ε)n logn .
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From i ≤ εn and m ≤ n 1
2ε , we have that(
m

i

)
≤
(m
εn

)εn
= 2O(n)+εn log(m

n ) = 2O(n)+(0.5−ε)n logn .

Finally,(
m

i

)
P[i] ≤ 2O(n log logm)+(0.5−ε)n logn−0.5(1−ε)n logn = 2O(n log logn)−0.5εn logn = o(1/k) .

Now we observe that the result of Theorem 3.6 holds for {0, 1}-matrices as well. While we cannot just
take a {±1} matrix from Theorem 3.6, increment each entry by one, and divide by two, we can perform a
similar operation while preserving k-wise independence.

Corollary 3.8. For every ε ∈ (0, 1/2], every large enough n ≤ m ≤ n
1
2ε , every prime field Fp of order

p ≥
√
n, a uniformly random matrix M ∈ {0, 1}(m−1)×n is (k− 1) := (εn− 1)-wise independent over Fp and

R with probability 1− o(1).

Proof. Choose a uniformly random matrix M ∈ {±1}m×n, and multiply some of the columns by −1 so that
the first row contains only 1s. The rest of the matrix remains uniformly random, and multiplying columns by
scalars does not introduce new linear dependencies among the rows. For i ∈ [m−1], let Bi = (Mi+1 +M1)/2.
This gives a uniformly random {0, 1}(m−1)×n matrix B. Take any k − 1 rows BS = (Bi1 , . . . , Bik−1

), and
consider the rows M{1}∪(1+S) = (M1,M1+i1 , . . . ,M1+ik−1

). Linear independence of M{1}∪(1+S) implies linear
independence of BS , because BS is obtained from M{1}∪(1+S) by row operations and removing the first row,
so if M is k-wise independent, then B is (k − 1)-wise independent.

3.4 Derandomization

In this section we reduce the randomness used in the proof above from mn bits to O
(
n logm(log logm)2

)
bits: in effect instead of sampling the columns from the set of all the possible columns in {±1}m, we show
that we can limit ourselves to a much smaller subset and still get a very high probability of sampling a
k-wise independent matrix. This will dramatically (exponentially) reduce the semi-algebraic complexity of
the resulting range-counting problem in our final construction.

As discussed in the introduction, the main observation here is that the analysis of Theorem 3.6 for
random binary matrices, also carries over to the case where each column is chosen independently according
to a distribution on {±1}m which fools any affine hyperplane in Rm. We now formalize this statement.

Definition 3.9. We say that a deterministic function F : {0, 1}r → {±1}m ε-fools a family of sets S ⊂
2{±1}m , if for any s ∈ S: ∣∣∣∣ Pr

x←Unif{±1}m
[x ∈ s]− Pr

x←F
[x ∈ s]

∣∣∣∣ ≤ ε,
where the second x is the output of F when it is passed a uniformly random input string from {0, 1}r as an
input. We also call such an F an ε-PRG against S.

Our derandomization will use the following pseudo-random generator (PRG) of Gopalan, Kane and Meka
[GKM18], which ε-fools affine halfspaces with almost optimal seed-length.

Lemma 3.10 ([GKM18, Corollary 1.2]). For every ε > 0 there exists a PRG FGKM : {0, 1}r → {±1}m that
uses r = O

(
log(m/ε) · (log log(m/ε))2

)
uniformly random input bits and ε-fools affine halfspaces, i.e., the

family of sets {
x ∈ {±1}m | 〈x, α〉 ≤ θ

}
α∈Rm,θ∈R .
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Proposition 3.11 (Fooling halfspaces ⇒ Fooling hyperplanes). If F is an ε-PRG against affine halfspaces
in Rm, then it is a 2ε-PRG against hyperplanes in Rm.

Proof. Let α ∈ Rm be a fixed vector. Let F1 and F2 be the CDFs of the distributions of 〈x,α〉 for a uniform
x ∈ {−1, 1}m, and for x generated from F , respectively. From Definition 3.9, we have that the Kolmogorov-
Smirnov distance between their distributions is at most ε : ∀t, |F1(t) − F2(t)| ≤ ε. This implies that the
probability of 〈x,α〉 attaining a certain value can differ by at most 2ε between the two distributions:∣∣∣∣ Pr

x←Unif
[〈x,α〉 = θ]− Pr

x←F
[〈x,α〉 = θ]

∣∣∣∣ =
∣∣(F1(θ)− F1(θ−))− (F2(θ)− F2(θ−))

∣∣
≤ |F1(θ)− F2(θ)|+

∣∣F1(θ−)− F2(θ−)
∣∣

≤ 2ε .

