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Abstract

In FOCS 1986, Wilber proposed two combinatorial lower bounds on the operational cost of any bi-
nary search tree (BST) for a given access sequence X € [n|™. Both bounds play a central role in the
ongoing pursuit of the dynamic optimality conjecture (Sleator and Tarjan, 1985), but their relationship
remained unknown for more than three decades. We show that Wilber’s Funnel bound dominates his
Alternation bound for all X, and give a tight ©(lglgn) separation for some X, answering Wilber’s
conjecture and an open problem of Iacono, Demaine et. al. The main ingredient of the proof is a new
symmetric characterization of Wilber’s Funnel bound, which proves that it is invariant under rotations of
X. We use this characterization to provide initial indication that the Funnel bound matches the Indepen-
dent Rectangle bound (Demaine et al., 2009), by proving that when the Funnel bound is constant, IRBZ
is linear. To the best of our knowledge, our results provide the first progress on Wilber’s conjecture that
the Funnel bound is dynamically optimal (1986).
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1 Introduction

The dynamic optimality conjecture of Sleator and Tarjan [ST85] postulates the existence of an instance
optimal binary search tree algorithm (BST), namely, an online self-adjusting BST whose running time!
matches the best possible running time in hindsight for any fixed sequence of queries. More formally, letting
T (X) denote the operational time of a BST algorithm 7 on a sequence X = (z1,...,zy) € [n]" of keys to
be searched, the conjecture says that there is an online BST 7 such that VX, 7(X) < O(OPT(X)), where
OPT(X) := miny 7'(X) denotes the optimal offline cost for X. Such instance optimal algorithms are
generally impossible, as an offline algorithm that sees the input X in advance can simply “store the answers”
and output them in O(1) per operation, which is why worst-case analysis is the typical benchmark for online
algorithms. Nevertheless, in the BST model, where the competing class of algorithms are self-adjusting
binary search trees, instance optimality is an intriguing possibility. After 35 years of active research, two
BST algorithms are still conjectured to be constant-competitive: The first one is the celebrated splay tree
of [ST85], the second one is the more recent GreedyFuture algorithm [Luc88, DHI™09, Mun00]. However,
optimality of both splay trees and GreedyFuture was proven only in special cases, and they are not known to
be o(lg n)-competitive for general access sequences X (note that every balanced BST is trivially O(lgn)-
competitive). The best provable result to date on the algorithmic side is an O(lglg n)-competitive BST, the
Tango Tree ((IDHIT09] and its subsequent variants [WDS06, BDDF10]).

The ongoing pursuit of dynamically-optimal BSTs motivated the development of lower bounds on the
cost of the offline solution OPT(X), attempting to capture the “correct” complexity measure of a fixed
access sequence X in the BST model, and thereby providing a concrete benchmark for competitive analysis.
Indeed, one defining feature of the dynamic optimality problem (and the reason why it is a viable possibility)
is the existence of nontrivial lower bounds on OPT(X) for individual fixed access sequences X, as opposed
to distributional lower bounds. > These lower bounds are all derived from a natural geometric interpretation
of the access sequence X = z1,...,Z,, as a point set on the plane, mapping the i access ; to point (z;, %)
([DHI*09, Iac13], see Figure 1). The earliest lower bounds on OPT(X) were proposed in an influential
paper of Wilber [Wil89], and are the main subject of this paper.
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Figure 1: Transforming X into its geometric view G x

The Alternation bound Wilber’s first lower bound, the Alternation bound Alt1(X), counts the total
number of left/right alternations obtained by searching the keys X = (x1,...,z,,) on a fixed (static) binary
search tree T, where alternations are summed up over all nodes v € T of the “reference tree” T (see Figure
2 and the formal definition in Section 2). Thus, the Alternation bound is actually a family of lower bounds,
optimized by the choice of the reference tree 7, and we henceforth define Alt(X) := maxy Alt7(X). This
lower bound played a key role in the design and analysis of Tango trees and their variants [DHIP07, WDS06],

li.e. the number of pointer movements and tree rotations performed by the BST
2For example, Wilber’s Alternation bound can be used to show that the “bit-reversal” access sequence obtained by reversing the
binary representation of the monotone sequence {1,2,3,...,n} has cost Q(lgn) per operation [Wil89].



whose operational cost is in fact shown to be O(lglgn) - Alt7(X) < O(lglgn) - OPT(X) (when setting
the reference tree 7 to be the canonical balanced BST on [n]). Unfortunately, this bound is not tight, as
we show that there are access sequences X for which Alt7(X) < O(OPT(X)/lglgn) simultaneously
for all choices of reference trees 7 (previously, this was known only for any fixed T [lac13]), and hence
the combined bound Alt(X') does not capture dynamic optimality in general. Nevertheless, the algorithmic
interpretation of the Alternation bound is an interesting proof-of-concept of how lower bounds can lead to
new and interesting online BST algorithms.

Node Link used by each access Group by letter #
U R,L,L,R,R,L R],[L,L], [R,R],[L] 4
v L,R,R L], [R, R] 2
w L,R,L L], [R], [L] 3
x R,L [R], [L] 2

Total 11

reference tree T

Figure 2: For access sequence X = (4, 1,3,5,4,2) and reference tree T, Altr(X) = 11.

The Funnel bound The definition of Wilber’s second bound, the Funnel bound, is less intuitive (and as
such, was much less understood prior to this work). Let Gx be the set of m points in the plane given by
the map x; — (x;,1). The funnel of a point p € G x is the set of “orthogonally visible” points below p, i.e.
points ¢ such that the axis-aligned rectangle with corners at p and ¢ contains no other points (see Figure 3).
For each p, look at the points in the funnel of p sorted by y coordinate, and count the number of alternations
from the left to the right of P that occur. Call this f(p); this is p’s contribution to the lower bound. Summing
this value for all p € G'x gives the lower bound Funnel(X) := >~ . f(p). An algorithmic view of this
bound is as follows: consider the algorithm that simply brings each x; to the root by a series of single
rotations. Then f(p) for p = (x;,14) is exactly the number of furns on the path from the root to x; right
before it is accessed [AM78, Iac13]. This view emphasizes the amortized nature of the funnel bound: at any
point, there could be linearly many keys in the tree that are only one turn away from the root, so one can only
hope to achieve this bound in some amortized fashion. This partially explains why Wilber’s second bound
has been so elusive to analyze (more on this interpretation can be found in the recent work of [LT19]).

Wilber conjectured that Funnel(X) > Q(Alt(X)) for every access sequence X, and that the Funnel
bound is in fact dynamically optimal, i.e., that Funnel(X) = ©(OPT(X)) VX. These conjectures were
echoed multiple times in the long line of research spanning dynamic optimality (see e.g., [DHIT09, Tac13,
CGK™15, KS18]). Very recently, Levy and Tarjan [LT19] gave a compelling intuitive explanation for why
Funnel(X) is related to the amortized analysis of splay trees (see Section 4). Despite all this, the Funnel
bound remained elusive and no progress was made on Wilber’s conjectures for nearly 40 years (To the best
of our knowledge, the only properties that were previously known about the Funnel bound is that it is optimal
in the “key-independent” setting [lac05] and “approximately monotone” [LT19], both are prerequisites for
dynamic optimality.)