Using this proposition, along with the GKM PRG for affine hyperplanes, we shall prove the following:

Theorem 3.12. For every ε ∈ (0, 1/2], every large enough n ≤ m ≤ n
1
2ε , there is a polynomial-time

algorithm that uses O
(
n logm(log logm)2

)
random bits and outputs a matrix W ∈ {±1}m×n, s.t. W is

k := εn-wise independent over R with probability 1− o(1). As a consequence, W is also k-wise independent
over Fp for any prime p > (εn)!.

Proof. Let FGKM : {0, 1}r → {±1}m be the PRG from Lemma 3.10 with seed length r = O
(
logm(log logm)2

)
which (1/

√
m)-fools hyperplanes. The algorithm will generate each column of W as the output of FGKM with

a fresh seed of length r. Clearly, the algorithm uses nr = O
(
n logm(log logm)2

)
random bits. In order to

prove that W is k-wise independent with probability 1− o(1), we inspect the proof of Theorem 3.6.
Recall that until the equation (2) the proof was distribution-independent. Then, in equation (2) we used

the independence of the columns (and the columns of W remain independent for our algorithm), bounded
the probability Ri of a column satisfying a linear constraint ~α of Hamming weight ‖~α‖0 = i, and bounded

each term in the sum
∑k
i=2

(
m
i

)
P[i].

• For 2 ≤ i ≤ n/(4 logm), recall that for a uniformly random matrix M , the Littlewood-Offord Lemma
over the reals (Lemma 2.4) implies that the probability that a random column satisfies a fixed linear
equation with i non-zero coefficients is bounded by Runi

i = 1
2i

(
i
bi/2c

)
≤ 1/2. Since every column of W

(1/
√
m)-fools hyperplanes, the probability that a random column of W satisifes a fixed linear equation

is bounded by

Ri ≤ Runi
i +

1√
m
≤ 2

3
.

This gives us the following bound on
(
m
i

)
P[i]:(

m

i

)
P[i] ≤

(
m

i

)(
n

i− 1

)
Rn−i−1
i ≤ m2i

(
2

3

)n−o(n)

≤ 2n/2 ·
(

2

3

)n−o(n)

≤ 2−Ω(n).

• For n/(4 logm) < i ≤ k = εn, by Lemma 2.4, Runi
i ≤ 1/

√
i. Therefore, for a PRG that (1/

√
m)-fools

hyperplanes,

Ri ≤
1√
i

+
1√
m
≤ O(logm)√

n

as in the proof of Theorem 3.6, giving the same bound o(1/k) for each term as before.

Now we show that k-wise independence of W over R implies its k-wise independence over Fp for every
p > (εn)!. Indeed, from k-wise independence of W over the reals, we have that every set of k rows contains
a non-singular k × k submatrix. Since the determinant of an εn × εn square ±1 matrix is at most (εn)!,
the deteminant stays non-zero after taking it modulo p. Therefore, every set of k rows of W contains a
non-singular k × k submatrix over Fp, which implies k-wise independence over Fp.
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We observe that the matrix W ∈ {±1}m×n from the previous theorem can be also transformed into a
(k − 1)-wise independent matrix from W ′ ∈ {0, 1}m×n.

Corollary 3.13. For every ε ∈ (0, 1/2], every large enough n ≤ m ≤ n
1
2ε , there is a polynomial-time

algorithm that uses O
(
n logm(log logm)2

)
random bits and outputs a matrix W ′ ∈ {0, 1}m×n, s.t. W ′ is

(k− 1) := (εn− 1)-wise independent over R (and over Fp for any prime p > (εn)!) with probability 1− o(1).

Proof. First, we generate a matrix W as in Theorem 3.12 with the same parameters n,m, ε. Then we
multiply each column by a fresh independent and uniform number from ±1. Finally, we add 1 to all the
entries in the matrix, and divide the result by 2. Let us denote the resulting matrix by W ′ ∈ {0, 1}m×n.

Consider the following distribution of matrices. Take the matrix W and prepend a uniformly random
±1 row to it. In effect, we are replacing the FGKM PRG with a new PRG F ′GKM : {0, 1}r+1 → {±1}m+1 that
generates the first output bit according to the first input bit, and generates the rest using FGKM applied to
all the other r input bits. It is easy to see that F ′GKM ε-fools hyperplanes if FGKM ε-fools hyperplanes, so
Theorem 3.12 also holds for F ′GKM (with n additional bits of randomness in total). We multiply some columns
of this matrix by −1 so that the first row contains only 1s. After adding the first row to all other rows of
the matrix, and dividing them by 2, the resulting matrix from {0, 1}m×n is (k− 1)-wise independent (by the
reasoning from Corollary 3.8). Note that the distribution of these matrices is identical to the distribution of
matrices W ′ described above.

3.5 Putting it all together

Now we are ready to prove Theorem 1.1.