Our main contribution affirmatively answers Wilber’s first question, and settles the relationship between
the Alternation bound and the Funnel bound:

Theorem 1 (Funnel dominates Alt). For every access sequence X without repeats® and for every tree T,
Alt7(X) < O(Funnel(X) + m).

3 As explained at the beginning of Section 2, it is fine for our purposes to focus on access sequences where each value appears
only once.
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Figure 3: Computing f(p) for p = (4,9) in the geometric view of X = (4,6,3,5,1,7,2,4,6,3). Notice
how the funnel points form a staircase-like front on either side of p.

Theorem 2 (Tight separation). There is an access sequence X for which Funnel(X) > Q(lglgn)-(Alt7(X)+
m) simultaneously for all trees T .

The latter separation is tight up to constant factors, since Tango trees imply that OPT(X) < O(lglgn) -
Alt(X). An interesting corollary of Theorem 2 is that the analysis of Tango trees cannot be improved by
choosing any reference tree, answering an open question of Iacono [Iac13]. (One attractive idea is to choose
a random reference tree instead of the canonical balanced BST, but Theorem 2 shows that this will not help
in general.)

A symmetric characterization of the Funnel bound The geometric equivalence of dynamic optimality
(through “arborally satisfied” rectangles [DHIT09]) makes it clear that OPT(X) is invariant under geomet-
ric transformations of the access sequence X. Indeed, a fundamental barrier in understanding the Funnel
bound and its claim to optimality is that it was unclear whether Wilber’s bounds were invariant under rota-
tions of the access sequence X . Demaine et al. explicitly pointed out this challenge:

“It is also unclear how [Wilber’s] bounds are affected by 90-degree rotations of the point set
representing the access sequence and, for the Funnel bound, by flips. Computer search reveals
many examples where the bounds change slightly, and proving that they change by only a
constant factor seems daunting.” [DHIT09]

This shows that exact symmetry of Funnel(X') is hopeless, and can only hold in some ‘amortized’ sense.
Indeed, the heart of our paper, which is also a key ingredient in the proof of Theorem 1, is a new symmetric
characterization of the Funnel bound, which proves that, up to a £O(m) additive term, it is indeed invariant
to rotations. More formally, we show that for any access sequence X, Funnel(X) is asymptotically equal to
the number of occurrences in G x of a configuration of 4 points that we call a z-rectangle (see Figure 4).

A crucial difference between z-rectangles and the notion of independent rectangles [DHIT09] is that the
latter have to satisfy additional independence constaints across several rectangles, whereas z-rectangles have
no “global” constraints whatsoever. In other words, z-rectangles are a local feature of the access sequence,
in the sense that its existence and contribution to the lower bound are unaffected by other z-rectangles and
by points outside of it. We believe this key property will make the analysis of online BST algorithms more
tractable, as it gives a simpler competitive benchmark. We next describe an initial step in this direction.
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Figure 4: A z-rectangle is a configuration of 4 points. Its interior must be empty, and the relative order of
the four points matters.

Towards dynamic optimality of the Funnel Bound One consequence of the simplicity of the z-rectangle
characterization of the Funnel bound is that it makes it easier to compare it both to other BST lower bounds
and to candidate algorithms for dynamic optimality. As a proof of concept, we show that when there is
only a constant number of z-rectangle in G'x, then IRBpz(X) is linear, where IRBpy is one of the terms in
the Independent Rectangle bound IRB(X) := IRBp(X) + IRByg(X), which is known to dominate both of
Wilber’s bounds [DHI09] (we define IRB#(X) in Section 5). More formally,

Theorem 3. If G'x contains O(1) z-rectangles, then IRB(X) < O(m).

We remark that the proof of this theorem already introduces a nontrivial charging argument that could
(hopefully) be generalized to prove that Funnel matches IRB, as conjectured by previous works [lac13].

Techniques At a very high level, the main ideas in Theorem 1 are to use the self-reducible structure of the
Alternation bound, and to show that interleaving two access sequences X and Xy on disjoint ranges is a
super-additive operation, i.e., it increases the overall value of Funnel(X') to more than the sum of its parts
Funnel(X1) + Funnel(Xg). This argument involves both X and its reverse (flip), hence our new symmetric
characterization of the Funnel bound (through z-rectangles) is key to the proof. The main idea behind
Theorem 2 is to form hard sequences over geometrically-spaced sets of keys {i + 1,7 +2,i +4,i+8,...},
each of which can “force” Alt to pick a very lopsided reference tree 7. Those sequences can then be
concatenated together so that the average value of Alty is provably low whichever 7 was picked. Finally,
the key idea in Theorem 3 is to study the consequences of the absence of z-rectangles on the combinatorial
structure of point set GG x, and use this to bound the value of IRBz(.X') by a charging argument.

Remark on independent work In a concurrent and independent work, Chalermsook, Chuzhoy and Sara-
nurak [CCS19] obtain a (weaker) ©(lglgn/lglglgn) separation between Alt and Funnel, in the same spirit
as the tight separation we give in Theorem 2. Our works are otherwise unrelated.

2 Preliminaries

To make our definitions and proofs easier, we will work directly in the geometric representation of access
sequences as (finite) sets of points in the plane R2.

Definition 4 (geometric view). Any access sequence X = (x1,...,Tm) € [n]™ can be represented as the
set of points Gx = {(x,1) | i € [n]|}, where the x-axis represents the key and the y-axis represents time
(see Figure 1).

By construction, in G x, no two points share the same y-coordinate. We will say such a set has “distinct
y-coordinates”. In addition, we note that it is fine to restrict our attention to sequences X without repeated
values.* The geometric view G x of such sequences also has no two points with the same z-coordinate. We
will say that such a set has “distinct z- and y-coordinates”.

*Indeed, Appendix E in [CGK T 15] gives a simple operation that transforms any sequence X into a sequence split(X) without
repeats such that OPT (split(X)) = ©(OPT(X)). Thus if we found a tight lower bound L(X) for sequences without repeats, a
tight lower bound for general X could be obtained as L(split(X)).



Definition 5 (z- and y-coordinates). For a point p € R?, we will denote its x- and y-coordinates as p.x and
p.y. Similarly, we define P.x = {p.x | p € P} and P.y = {p.y | p € P}.

We start by defining the mixing value of two sets: a notion of how much two sets of numbers are
interleaved. It will be useful in defining both the Alternation bound and the Funnel bound. We define it in a
few steps.

Definition 6 (mixing string). Given two disjoint finite sets of real numbers L, R, let mix(L, R) be the string
in {L,R}* that is obtained by taking the union L U R in increasing order and replacing each element from
L by L and each element from R by R. For example, mix({2, 3,8}, {1,5}) = RLLRL.

Definition 7 (number of blocks). Given a string s € {L,R}*, we define blocks(s) as the number of contigu-
ous blocks of the same symbol in s. Formally,

blocks(s) 0 if s is empty
ocks(s) =
1+ #{i | s; # sit+1} otherwise.