Theorem 1.1. There is an explicit set Pn of m = n3 convex polygons in the plane R2, and a prime p, such
that any group-model data structure of size s and query time t for range counting with respect to Pn (over
Zp), must have

ts ≥ nn/7.
In particular, any linear storage (s = O(n)) data structure for Pn(over Zp) must have nΩ(1) query time.

Moreover, the semialgebraic complexity of Pn, i.e., number of facets of each convex polygon, is nO((log logn)2).

Proof. Let m = n3, and G : {0, 1}r → {0, 1}m for r = O
(
logm(log logm)2

)
be the PRG used in Corol-

lary 3.13 for generating columns.10 Let R = 2r, and a1, . . . , aR be an arbitrary set of R distinct points on a
circle in R2. We will associate these points with binary string of length r—all possible values of G’s seed.

The set Pn of m convex polygons in the plane is defined as follows: the ith polygon has aj as its vertex
if and only if the ith bit of the output of G(aj) is 1.

We constructed an explicit set Pn of m convex polygons, and since each polygon has at most R facets,
its semialgebraic complexity is bounded from above by R = nO((log logn)2). It remains to show that any (s, t)
group-model data structure must satisfy ts ≥ nn/7.

Let us fix ε = 1/6, and let p be a prime in the range [2εn logn, 2εn logn+1]. For a set of input points
x = (ai1 , . . . , ain), let IP(x) ∈ {0, 1}m×n be a matrix whose (i, j)’th entry indicates whether point xj lies in
the ith polygon ri ∈ Pn. Since p > (εn)! and m = n3 ≤ n1/(2ε), by Corollary 3.8, there exists a set of input
points x such that IP(x) is εn-wise independent.

Note that for the set of input points x and their weights w ∈ Znp , the outputs to the m queries must be

IP(x)w. Since IP(x) is εn-wise independent and p < 0.5
(
m

16εn

)εn/2
, by Theorem 3.5, there exists a set of

weights w, such that the vector IP(x)w is diverse.
Finally, by Lemma 3.2, for any group-model data structure D over Zp that uses s cells of space and has

query time t, the set of its m possible answers can be diverse only if (4t)s ≥ p. Therefore,

ts ≥ p6/7 ≥ 26εn logn/7 = nn/7 .

10The seed length of G is exactly the seed length of the GKM PRG plus one bit used for changing the sign of the column.
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We remark that a construction of a PRG against halfspaces with optimal seed length Oε(logm) would
improve the semialgebraic complexity of the polygons in the theorem statement: instead of polygons with
nO((log logn)2) facets, one could construct a set of n3 polygons with nO(1) facets.

Corollary 3.14. If there exists an explicit PRG G : {0, 1}r → {0, 1}m which ε-fools halfspaces and uses
optimal seed r = O(log(m/ε)), then there exists an explicit set Pn of m = n3 convex polygons in the plane
R2 with poly(n) facets/semialgebraic complexity, such that any group-model data structure of size s and
query time t for weighted range counting with respect to Pn (over some Zp), must have ts ≥ nΩ(n).

4 Geometric PRGs

The construction of the incidence matrix IR in the proof of Theorem 1.1 uses affine PRGs in a black-box
manner: the ith row of IR encodes the truth table of the ith output bit of the (GKM) PRG gi : {±1}r 7→
{±1}, hence the complexity of the ith “range” gi ∈ R (number of polytope facets) is trivially bounded

by 2r = nO(log2 logn). This is essentially inevitable if the PRG is applied in a black-box fashion (since
r > logm is the best one could hope for [MZ13]). However, we might hope to obtain lower bounds against
more “natural” range counting problems (with lower semi-algebraic complexity) using our approach, by
constructing PRGs that take advantage of the underlying representation of the input seed. Indeed, the
input to a range counting problem is a point in a d-dimensional space, hence it is natural to ask if the PRG
can exploit higher dimensionality in a “simple” way so as to reduce the semi-algebraic complexity of the
underlying hard problem. This is the motivation of our next definition.

Definition 4.1 (Geometric PRGs). A function g : [B]d → {±1}m is said to be a (B, d, s, ε)-Geometric PRG
(GPRG) against a family of sets S ⊂ 2{±1}m , if g ε-fools S, and furthermore every output bit of g can be
encoded as a low-degree polynomial threshold function (PTF), i.e.,

∀ i ∈ [m] , gi(r1, . . . , rd) = sign (Pi(r1, . . . , rd)) ,

where each Pi is a d-variate polynomial of (total) degree s.

Note that this definition generalizes the (incidence function of) halfspaces (s = 1), and their natural
extension to ranges specified by low-degree PTFs. We now show that an explicit construction of Geometric
PRGs would yield a data structure lower bound against a corresponding class of ranges.