For example, blocks(LLLRLL) = 3. Note that if we insert characters into s, blocks(s) can only increase.

Definition 8 (mixing value). Let mixValue(L, R) := blocks(mix(L, R)) (see Figure 5).

Figure 5: A visualization of mixValue({1, 3,6}, {4,7,8}) =4

The mixing value has some convenient properties, which we will use later:
Fact 9 (properties of mixValue). Function mixValue(L, R) is:
(i) symmetric: mixValue(L, R) = mixValue(R, L);
(ii) monotone: if Ly C Lo and Ry C Ry, then mixValue(L1, R1) < mixValue(Ls, R2);

(iii) subadditive under concatenation: if L1, Ry C (—oo,x] and Lo, Re C [z, +00), then mixValue(L; U
Lo, R U RQ) < miXValue(Ll, Rl) + IniXValue(Lg, Rg).

Finally, mixValue(L, R) < 2-min(|L|, |R|) + 1.
We now give precise definitions of Wilber’s two bounds.’

Definition 10 (Alternation bound). Let P be a point set with distinct y-coordinates, and let T be a binary
tree in which leaves are labeled with elements of P.x in increasing order, and each non-leaf node has two
children.

>These definitions may differ by a constant factor or an additive +O(m) from the definitions the reader has seen before. We will
ignore such differences, because the cost of a BST also varies by =0 (m) depending on the definition, and the interesting regime is
when OPT(X) > m.



We define Alt1(P) using the recursive structure of T. If T is a single node, let Alt(P) := 0. Otherwise,
let Tr. and Ty be the left and right subtrees at the root. Partition P into two sets P, == {p € P | p.x € T.}
and Py = {p € P | p.x € Tr}. Define quantity

a(P,T) = mixValue(P..y, Pr.y),
which describes how much P, and Py are interleaved in time. Then
Alt7(P) == a(P,T) + Alt7, (P.) + Alt 7 (Pr). (1)
In addition, for an access sequence X, let Altr(X) = Alt7(Gx).

Definition 11 (axis-aligned rectangle delimited two points). Given two points p and q with distinct x- and
y- coordinates, let Ulpq be the smallest axis-aligned rectangle that contains both p and q. Formally,

Opq = [min(p.z, ¢.x), max(p.z, ¢.z)] x [min(p.y, ¢.y), max(p.y, ¢.y)]-

Definition 12 (empty rectangles). Let P be a point set. Given p,q € P, we say Opq is empty® in P if
PN Opg = {p,q} (see Figure 6).

p s

Upq is empty UOrs is not empty
Figure 6: Some axis-aligned rectangles

For the next definitions, it is helpful to refer back to Figure 3. In particular, F1.(P, p) and Fg(P, p) (the
left and right funnel) correspond to the points marked with L and R.

Definition 13 (left and right funnel). Ler P be a point set. For each p € P, we say that access q € P is in
the left (resp. right) funnel of p within P if q is to the lower left (resp. lower right) of p and Ulpq is empty.
Formally, let

I (P,p)={q€P|qy<pyAqz<pzAPNOpg={pq}t}
and

Fp(P,p)={q€P|qy<pyAgqz>pz A PNOpg={p,q}}.
We will collectively call Fy(P,p) U Fx(P, p) the funnel of p within P.

Definition 14 (Funnel bound). Let P be a point set with distinct y-coordinates. For each p € P, define
quantity
f(Pv p) = mixValue(FL(P, p)yaFR(P? p)y)7

which describes how much the left and right funnel of p are interleaved in time. Then

Funnel(P) = Zf(P,p).

peP

In addition, for an access sequence X, let Funnel(X) := Funnel(Gx).

SThis corresponds to the notion of “unsatisfied rectangle” in [DHI™09].



3 The Funnel bound dominates the Alternation bound

We prove that Funnel dominates Alt in two parts: in Section 3.1 we show that Alt(X) is dominated by the
sum Funnel(X) + Funnel(X), where X is the reverse of X, then in Section 3.2 we prove that Funnel(X) ~
Funnel(X) using our new characterization of Funnel by z-rectangles.

3.1 Upper-bounding the Alternation bound by a sum of two Funnel bounds

Definition 15 (time reversal). The time reversal of a point p € R? is p = (p.x, —p.y).” The time reversal
of a point set P is P :== {p | p € P} (see Figure 7).

x P X
P P
Figure 7: A point set and its time reversal

We first prove the following lemma.

Lemma 16. Let P be a point set with distinct y-coordinates, and let T be a tree that satisfies the conditions
of Definition 10. Then Funnel(P) + Funnel(P) > Alt7(P).

Even though the formal proof of this lemma is a relatively involved case analysis, it is easy to understand
geometrically. The key observation is the following. Consider two sequences X1, and Xy on disjoint ranges,
and interleave to form a single sequence X . Then the more times we switch from elements of X1, to elements
of Xg, the bigger Funnel(X) + Funnel(X) is going to be.

To see this, let’s look at the geometric view of X (see Figure 8). Let p and ¢ be two consecutive points
on the X side that are separated by a streak of points from Xy (i.e. all accesses between p and g vertically
are from X3). First, assume p.x > ¢.x. Then ¢ is in the left funnel of p, and at least of the points on the
Xg between p and g must be in the right funnel of p, which forms a completely new group of funnel points
compared to what p had in Xi. This means that the contribution of p to Funnel(X) is at least one higher
than its contribution to Funnel(X1).

What if p.x < q.x instead? Then it turns out that an analogous argument can be made on q if we take the
time reversal of X. That is, the contribution of g to Funnel(X) is at least one higher than its contribution to
Funnel(XL). Indeed, if we flip the point set vertically, then p and g exchange roles, which means p.x > q.z
once again.

To conclude, it remains to observe that the a(P,p) term in the recursive definition of Alt7(X) is
precisely a measure of how much the subsequences X and Xy corresponding to the left and right sub-
tree at the root of 7 are interleaved. So we can apply the argument above by induction to show that

Funnel(X) + Funnel(X) > Alt7(X). We now reluctantly move to the formal proof.

Proof. We prove this by induction on 7. The base case is 7 made of a single node. In this case, Alt7(P) =
0 by definition, so the inequality trivially holds.

Now consider a general tree T, and define 71, 7z, P and P as in Definition 10. Note that each leaf of
7T has a label in P.z and 71, and Tg must each have at least one leaf, so P, and Py are not empty. Let’s apply

"The notation is inspired from the notion of complex conjugate, which is also a vertical flip.
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Figure 8: Interleaving sequences X1 = (3,5,2,4,1) and X = (8,6,9,7) into X = (3,8,5,2,6,9,7,4,1).
The contribution of p to Funnel(X1) is 3, while the contribution of p to Funnel(X) is 4.

the induction hypothesis on (P, 71.) and (P, Tr). This means that

Funnel(P,) + Funnel(P.) > Alty (R.)
Funnel(PR) + Funnel(PR) > Altr, (FR).
Thus we find that
Altr(P) = a(P,T) + Alty; (PL) + Alt7; (FR) (by definition)

< a(P,T) + Funnel(R.) + Funnel(R.) + Funnel(F) + Funnel () (2)
Claim 17. Ifp € P, then

f(P,p) = f(Pr,p) and [f(P,p)= f(P.D);

and if p € Py, then o o

Proof. We will deal with the first case (the other three cases are symmetric). The key is that P and Py
operate on disjoint ranges of x-coordinates.

e The left funnel of p within P is identical to its left funnel within P, since all elements of Fy are to
the right of p. Formally, fi.(P.,p) = FL(P,p).

* All points g that were in the right funnel of p within P, will still be part of the right funnel of p within
P. Indeed, the only way for them to stop being funnel points would be to add accesses inside the
rectangle delimited by p and ¢. This doesn’t happen because all points in Fy are strictly to the right of
all points in P. Formally, fz(P.,p) C Fr(P,p).

Therefore, mix(f.(P,p).y, fx(PL,p).y) is a subsequence of mix(FL(P,p).y, Fr(P,p).y), which means
that

f(Pva) = blOCkS(miX(fL(PL’p)a fR(Pva))) < blOCkS(miX(FL(P’p)’ FR(P’p))) = f(P’p)



Summing up f(P, p) and f(P,p) over all points p € P, we obtain

Funnel(P Z f(P,p) Z f(P,p)+ Z f(Pr,p) = Funnel(PL.) + Funnel(FR)

peEP pER, pPEP (3)
Funnel(P Zf Z f(P.,p) + Z f(Pg,p) = Funnel(P.) + Funnel(P3).
peEP pER, PER

This, combined with (2), gives

Funnel(P) + Funnel(P) > Funnel(P,) + Funnel(P:) + Funnel(P.) + Funnel(F)
> AltT(P) - CL(P, T)

This falls a(P, T') short of our goal (which makes sense, since we haven’t used the interleaving of P, and
Py yet). To fix this, we will show the following claim.

Claim 18. Consider the following properties defined over a point p € P:
(a) p € TLand f(P,p) > f(F,p) +1
(b) p € T.and f(P,p) > f(P,P) +1;
(c) p € Tnand f(P,p) = f(Pr,p) +1;
(d) p € T and f(P,p) > f(F,D) + 1.

The sum of the number of points in P having each property (a)—(d) is at least a(P,T).

Proof. Let’s number the points of P by increasing y-coordinate (i.e. in chronological order) as p1, ..., pm.
Recall that a(P, 7)) = mixValue(Py..y, Pr.y). Also, P, and P are non-empty, so a(P,7) > 2. This means
that as we go through the points p1, ..., pm, we switch a(P,7) — 1 > 1 times between points of P, and
points of F.

Therefore, there are exactly a(P,T) — 2 pairs of indices (¢, j) with i + 1 < j such that

e case 1: p;,p; € PLbutpjyq,...,pj—1 € g, or
* case 2: p;,p; € Bybutpitq,...,pj—1 € P,

which “straddle accesses of the opposite side”. Also, there is an index ¢* > 1 (the “first element of the side
that starts appearing later”) such that

* case 3: p; € PLbutpy,...,pix—1 € PR, or
e cased: pix € Ppbutpy,...,pix—1 € P

and similarly, there is an index j* < m (the “last element of the side that finishes appearing earlier”’) such
that

e case 5: pjx € PLbutpji1,...,pm € Py, or
e case 6: pjx € Prbutpj«y1,...,pm € L.

This makes for a total of a(P,7) —2+ 1+ 1 = a(P, T) occurrences of one of the six cases. We will show
that each of them leads to a point p satisfying one of the properties (a)—(d). More precisely, we claim that:

e case 1 implies p; has property (a) or p; has property (b);
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e case 2 implies p; has property (c) or p; has property (d);
* case 3 implies p;~ has property (a);
* case 4 implies p;~ has property (c);
e case 5 implies p;+ has property (b);
e case 6 implies p;+ has property (d).

We will show this for case 1 and case 3. The other four cases are analogous. To treat case 1, let’s separate
into more cases.?

e If p;.x < pj.x, then p; is in the left funnel of p; within both P and 7. But within P, p; 1 would
be an additional right funnel point. Since it has a higher index than p;, this would add at least 1 to
f(P,p;) compared to f(PL,p;). In other words, f(P,p;) > f(PL,p;) + 1 (scenario (a)).

* If p;.x > pj.x, then we can use the same argument as above on P and P, by swapping i and j,
obtaining f(P,p;) > f(P.,Pi) + 1 (scenario (b)).

* If p;.x = p;.x, then both funnels of p; within P, are completely empty, which means that f (P, 7(j)) =
0, while the right funnel of p; in P would contain at least p;_;. Therefore, f(P,p;) = 1 >
f(Pr,pj) + 1 (scenario (a)).

To treat case 3, it suffices to observe that both funnels of p;+ within P, would be completely empty (for
lack of lower points), so f(P.,p;) = 0, while in P the right funnel of z;+ would contain at least p;«_1.
Therefore, f(P,pi+) > 1= f(P.,pix) + 1 (scenario (a)). O

Now, if we sum up f(P,p) and f(P,p) over all points p as we did in (3), but this time also apply
Claim 18, we obtain that

Funnel(P) + Funnel(P) > Funnel(P.) + Funnel(F) + Funnel(P.) + Funnel(RR) + a(P,T).
Combined with (2), this gives the desired result and concludes the inductive step. O

3.2 Characterizing the Funnel bound using z-rectangles

Lemma 16 asserts that all possible Alternation bounds for all choices of reference trees T, are simultane-
ously upper-bounded by the sum of two specific Funnel bounds. While this is already a nontrivial bound,
Funnel(P) and Funnel(P) could in principle be wildly different, and it is therefore more compelling to
show that the single quantity Funnel(P) already provides an upper bound. (It is curious that the symmetry
properties of the Funnel bound, which are a necessary precondition for dynamic optimality, already enter
the picture in determining the relationship between Wilber’s bounds.)

To achieve this, we need to think about how geometric transformations affect the value of the Funnel
bound. It is clear from the definition that Funnel(P) is unaffected by a horizontal flip. Indeed, the left
funnel would become the right funnel and vice versa, so this wouldn’t affect the number of times we switch
between the two: the quantity f(P, p) would remain the same for each p (see Figure 9).

On the other hand, it is far from obvious that the Funnel bound is unaffected by a vertical flip. Because
of the time reversal, the notion of funnel changes completely. And indeed, the precise value will change, as
is shown in Figure 10.

Nevertheless, we will show that for any point set P with distinct z- and y-coordinates, Funnel(P) and
Funnel(P) are equal up to an additive O(m). We do this by introducing a new characterization of the Funnel
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Figure 9: Flipping the geometric view horizontally conserves the contribution f(P,p) of each point: the
only change is that the labels of the funnel points flip between L and R.