To this end, note that in the proof of Theorem 3.12, we showed that a PRG that 1/
√
m -fools halfspaces

yields an εn-wise independent matrix (which, by Theorem 1.1, implies a data structure lower bound). By
inspection of the proof of Theorem 3.12, we see that for any constant γ > 0, even a PRG that 1/mγ-
fools halfspaces still gives us an Ωγ(n)-wise independent matrix, yielding a data structure lower bound of
ts ≥ nΩ(n) by Theorem 1.1.

Using the preceding remark, a (B, d, s, 1/mγ)-Geometric PRG g : [B]d → {±1}m gives an explicit set of
m ranges, each of which defined by a single d-variate polynomial of degree s, such that range counting with
respect to these ranges is hard for linear storage data structures:

Lemma 4.2. Suppose g : [B]d → {±1}m is a (B, d, s, 1/mγ)-Geometric PRG (GPRG) against affine halfs-
paces in Rm for a constant γ > 0. Then there exists a range counting problem PR with |R| = m ranges, each
of semi-algebraic complexity Γd,s,1, such that any S-space data structure for PR has query time t ≥ nΩ(n/S)

in the static group model.

4.1 Existence of high-degree Geometric PRGs

In contrast to the standard definition of PRGs (Definition 3.9), whose mere existence with small seed length
follows a rather simple counting argument [MZ13], the existence of GPRGs (with sublinear seedlength)
against affine halfspaces, is a nontrivial question. The remainder of this section is devoted to this question.
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Our first result shows that GPRGs against halfspaces exist in nontrivial dimension d = nε (for any ε > 0),
albeit with high degree s ≈ nε (which corresponds to ranges being high-degree PTFs). In fact, we will show
an explicit construction of such GPRGs, by “adapting” BCH codes from F2 to R.

An important ingredient of the proof is the following theorem due to Diakonikolas et al. [DGJ+10],
asserting that any k-wise (statistically) independent distribution over {±1}m Ω̃(1/

√
k)-fools halfspaces:

Theorem 4.3 (Bounded independence fools halfspaces [DGJ+10]). Let D be a k-wise independent distribu-
tion on {±1}m. Then D δ-fools halfspaces as long as

k ≥ C

δ2
log2

(
1

δ

)
for some universal constant C.

By setting δ in Theorem 4.3 to m−0.05, an immediate corollary is that any k = (Cm0.1 log2m)-wise
independent distribution will fool halfspaces with small enough error for Lemma 4.2 to yields data struc-
ture lower bounds. Thus, it remains to construct a GPRG whose output is Cm0.1 log2m-wise statistically
independent.

A k-wise independent distribution with uniform marginals is easy to construct from a parity check matrix
M of a linear code of minimal distance > k over Fm2 : since any k of the M ’s columns are linearly independent
over F2, taking the sum of a uniformly random subset of the rows ofM gives a vector of lengthm whose entries
are statistically k-wise independent. In fact, this is the optimal way to obtain such a k-wise independent
distribution, as Alon, Babai, Itai showed:

Theorem 4.4 ([ABI86]). Suppose (ξi)
m
i=1 is a collection of k-wise independent random variables ξi : Ω→ R

each of which takes at least two distinct values with non-zero probability. Then the size of the sample space

is at least the size of the Hamming ball of radius bk/2c: |Ω| ≥
∑bk/2c
j=0

(
m
j

)
.

Moreover, when m = 2t−1 and k = 2s+1, this bound is essentially achieved for ξi = 〈Hi, x〉F2
where Hi

is the i-th column of the parity check matrix H ∈ F(1+st)×m
2 of a binary BCH code and x is chosen uniformly

at random from F1+st
2 .

To make this construction ”geometric”, treat H as a binary matrix over the reals and x as a binary
vector over the reals. Then the entries of the vector HTx are integers that are k-wise independent modulo

2, and are between 0 and k logm/2. Let p(x) :=
∏k logm/2
i=1 (i − 1/2 − x), then sign(p(x)) = (−1)x for

x ∈ {0, . . . , k logm/2}, giving our desired theorem:

Theorem 4.5 (Explicit high-degree GPRGs). Let Ri(x) = p(〈Hi, x〉), where H is the parity check matrix
defined above treated as a binary matrix over R, and x ∈ {0, 1}r for r = O(m0.1 log3m). Then R : {0, 1}r →
{±1}m is a (2, O(m0.1 log3m), O(m0.1 log3m), 1/poly(n))-GPRG against affine halfspaces in Rm.

This theorem asserts a polynomial lower bound for range counting of nOε(1) explicit PTFs in Rnε

, each
of degree Õ(n0.1), against linear storage group-model data structures. Is it possible to construct GPRGs
using constant degree PTFs? This is the content of the next subsection.