2 1
* *
0 X 0o~
X X

Funnel(P)=0+1+2=3 Funnel(P) =0+1+1=2

Figure 10: A minimal example such that Funnel(P) # Iiunnel(?) is P ={(1,1),(3,2),(2,3)}. Each
access p is labeled with its contribution f (P, p) (left) or f(P,p) (right).

bound that is naturally invariant under 90° rotations of the point set. This new characterization is the number
of z-rectangles.

Definition 19 (z-rectangle). Let P be a point set. We call tuple (p,q,r,s) € P* a z-rectangle of P if the
following conditions hold:

(i) gz <px <rzx<sxz
(ii) ry < q.y < s.y < p.y;
(iii) PO [q.x,s.x] x [ry,py] ={p,q,7,s}.

In other words, a z-rectangle is a subsequence of 4 accesses with key values in relative order 3,1,4, 2
and such that the axis-aligned rectangle that they span is empty (see Figure 11 for an example). We define
the corresponding quantity, which we will prove is equivalent to the Funnel bound.

Definition 20 (z-rectangle bound). For any point set P with distinct x- and y-coordinates,’ let
zRects(P) = |{(p,q,7,8) | (p,q,7,s) is a z-rectangle of P}|.
First, we formally state the rotation-invariance of z-rectangles.

Definition 21 (counter-clockwise 90° rotation). For a point p € R?, let pt = (—=p.y,p.z). Analogously,
for a point set P, let P+ = {p* | p € P}.

8We wish we were joking.
°If the z- and y-coordinates are not distinct, zRects(P) may give absurd results. For example, if we start with any P and add a
duplicate point (x, y + €) for every point (z,y) of P (with ¢ small enough), then zRects(P) will drop to 0.

11
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Figure 11: A z-rectangle. The relative order of points p, g, r, s horizontally and vertically matters.

Lemma 22. For any point set P, zRects(P) = zRects(P1).

Proof. Each z-rectangle of P induces a z-rectangle in P and vice-versa: z-rectangle (p, ¢, 7, s) in P be-
comes z-rectangle (s, p, ¢, r+) in P+ (the reader is encouraged to physically rotate the page containing
figure 11 in order to convince themselves of this fact). Therefore, P and P+ have the same number of

z-rectangles. O
We now prove the relation between Funnel(P) and zRects(P) in two steps:

Lemma 23. zRects(P) > Funnel(P)/2 — O(m).

Lemma 24. Funnel(P) > 2 - zRects(P).
Note that we will use the fact that P has distinct x- and y- coordinates.

Proof of Lemma 23. We will show that for each p € P, the funnel of p induces at least | f(P,p)/2] — 1
different z-rectangles of the form (p, -, -, -). Summing this up for each p then completes the proof.

Let’s assume f(P,p) > 4; otherwise the claim holds vacuously. Let’s number the points in Fi (P, p) U
Fx(P,p) (the funnel of p) by increasing y-coordinate as aj,as,...,a;. Note that [ may be greater than
f(P,p), because a sequence of funnel points that are all on the same side of p counts only for 1 in f (P, p).

We will call (i,7) € [l a left-straddling pair if i + 1 < j, a;.x > p.z and aj.x > p.x, but for all
1t <k < j,ap.x < p.x. Thatis, a; and a; are to the right of p but all funnel points between them are to the
left of p. Because funnel points alternate f(P,p) — 1 times between the left and the right of p, there must
be at least | f(P,p)/2] — 1 left-straddling pairs.

We claim that if (4, j) is a left-straddling pair, then (p, a;4+1,as,a;) is a z-rectangle. Since all left-
straddling pairs have distinct 4, this produces | f(P,p)/2]| — 1 distinct z-rectangles.

First, we verify that p, a; 11, a;, a; have the correct relative positions. The order in y-coordinate is correct
by definition of the numbering aq, ..., ag. For the order in x-coordinates, we know that a; 1 is to the left
of p and a;, a; are to its right, so we only need to verify that a;.x < aj.xz. This is true because a; is in the
funnel of p, so Lpa; must be empty. If a;.x > a;.z, then a; would be in Upa;.

What we still need to prove is that rectangle [a;41.2,a;.2] X [a;.y,p.y] is empty (except for points
D, Gi+1, a;, a; themselves). First, since a;, a;+1 and a; in the funnel of p, we know that Upa;, Upa; 1 and
Upa; are empty. This covers the zones pictured in Figure 12.

Finally, we will prove that Ua;a; 1 and Ua;a; are empty, which covers the missing parts.

* Assume [Ja;a;41 is not empty, and let b be the highest point of P in it (except for a; and a;11). We
have already shown that [Upa; and (pa;41 are empty, so Upb must be empty. This means that b must
be in the funnel of p. But a;.y < b.y < a;4+1.y, so this contradicts the numbering by increasing
y-coordinate.

12
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a;

Figure 12: Proposed z-rectangle (p,a;1,ai,a;) with empty rectangles Opa;, Opaitq and Opa; high-
lighted. If in addition we can prove that Ua;a; 1 and Ua;a; are empty, then this is a valid z-rectangle.

* Assume [a;a; is not empty, and let b be the highest point of P in it (except for a; and a;). We have
already shown that [pa; and Upa; are empty, so Llpb must be empty. This means that b must be in
the (right) funnel of p. But this contradicts our assumption that all funnel points between a; and a; in
y-coordinate must be to the left of p.

Since points p, a;+1, a;, a; and [a;41.2, a;.x] X [a;.y, p.y] is empty, (p, a;y1,a;,a;) is a z-rectangle. This
completes the proof of Lemma 23. O

Proof of Lemma 24. Essentially, the reason why this is true is because all z-rectangles must be exactly of
the form described in the previous proof. We will prove something slightly weaker which still reaches the
desired result. We will group the z-rectangles by their top point and show that if P has k rectangles of the
form (p, -, -, ), then f(P,p) > 2k.

Fix p, and sort the k z-rectangles by the increasing y-coordinate of their bottom point . Name their
points (p, q1,71,51) to (p, gk, Tk, k). First, we will show that there can be no ties. Indeed, if 7.y = 7;.y
then 7; = r;. Also, when the p and r (top and bottom) points of a z-rectangle are fixed, then the other two
points g and s are uniquely determined as the rightmost point in (—oo, p.z] X [r.x,p.z] and the leftmost
point in [r.z, 00) X [r.x, p.z], respectively.

We will now prove that

q1y < s1.Y < gy < s2.y < -+ < QY < Sg.y. @

The g;.y < s;.y inequalities are true by the definition of a z-rectangle, so we only need to prove s;.y <
gi+1-y- To do this, consider two consecutive z-rectangles (p, q;, 7, 8;) and (p, gi+1,7i+1, Si+1) (see Fig-
ure 13). Since r;.y < 7;41.Y, s; can’t be strictly to the right of ;4 1, because otherwise ;11 would be inside
z-rectangle (p, ¢;,7i, $;). In turn, this means that s; can’t be strictly higher than 7;, 1 because otherwise it
would be inside Upr; 1. Therefore, we have s;.y < 7;11.y < ¢i41.9.

p

Si+1
qi+1

r
S +1

i X

could be the same point

Ti

Figure 13: The only possible relative position of two z-rectangle with the same top point p

Points q1, s1, . - ., gk, Sk are all in the funnel of p by the definition of z-rectangle. Therefore, Equation (4)
reveals 2k funnel points that alternate from the left to the right side of p with increasing y-coordinates. Thus
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mix(FL(P, p).y, Fr(P,p).y) contains a subsequence LRLR - - - LR of length 2k, and

f(P,p) = blocks(mix(FL(P, p).y, Fr(P,p).y)) > blocks(LRLR- - - LR) = 2k.
length 2k

Summing this up for each p completes the proof. O
Corollary 25. Funnel(P) > Funnel(P) — O(m).

Proof. By the left-right symmetry of Funnel(-), we know that Funnel(P) = Funnel(P++), where P+ is
P rotated by 180°. Therefore,

Funnel(P) > 2 - zRects(P) (Lemma 24)
= 2. zRects(P1) (Lemma 22)
> Funnel(P+1) — O(m) (Lemma 23)

= Funnel(P) — O(m).

We can now finally prove Theorem 1.

Proof of Theorem 1. By Lemma, Alt7(P) < Funnel(P) + Funnel(P). Combining this with Corollary 25,
we obtain Alt7(P) < Funnel(P) + (Funnel(P) + O(m)) < O(Funnel(P) + m). O

4 Separation between the Alternation bound and the Funnel bound

We will now define an access sequence X such that the Alternation bound is too low for all reference trees T~
simultaneously. More precisely, we will define an access sequence X € [n]™ such that Alt7-(X) = O(m)
for all trees 7 while on the other hand OPT(X) and Funnel(X) are ©(mlglgn). This lglgn factor is the
biggest possible separation: indeed, Tango trees show that for a balanced tree 7, Alt7(X) is always within
O(lglgn) of OPT(X).

To define X, we will need the notion of a bit-reversal sequence. This is a permutation that in a sense
looks “maximally shuffied” to a binary search tree.

Definition 26. Let k be a positive integer and let K = 2%. Then let bitReversal® ¢ {0,--- , K — 1}X
be the sequence where bitReversali»c is the number obtained by taking the binary representation of i — 1,
padding it with leading zeroes to reach length k, flipping it, then converting this back to a number.

It is easiest to understand through an example. Take k = 2, then bitReversal® is obtained this way:

to binary

(0,1,2,3) 2™ (00,01,10,11) 2% (00,10, 01, 11)

from binary

(0,2,1,3).
The following well-known fact will be useful later.

Fact 27. Let T be the complete binary tree of height k which has K leaves labeled 0 through K — 1. Then
Alty(bitReversal®) = kK = K1g K.

Proof. Because of the way bitReversal” is defined, for each node u € T, the keys that are accessed below u
as the sequence is processed constantly alternate from u’s left subtree to u’s right subtree. So the contribution
of u is exactly the number of keys of its subtree. This way, every key is counted once at each of the k = 1g K
levels, so the total is K lg K. ]
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Figure 14: A schematic view of sequence X for k = 2. Each part S; is made of K = 2% = 4 accesses.
There are n = 25 = 16 distinct keys and the length of X is m = (16/2 + 1)nK = 576.
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We can then define our access sequence as follows. Let n = 2% = 22° and let
q
S; = (2 + 2bitReversa1’f’ i+ 2bitReversa112€, i+ 2bitReversa1’;<)_

Then, denoting concatenation by o, we define

X =80---08y0S;0---08{0---0 nj2 008y,

n times n tumes n times

The range of X is [m] and its length is m = (241)-n-K = O(n?1gn). See Figure 14 for an example with
k = 2. We will prove that for all 7, Alt7(X) < O(m) while on the other hand Funnel(X) > Q(mlglgn).

Lemma 28. Forany T, Alt7(X) < O(m).

Note that the only reason we use bitReversal® in X is to make Funnel (X ) large. Replacing bitReversal®
by any other permutation of {0, ..., K — 1} would not affect the proof of Lemma 28 in any way because
that proof only looks at the ser of keys that are hit by each of the parts So, . .., S, /2.

The general intuition of the proof is that while one tree could give a high lower bound for one of the
sequences S;, no tree can give a high lower bound on average over all S;. The reason is that, given the
geometric spacing of each S;, any way to split an interval of keys into two will typically (on average over
1) leave almost all the keys of S; in either the left or the right part (Claim 30). Therefore, it is impossible to
split the keys into subtrees in a way that would ensure a high number of alternations.
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Proof. First, we decompose X into substrings Sp o - - - 0 Sp through S, ;5 0 - - 0.5}, /5. Let’s denote them as
So *n, S1%n, ..., Sy/9 * n. Because of the subadditivity of mixValue under concatenation (Fact 9), we

have
n/2

Alty(X) <) Altr(S; % n). (5)
i=0
We will upper-bound the sum ), Alt7(S; * n) by induction on the recursive definition of Alt7(-).
Concretely, let 7 be a subtree of 7, and let 7.*, Tz * be the left and right subtrees of 7*. Let s, sy, and sy be
the number of keys in 7, 7. and 75" (note that s = s;, + sg). For each i, let P be the subset of P(.S; *n)
corresponding to keys in 7, and let P}, P be the same for 7. and 7z*. We will prove the following
claim by induction:

Claim 29. For some constant C' > 0,

n/2
Z Altr«(P") < (s—1)(n/2+ 1) +2Cnslgs.
=0

The base case is when 7 * is a single node. Then Alt7~(S; * n) = 0 for all 4, while s = 1, so the result
holds. To deal with the inductive step, we will need make a few tools first. By definition of the Alternation
bound (Definition 10), for each ¢ we have

Altr=(P;) = a(P], T7) + Alty+ (PL) + Altg= (PR). 6)
The challenging part is how to deal with a(P;", 7). By Fact 9, we have
(P, T") = mixValue(P}y.y, Pp.y) < 2-min(| P [, [Pg]) + 1.

Summing this up over all ¢, we get

n/2 n/2 n/2
Yoa(Pf T <Y (2-min((PLl | PRl +1) = (n/2+1) +2- Y min(| P, [PR). ()
=0 1=0 1=0

Claim 30. For some constant C > 0,

n/2 s .
- . sy lg 2 if sy < sg, and
> min(|P7], [Pgl) < Cn- !

i=0 sp 1g Py if sg < sr.

Proof. To simplify the notation, let’s say that the keys in 7.* are in range [a, b] and the keys in Tg* are in
range [b, ¢, for some real numbers a, b, c with b — a = s and ¢ — b = s5.'°

For each 7, let V; = {i +2°,... i + 251} be the set of values that are hit by sequence S;. Then [P
(resp. |P;L]) is exactly n times the number of elements of V; that are in [a, b] (resp. [b, ¢]). Let’s name this
number of keys I; (resp. ;). We will instead prove that

n/2

3" min(l;, ) < O <5L lg 5) if 5. < sg, and (8)
‘ SL

1=0

n/2 s

Zmin(li,n) <0 <SR lg S) if sp < st. 9)
i=0 R

1We can for example fix a to the first key of 7.* minus %, b to the last key of 71" plus %, and c to the last key of 7z* plus %
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Once this is proved, C' can the be set to the maximum of the two constants hidden inside the O(-)s.