4.2 Can Halfspaces Fool Halfspaces ?

The special case of degree-1 PTFs is particularly interesting in our context, as it corresponds to the very
natural problem of halfspace range counting, which is among the most well-studied range counting problems
in the literature [Cha90, Aga17]. While Theorem 4.5 produces an explicit high-degree GPRG, for degree
s = 1 it is not even clear whether GPRGs exist in nontrivial dimension, i.e., whether “halfspaces fool
halfspaces” in sublinear dimension :

Problem 4.6. Is there any set H of m = poly(d) halfspaces in Rd for d� n, such that the function given
by gi(r) := (sign〈hi, r〉)i∈[m] for r ∈R {±1}d, (1/poly(n))-fools affine halfspaces in Rm?
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We note that the (explicit) BCH-code construction in Theorem 4.5 shows these parameters are achievable
over F2, i.e., had we taken the parity of the inner-products 〈hi, r〉 instead of their signs. Intuitively, threshold
functions are much less sensitive than the parity operator (in particular, thresholds are monotone function
and hence have low influence in sharp contrast to parities). Hence, achieving nΩ(1)-wise independence (by
Theorem 4.3) with signs of inner products seems to require a substantially different construction and analysis.

The main technical result of this section is showing that it is possible to construct an almost k-wise
independent distribution, i.e., a (δ/2k, k)-independent distribution11 over {±1}m, with δ = 1/poly(d), from
d-dimensional halfspaces over the Boolean hypercube, which implies that the same distribution is δ-far from
k = dΩ(1)-wise independence, i.e. all the k-marginals are δ-close to uniform in statistical distance:

Theorem 4.7 (Random halfspaces are almost k-wise independent). For a fixed number p, pick m = dp

uniformly random vectors v1, . . . , vm in {±1}2d+1 for large enough d, and let ε < 1/6. Then for a random
vector x ∈R {±1}2d+1, the distribution of the binary vector f(x) := {sign(〈vi,x〉)}mi=1 is (d1/6k/2k, k)-
independent with high probability (over the choice of the vi’s), where k = dε.

We need to show that all the k-marginals of f are close to uniform d-bit vectors in L∞ norm. We will
bound the probability that some fixed k-marginal is far from a uniform and union bound over the

(
m
k

)
possible choices of k coordinates. This will be implied by a bound on the measure of the intersection of k
random halfspaces with the hypercube — we want to say that that measure is very close to 2−k with high
probability.

We will need the following basic notions from Fourier analysis over the hypercube to prove the above
theorem. For a Boolean function f : {±1}n → R its Fourier coefficients are defined by f̂(ω) = Ex[χω(x)f(x)],
where ω ⊆ [n] and χω(x) =

∏
i∈ω xi. The characters χω are orthonormal with respect to 〈f, g〉 = Ex[f(x)g(x)]

and f can be uniquely rewritten in the Fourier basis:

f(x) =
∑
ω⊆[n]

χω(x)f̂(ω).

The following Bonami-Gross-Beckner hypercontractive inequality for the Boolean hypercube is well-
known:

Theorem 4.8 ([Bon70, Gro75, Bec75]). Let f : {±1}n → R. Define Tρ(f)(x) =
∑
ω⊆[n] ρ

|ω|χω(x)f̂(x) —

the noise operator with parameter ρ, and let ‖f‖p = Ex[|f(x)|p]1/p. Then for any 1 ≤ p ≤ 2,

‖T√p−1f‖2 ≤ ‖f‖p
We will need the following corollary of Theorem 4.8, which also appears in [GKK+08, dW08, KR11]:

Lemma 4.9. Let f ′ : {±1}n → {−1, 0, 1} with support A := supp(f ′) = {x : f ′(x) 6= 0}, and let f = f ′/µ(A)
be the normalized f ′. Then the bound on the Fourier mass on level k holds:∑

|ω|=k

f̂(ω)2 ≤
(
emax

(
1,

2

k
ln

1

µ(A)

))k
,

where µ denotes the uniform measure on the hypercube.

Proof. Applying Theorem 4.8 we get:∑
|ω|=k

f̂(ω)2 ≤ 1

(p− 1)k

∑
ω⊆[n]

(p− 1)|ω|f̂(ω)2

=
1

(p− 1)k
‖T√p−1f‖22

≤ 1

(p− 1)k
‖f‖2p =

1

(p− 1)k
µ(A)−2(1−1/p) .

11This is a distribution where all marginals on k coordinates are δ/2k-close in L∞ norm to uniform, see [AGHP92] for details
and its wide applications.
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For p = 1 + k
2 ln(1/µ(A)) when k ≤ 2 ln(1/µ(A)) this is at most

(
2e
k ln(1/µ(A))

)k
, and when k ≥ 2 ln(1/µ(A))

the sum of all squared Fourier coefficients is ‖f‖22 = 1/µ(A) ≤ ek as desired.

We shall use the following estimate on the Fourier coefficients of the Majority function12 on 2d+1 inputs
(the proof of this claim is provided in Appendix B).

Claim 4.10. The Fourier decomposition of the majority function Maj(x) := [
∑
i xi ≥ 0] on {±1}2d+1 is:

Maj(x) =
1

2
+ µ1

∑
|ω|=1

χω(x) + µ2

∑
|ω|=2

χω(x) + . . .+ µ2d+1

∑
|ω|=2d+1

χω(x),

where each µ2k = 0 for k > 0, and the odd coefficients are:

µ2k+1 =

(
2d

d

)(
d

k

)(
2d

2k

)−1
(−1)k

2d+1
.

The following lemma, whose proof follows closely the argument of an analogous statement by Klartag
and Regev [KR11] but for “equators” in Gaussian spaces (instead of halfspaces in the hypercube), almost
finishes the proof using an inductive application:

Lemma 4.11. Let A,B be two subsets of {±1}2d+1 of measure at least exp(−d1/3). Then

Pr
y∼B,x∼Cap(y)

[x ∈ A] ∈ (1± d−1/6)µ(A),

where Cap(y) := {x ∈
{
±1}2d+1 : 〈x, y〉 > 0

}
is the set of points at Hamming distance at most d from y.

Proof. Let f := 1A/µ(A), g := 1B/µ(B) be the normalized indicator functions of the two sets. Define the
operator RCap on Boolean functions by RCap(h)(y) := Ex∼Cap(y)[h(x)]. Then

Pr
y∼B

x∼Cap(y)

[x ∈ A] = µ(A)Ey[g(y)RCap(f)(y)] = µ(A)
∑
ω

ĝ(ω)R̂Cap(f)(ω),

so we need to bound this sum. Notice that RCap is just a convolution with the majority function defined
above: RCap(f)(y) = 2Ex[f(x � y)Maj(x)], so in the Fourier basis RCap is diagonal with the Fourier
coefficients of 2Maj as eigenvalues, giving:

µ(A)−1 Pr
y∼B

x∼Cap(y)

[x ∈ A] = 1 + 2µ1

∑
|ω|=1

f̂(ω)ĝ(ω) + 2µ3

∑
|ω|=3

f̂(ω)ĝ(ω) + . . .

Now we need to bound the sums on each level. By Cauchy-Schwarz to bound
∑
f̂(ω)ĝ(ω) it is enough

to bound
∑
f̂(ω)2 and

∑
ĝ(ω)2. Lemma 4.9 implies

∑
|ω|=2k+1

f̂(ω)2 ≤
(
emax

(
1,

2

2k + 1
ln

1

µ(A)

))2k+1

Multiplying f by the parity on all the coordinates χ[2d+1] by the same Lemma 4.9 we also get the
symmetric upper bound

∑
|ω|=2k+1

f̂(ω)2 ≤
(
emax

(
1,

2

2d− 2k
ln

1

µ(A)

))2d−2k

.

12Note that we define Maj to take values 0 and 1, even though it takes input vectors with ±1 coordinates
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We split the sum into four parts: with |ω| ≤ δd, δd ≤ |ω| ≤ (2 − δ)d, (2 − δ)d ≤ |ω| ≤ 2d, and the one
term with |ω| = 2d+ 1, for small enough universal constant δ to be chosen.

We now upper bound the ratio of the term for |ω| = 2k + 3 to the term for |ω| = 2k + 1, showing that
the terms are geometrically decreasing. First, the ratio of eigenvalues is

µ2k+3/µ2k+1 =

(
d

k + 1

)(
2d

2k

)(
d

k

)−1(
2d

2k + 2

)−1

=
(d− k)(2k + 2)(2k + 1)

(k + 1)(2d− 2k)(2d− 2k − 1)
=

2k + 1

2d− 2k − 1

The ratio of Fourier masses at two adjacent non-empty levels is:(
emax

(
1,

2 ln(1/µ(A))

2k + 3

))2k+3
/(

emax

(
1,

2 ln(1/µ(A))

2k + 1

))2k+1

≤ e2 max

(
1,

2 ln(1/µ(A))

2k + 1

)2

Combining the above bound with Cauchy-Schwarz, the ratio of the product is bounded by

e2 2k + 1

2d− 2k − 1
max

(
1,

2 ln(1/µ(A))

2k + 1

)
max

(
1,

2 ln(1/µ(B))

2k + 1

)
,

which is at most 1/2 for a small enough constant δ since ln(1/µ(A)) ln(1/µ(B)) ≤ d2/3.
Since the sum for the first-level Fourier coefficients is:

µ1

∑
i∈[n]

f̂({i})2 ≤ 2e√
2d

ln
1

µ(A)
≤ O(d−1/6),

the contribution of the first part to the total sum can be bounded by O(d−1/6).
For the middle part δd ≤ 2k+ 1 = |ω| ≤ (2− δ)d, notice that the absolute values of µ2k+1 are decreasing

until 2k = d and are (almost) symmetric around k = d/2, so we can bound the contribution of the middle
terms to the sum by

|µδd|
∑

δd≤|ω|≤(2−δ)d

f̂(ω)ĝ(ω) ≤ |λ2d
δd|√

µ(A)µ(B)
.