We first make a general observation. Look at set V; = {i + 2% ...,i 4+ 27 ... } in increasing order.
Note that after i + 27, all further elements are spaced by at least 27. In order for min(l;, ;) to be non-zero,
we need to have at least two elements of S; in [a, c|: specifically, one in [a, b] and one in [b, ¢]. But this
means that i + 2/+1 € [a, ] isn’t acceptable for j > lgs: indeed, the closest other point in .S; is more
than s away, so it must outside of [a, c|. Therefore, in bounding »  min(l;, 7;), it is fine to imagine that the
elements i + 29+ for j > lg s simply do not exist.

Let us now prove (8). Assume s;, < sg. We split into two cases:

» “Far” case: ¢ < a — sp. Since ¢ is further from [a,b] than its size si, this means that [a, b] can
only contain at most one point from S;. So [; < 1. Besides, that (potential) single point must have
7 < 1+ 1gs (see above) and j > lg sy (because we have ¢ + 2J > a). And of course, we have
in addition that i + 27 € [a,b]. Therefore, this limits the number of possible values of i to at most
sL(2 +1g s —1g s.), and since [; < 1, this also limits the total contribution to > min(l;, 7;).

* “Close to right” case: ¢ > a — sp. Then we also have ¢ > b — 2s.. Since we need I; # 0 to have
some contribution, we must have ¢ < b, so the total number of possible values of ¢ is limited to 2s.
Let’s consider the values of j such that i + 27 can lie in [b, c], the right part. We already know that
J < 1+ 1gs, but we have no lower limit, as ¢ could be very close to b. However, values of j much
smaller than lg s; will be only for the few values of ¢ close enough to b.

More precisely, we study the contribution of each j to ) r; into two groups:
— j > lg sy there are 2 + 1g s — lg sp, such values j, and there are 2s;, possible values of ¢, so the
total contribution is at most 2s1,(2 + 1g s — lg s1.).

— j < lgsy: as j decreases, the number of acceptable values of ¢ decreases exponentially. The
number of values of i for which i 4+ 27 € [b, ] for j < lg sy — [ is at most s /2. Therefore, the
overal contribution is at most sy, + s./2 + - -+ < 2sp.

All those quantities are upper bounded by O(s1.(1 + lg(s/s1))), which under the assumption s, < sg, is
also bounded by O(s, 1g(s/s1)).
We now prove (9) in a very similar way. Assume sp < sg.

» “Far” case: ¢ < b — sg. The argument is analogous to the “far” case for (8), but considering 7; this
time. We obtain a contribution of at most sg (2 + g s — 1g sg).

* “Close to right” case: ¢ > b — sg. The argument is analogous to the “close to right” case for (8), but
with a distance of sy instead of 2s;, this time. We obtain contributions of at most sg(2 + lg s — 1g sg)
and 2sg for the two subcases.

All those quantities are upper bounded by O(sg(1 + 1g(s/sg))), which under the assumption sg < si, is
also bounded by O(sg 1g(s/sg)). O

We are now ready to finish the induction step.
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Proof of Claim 29. We define C to be the same as in Claim 30. We have

n/2 n/2
D Al (PF) = (a(P7, T%) + Aleg- () + Al (Piy)) (by (6))
=0 i=0
n/2
< Za(Pi*, T+ (s —1)(n/24+1)+2Cnsplg sy + (sg — 1)(n/2 + 1) + 2Cnsg lg sg
=0
(inductive hypothesis)
n/2
<

(n/2+1)+2- Zmin(]P:LL ’P:RD
i=0

+ (s. —1)(n/24+ 1)+ 2Cns.lg sy + (sp — 1)(n/2 + 1) + 2Cnsglg s (by (7))

n/2
<(s—=1)(n/2+1)+2Cn(splgs. + sglgsg) +2- Zmin(|P{fL\, | P&l
i=0
(s = 8L+ sR)
All we need to show is that
n/2
Cn(sulgse + salgsn) + Y min(| Py, |Pal) < Cn(slgs).
i=0
Let’s assume that s;, < sy (the other case is identical). Then by Claim 30,
n/2 s
Cn(s.lg s + splgsp) + Z min(| P} |, [PR]) < Cn(stlgsL + sglgse) + Cnsy 1g -
i=0 L
< Cn(sLlgs+ splgsr)
< Cn(s.lgs+ splgs)
= Cnslgs.
This completes the proof of Claim 29. O
Applying Claim 29 to the full tree 7, which has n keys, we get
n/2
Altr(X) <Y Alty(S; = n) (by (5))
i=0
< (n—1)(n/2+1)+2Cn?Ign (Claim 29)
< O(n*1gn)
= O(m).
O

Lemma 31. Funnel(X) > Q(mlglgn).

Proof. From the definition of Funnel(-) (Definition 14), it is easy to see that for any two sequences S and
T, Funnel(S o T') > Funnel(S) + Funnel(T'). Indeed concatenating S and 7" does not affect the funnel of
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each point in S, and can only add points to the funnel of each point in 7I". Therefore,

n/2
Funnel(X) > nz Funnel(S;). (10)
i=0

Since Funnel(-) only depends on the relative order of the keys in the access sequence, not on their exact
value, we have Funnel(S;) = Funnel(bitReversal®) for each i. Besides, defining 7 to be the complete
binary search tree of height k as in Fact 27, we have

Funnel(bitReversal®) > Q(Alt7(bitReversal®)) — K (by Theorem 1)
>QKIlgK) - K (by Fact 27)
> Q(K1gK).

Combined with (10), this gives Funnel(X) > n-(n/2+1) - Q(KlgK) > Q(mlg K) = Q(mlglgn). O
The combination of Lemma 28 and Lemma 31 shows the separation claimed in Theorem 2.

S Towards an equivalence between the Funnel bound and the Independent
Rectangle bound

The Independent Rectangle bound IRB(P) of [DHIT09] is currently the highest known lower bound on
OPT(P), as both the Alternation and Funnel bounds have been proven to be special cases of it. Nev-
ertheless, in contrast to Funnel(P), the quantity IRB(P) is complicated to analyze as it is a maximum
over a constrained family of lower bounds. Therefore, proving that Funnel(P) is actually equivalent to
it (in accordance to Wilber’s conjecture) could provide a major analytical tool for analyzing candidate
optimal trees (e.g. GreedyFuture and splay trees). IRB(P) is equal (up to constant factors) to the sum
IRBz(P) + IRBN(P),11 which are defined as the result of a sweeping line algorithm in point set P. No
relationship is known between IRBz(P) and IRByg(P), but we conjecture that they are equal up an additive
O(m).