Approximating |µδd| ≤
(
d
δd

)(
2d
2δd

)−1
/
√

2d = exp(−dH(δ) + o(d)) where H is the entropy function in nats
H(x) = −x lnx− (1− x) ln(1− x), we get an exponentially small bound on the middle terms.

The bound on the third part is the same as for the first part, but the first non-zero weight from the end
is even smaller in this case because there is no weight on the level 2d.

Now we need to bound the largest coefficient |λ2d
2d|f̂([2d+1])2 ≤ f̂([2d+1])2/

√
2d, but f̂(ω) = Ex[χω(x)f(x)]

is at most Ex[1A/µA] = 1 for any set ω, so we are done.

With this lemma in hand we can prove Theorem 4.7.

Proof of Theorem 4.7. Take k = dε uniformly random vectors y1, . . . , yk ∈ {±1}2d+1. Denote by At the
intersection of the first t halfspaces: At = Cap(y1) ∩ Cap(y2) ∩ · · · ∩ Cap(yt). We want to show that
the measure of At is within [exp(−2td−1/6), exp(td−1/6)]2−t for all t with high probability. Notice that
At = Cap(yt) ∩At−1, so if

µ(At−1) ∈ 1

2t−1

[
exp(−2(t− 1)d−1/6), exp((t− 1)d−1/6)

]
< exp(d−1/3), (3)

then by Lemma 4.11 the probability of µ(Ai) 6∈ (1 ± d−1/6)µ(Ai−1)/2 is at most exp(−d1/3). Indeed, we
let A := At−1 and let B be the set of all points y whose corresponding halfspaces intersect A by too much
(same works for the halfspaces whose intersection is too small):

B :=
{
y : µ(At−1 ∩ Cap(y)) > (1 + d−1/6)µ(At−1)/2

}
.
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The measure of such B by Lemma 4.11 can be at most exp(−d1/3), so conditioned on the set At−1 having
the appropriate measure as in (3), At will have measure

µ(At) ∈
1± d−1/6

2t

[
exp(−2(t− 1)d−1/6), exp((t− 1)d−1/6)

]
⊂ 1

2t

[
exp(−2td−1/6), exp(td−1/6)

]
with probability at least 1−2 exp(−d1/3). Here we have used e−2t ≤ 1−t for small enough t and 1+t ≤ exp(t)
for all t.

By union bound the probability that µ(Ak) will lie in the small interval around 2−k is at least 1 −
2k exp(−d1/3). Moreover, we can also bound the probability that all the 2k possible intersections of halfspaces
(taking either Cap(yt) or Cap(yt) for each t) have measure close to 2−k. Indeed, we can imagine a complete
binary tree with k + 1 layers, and at a node v at level t − 1 we are choosing whether to take H = Cap(y)
or H = Cap(y), and travel down along the corresponding edge and write the new set Av ∩H. Conditioned
on Av being close to correct size as in (3), the same reasoning applies as above, so by union bound the
probability that on at least one edge in the tree the difference in measures will be too large or too small is
at most 2 · 2k exp(d−1/3). This means that the L∞ distance between uniform distribution on {0, 1}k and
the vector of indicators

(
[x ∈ Cap(y1)], [x ∈ Cap(y2)], . . . , [x ∈ Cap(yk)]

)
when x ∈ {±1}2d+1 is chosen

uniformly at random will be at most

1

2k
max

(
1− exp(−2kd1/6), exp(kd1/6)− 1

)
≤ 2kd1/6

2k

with probability at least 1− 2 · 2k exp(−d1/3).
Applying the union bound over all possible choices of k out of m coordinates of the vector f(x) =

(sign(〈yi, x〉))mi=1 from the theorem statement, we get that the probability that all the k-marginals of this

vector are 2kd1/6

2k -close to the uniform when evaluated on a uniformly random point x is at least

1− 2 · 2k exp(−d1/3)

(
m

k

)
≥ 1− exp

(
−d1/3 + k ln 2 + k ln(em)− k ln k

)
,

which is exponentially close to 1 since k = dε < d1/6 and m is polynomial in d.