Algorithm 32 (Algorithm 4.3 in [DHIT09]). Sweep the point set P with a horizontal line by increasing
y-coordinate. When considering point p on the sweep line, for each empty rectangle Upq formed by p and
a point q to its lower left, add the upperleft corner of Upq to the point set. Let addZ(P) be the set of all
added points (excluding the points originally in P), and let IRBp(P) = |addp(P)|.

The set addyg(P) and quantity IRByg(P) := |addyg(P)| are defined in an analogous way, but consider-
ing q to the lower right of p instead. The following figure illustrates this process. From now, we will make
the distinction between accesses (points of P, drawn as crosses) and added points (points of addz(P) or
addyg(P), drawn as dots). See Figure 15 for an example of the computation of add(P) and addg(P).

Remark. As shown in [DHIT09], all points r in addp(P) correspond to empty rectangles of P in the
following way. Let a be the highest access of P below r such that r.x = a.x, and let b be the access of P
such that r.y = a.y. Then Jab N P = {a, b}. In other words, a is in the left funnel of b (Definition 13).

In this section, we prove that when P contains only a constant number of z-rectangles, then addp(P)
is linear in m, or more precisely:

' Actually, [DHIT09] uses IRBZ(-) and IRBN(-) to refer to sets of rectangles. Here, by IRBZ(~) and IRBN(v) we actually
refer to the size of those sets.
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Figure 15: Running Algorithm 32 (and the analogous algorithm on the right) to compute IRB(P) and
IRByg (P)

Theorem 33. For any point set P with distinct x- and y-coordinates,
IRBp1(P) < O(m) + m - zRects(P).

Note that in case Funnel(P) matches IRB(P), which is strongly believed to be true, then the statement
could be improved to
IRBz(P) < O(m + zRects(P)).

Nevertheless, the current theorem is good news for the possible optimality of the Funnel bound. The proof
is a straightforward charging argument, and is a consequence of the following key lemma.

Lemma 34. Let a and b be two points in the left funnel of ¢, with b to the upper left of a (a,b,c € P). Then

either P has no points in [b.x,a.x] X [c.y,00), or the lowest point in that region d is part of a z-rectangle of
the form (d, -, -, ).

[b.z, a.z]
e d could be the same point
«— empty up to infinity / [
, y
x C x C
b x b %
X
X
x b3
a a
[b.x,a.x] X [c.y,00) is empty d is the top point of a z-rectangle

Figure 16: The two cases of Lemma 34. Rectangles Uac and [lbe (in light gray) are empty.

Proof. We start by proving this for a and b that are consecutive left funnel points. That is, we assume that
there is no point @’ in the left funnel of ¢ with a.y < a’.y < b.y. First, we observe that

[b.x,c.x] X [a.y,cyl N P = {a,b,c}. 11

Indeed, since a, b are in the left funnel of ¢, we know that
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s [a.x,c.x] X [a.y,cyl N P ={a,c};
e [b.x,cx] x [by,cylNP ={b,c};

and besides, if there were a point in [b.x, a.z| X [a.y, b.y] N P, then the highest of them would also be in the
left funnel of ¢ and would contradict the consecutiveness of a and b.

Now, assume that P contains a point in [b.x, a.z] X [c.y,c0) and let d be the point among those with
lowest y-coordinate. Let ¢’ be the point in (a.z,00) X [a.y, d.y] with least z-coordinate. Note that ¢ is an
acceptable candidate, so ¢’ exists and .z < c.x.

The definitions of d and ¢’ imply respectively that

e b.x,a.x] X [cy,dy] NP ={d};
e (a.x,d.z] X [a.y,dy] NP ={}.
Therefore, combining those with (11), we obtain that
[b.z,c 2] X [a.y,dy] N P = {a,b,c,d}.

Also, again using (11) and the fact that ¢.x < c.z, we can deduce that ¢’.y > c.y > b.y. Therefore, we
have
br<dr<ar<dxanday<by<dc.y<dy

which means that (d, b, a, ¢’) is a z-rectangle.

Now, suppose a and b are not consecutive left funnel points, and let @/, - - - , a}, be the left funnel points
between them, by increasing y-coordinate (see Figure 17). Then we can apply the above argument, replacing
(a,b) by each of (a,a}), (a},as), ..., (aj_,,a;) and (aj,,b). If P has a pointin [b.z, a.z| X [c.y, o0), then
the lowest such point d will be in one of the ranges [b.x, a.z] X [c.y,0),...,[a].x,a.z] X [c.y,00), and
thus will be involved in a z-rectangle of the form (d, -, -, -). ]

l C
b X
a
ay
ay
a

Figure 17: Some intermediate points a, a, a’ in the left funnel of ¢ between a and b

The following lemma makes the charging argument concrete.
Lemma 35. Every added point p € addZ(P) is of at least one of three types:
(a) p is the rightmost added point at y-coordinate p.y;
(b) p is the highest added point at x-coordinate p.x;

(c) let r be the lowest added point above p at x-coordinate p.x, then r has the same y-coordinate as some
access d € P involved in a z-rectangle (d, -, -, -).

See Figure 18 for examples of each type.
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Figure 18: Added points of adds(P) labeled with their type(s) from Lemma 35. The z-rectangle corre-
sponding to the type-c point is drawn in gray.

Proof. Consider the swipe of Algorithm 32 when it reaches some access c. Let p be any point added at
this height (p.y = c.y). Assuming p is not of type (a), there is another added point ¢ with q.y = c.y and
q.x > p.z. Let g be the leftmost such point.

Let a be the access at x-coordinate g.x and b be the access at x-cordinate p.z. Since all added points
correspond to empty rectangles (Remark 5), we know that a and b are in the left funnel of ¢, with a.y < b.y.
Thus we can apply Lemma 34. There are two cases:

» Assume that there is no access in rectangle [p.z,q.x] X [c.y,00). We claim this implies that p is
the highest added point at z-coordinate p.xz. Indeed, in order to produce a new added point at that
x-coordinate, there would need, at some point later in the swipe, to be some access d such that [ldp
is empty. But since d must be to the right of ¢, this is made impossible by the presence of q.

* Otherwise, let d be the lowest access in rectangle [p.z, ¢.z] X [c.y, 00). From Lemma 34, we know
that it is involved in a z-rectangle of the form (d, -, -, -). Thus it suffices to prove the existence of r.
By the same arguments as the previous case, after it has added p and ¢, Algorithm 32 cannot add any
points in range [p.x, ¢.x] until it reaches d. Thus, when it reaches d, Odp will be empty, which means
that point = (p.z, d.y) will be added.

O

Proof of Theorem 33. Let’s bound each type of added point as described in Lemma 35. By construction, the
y-coordinates of any added point in addpz(P) has to be shared with one of the m original accesses in P.
Since that coordinate uniquely defines a point of type (a), there can be at most m added points of type (a).
An analogous argument can be made about y-coordinates to show that there are at most m added points of
type (b).

Furthermore, since there are zRects(P) z-rectangles, there are at most zRects(P) possible values of
access d in the definition of type (c). Each such d can only produce < m possible points r, and such points
uniquely determine p. Therefore, there are at most m - zRects(P) added points of type (c). Theorem 33
follows from taking the sum over each type. O
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