If Theorem 4.3 were “robust” to distributions statistically-close to being k-wise independent, then The-
orem 4.7 would have established the existence of a degree-1 (halfspace) GPRG against halfspaces in nε

dimensions. Unfortunately, the proof of Theorem 4.3 only applies to distributions which are exponentially
close (in k) to k-wise independence (whereas the distance δ = 1/poly(k) obtained in Theorem 4.7 is es-
sentially tight by considering the correlation between just 2 coordinates). Nonetheless, Theorem 4.3 is a
necessary milestone toward the fooling question, and we believe the proof technique of Theorem 4.7 may be
useful to directly settle the existence of GPRGs from halfspaces.
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A Explicit (n/ logm)-wise independent matrices

In order to construct an explicit binary matrix M ∈ {0, 1}m×n which is k = n
logm -wise independent over

the reals, it suffices to take the parity-check matrix of an optimal linear error correcting code over F2 (see,
e.g., [Jus72, MS77, ABN+92, SS96, DSV12]). While such constructions are typically quite sophisticated,
they also provide a stronger property: the resulting matrix is k-wise independent even over F2. We give an
explicit folklore construction of a binary matrix which is k-wise independent over the reals (and over F2).
To construct such a matrix, we take a Vandermonde matrix over a finite field and binarize it.

Let ` = dlogme+ 1 and k = n/`. We assume that n is divisible by `. Choose a prime 2m > p ≥ m, and
take the rectangular Vandermonde matrix M ∈ Fm×kp : Mi,j = ij mod p. This matrix is k-wise independent

over Fp, as any k rows of M form a full-rank Vandermonde matrix . Now apply procedure Bin : Fp → {0, 1}`
to each entry of the matrix, and concatenate the resulting vectors in each row to get M ′ ∈ {0, 1}m×n. The

procedure Bin takes an element x of the field, finds 0/1 coefficients d0, . . . , d`−1 such that
∑`−1
i=0 di2

i = x
mod p, and returns (d0, . . . , d`−1).

Proposition A.1 (Folklore). The matrix M ′ ∈ {0, 1}m×n constructed above is k-wise independent over Fp
and, consequently, over R.

Proof. There is a matrix H ∈ Fn×kp such that M = M ′H since there is a linear inverse of the map Bin. If
some k rows are linearly dependent in M ′, they are also linearly dependent in M . But any k rows of M are
independent, since they form a k × n Vandermonde matrix with distinct rows (and k ≤ n).

Linear independence over Fp implies linear independence over R: if a subset of rows is linearly indepen-
dent, there is an invertible square submatrix X in those rows, and detX 6= 0 mod p implies detX 6= 0 over
the reals.

24



B The Fourier coefficients of Maj

Claim 4.10. The Fourier decomposition of the majority function Maj(x) := [
∑
i xi ≥ 0] on {±1}2d+1 is:

Maj(x) =
1

2
+ µ1

∑
|ω|=1

χω(x) + µ2

∑
|ω|=2

χω(x) + . . .+ µ2d+1

∑
|ω|=2d+1

χω(x),

where each µ2k = 0 for k > 0, and the odd coefficients are:

µ2k+1 =

(
2d

d

)(
d

k

)(
2d

2k

)−1
(−1)k

2d+1
.

Proof. For ω ⊂ [2d+ 1], the Fourier coefficient in front of χω in the Fourier decomposition is

M̂aj(ω) = E
x

[χω(x)Maj(x)] =
1

22d+1

∑
w(x)≤d

χω(x).

Suppose i ∈ ω. Then χω(x�ei) = −χω(x), where � denotes coordinate-wise multiplication. So if both x
and x� ei have Hamming weight at most d, the corresponding terms in the sum will cancel each other out.
The terms that remain will correspond to the points x that have Hamming weight w(x) = d with xi = 1
giving

M̂aj(ω) =
1

22d+1

∑
w(x)=d
xi=0

χω(x). (4)

It is clear that this sum is the same for the Fourier coefficients of the same weight. Summing over all the
characters γ of weight |ω| which contain coordinate i we get:(

2d

|ω| − 1

)
M̂aj(ω) =

∑
|γ|=|ω|
i∈γ

1

22d+1

∑
w(x)=d
xi=0

χγ(x) =
1

22d+1

∑
w(x)=d
xi=0

∑
|γ|=|ω|
i∈γ

χγ(x)

=
1

22d+1

(
2d

d

) d∑
h=0

(−1)h
(
d

h

)(
d

|ω| − h− 1

)
,

where h in the last sum corresponds to the number of −1 coordinates in x that fall into γ. The last
sum can be computed by noticing that it is exactly the coefficient in front of x|ω|−1 in the polynomial
(1− x)d(1 + x)d = (1− x2)d, in particular we get that when |ω| is even, the coefficient is 0.

The constant Fourier coefficient is the average value of Maj over the hypercube, so it is 1/2.
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