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Abstract

In this paper, we consider the nonparametric least square regression in a Reproduc-
ing Kernel Hilbert Space (RKHS). We propose a new randomized algorithm that
has optimal generalization error bounds with respect to the square loss, closing a
long-standing gap between upper and lower bounds. Moreover, we show that our
algorithm has faster finite-time and asymptotic rates on problems where the Bayes
risk with respect to the square loss is small. We state our results using standard
tools from the theory of least square regression in RKHSs, namely, the decay of the
eigenvalues of the associated integral operator and the complexity of the optimal
predictor measured through the integral operator.

1 Introduction

Given a training set S “ txt, ytu
n
t“1

of n samples drawn identically and independently distributed
from a fixed but unknown distribution ρ on X ˆ Y, the goal of nonparametric least square regression
is to find a function f̂ whose risk

Rpf̂q :“

ż

XˆY

´
f̂pxq ´ y

¯2

dρ

is close to the optimal risk
R

‹ :“ inf
f

Rpfq .

We focus on the kernel-based methods, which consider candidate functions from a Reproducing
Kernel Hilbert Space (RKHS) of functions and possibly their composition with elementary functions.

A classic kernel-based algorithm for nonparametric least squares is Kernel Ridge Regression (KRR),
which constructs the prediction function f̂ as

f̂ “ argmin
fPHK

λ}f}2 `
1

n

nÿ

t“1

pfpxtq ´ ytq
2,

where HK is a RKHS associated with a kernel K and λ is the hyperparameter controlling the amount
of regularization.

It has been proved that, when the amount of regularization is chosen optimally and under similar
assumptions, KRR converges to the Bayes risk at the best known rate among kernel-based algo-
rithms [Lin et al., 2018]. Despite this result, kernel-based learning is still not a solved problem: these
rates match the known lower bounds in Fischer and Steinwart [2017] only in some regimes, unless
additional assumptions are used [Steinwart et al., 2009]. Indeed, it was not even known if the lower
bound was optimal in all the regimes [Pillaud-Vivien et al., 2018].

˚This work was done while the author was at Boston University.
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Moreover, recent empirical results have also challenged the theoretical results. In
particular, KRR without regularization seems to perform very well on real-world
datasets [Zhang et al., 2017, Belkin et al., 2018], at least in the classification setting, and even
outperform KRRs with any nonzero regularization in a popular computer vision dataset [Liang and
Rakhlin, 2018, Figure 1]. This challenges the theoretical findings because our current understanding
of kernel-based learning tells us that a non-zero regularization is needed in all cases for learning
in infinite dimensional RKHSs. Given the current gap in upper and lower bounds, it is unclear if
this mismatch between theory and practice is due to (i) suboptimal analyses that lead to suboptimal
choices of the amount of regularization or (ii) not taking into account crucial data-dependent
quantities (e.g., capturing “easiness” of the problem) that allow fast rates and minimal regularization.

In this work, we address all these questions. We propose a new kernel-based learning algorithm
named Kernel Truncated Randomized Ridge Regression (KTR3). We show that the performance of
KTR3 is minimax optimal, matching known lower bounds. This closes the gap between upper and
lower bounds, without the need for additional assumptions. Moreover, we show that the generalization
guarantee of KTR3 accelerates when the Bayes risk is zero or close to zero. As far as we know, the
phenomenon is new in this literature. Finally, we identify a regime of easy problems in which the
best amount of regularization is exactly zero.

Another important contribution lies in our proof methods, which vastly differ from the usual one in
this field. In particular, we use methods from the online learning literature that make the proof very
simple and rely only on population quantities rather than empirical ones. We believe the community
of nonparametric kernel-regression will greatly benefit from the addition of these new tools.

The rest of the paper is organized as follows: In the next section, we formally introduce the setting
and our assumptions. In Section 3 we introduce our KTR3 algorithm and its theoretical guarantee,
and in Section 4 the precise comparison with similar results. In Section 5, we empirically evaluate
our findings. Finally, Section 6 discusses open problems and future directions of research.

2 Setting and Notation: Source Condition and Eigenvalue Decay

In this section, we formally introduce our learning setting and our characterization of the complexity
of each regression problem. This characterization is standard in the literature on regression in RKHS,
see, e.g., Steinwart and Christmann [2008], Steinwart et al. [2009], Dieuleveut and Bach [2016], Lin
et al. [2018].

Let X Ă R
d a compact set and HK a separable RKHS associated to a Mercer kernel K : XˆX Ñ R

implementing the inner product x¨, ¨y and induced norm } ¨ }. The inner product is defined so that it
satisfies the reproducing property, xKpx, ¨q, fp¨qy “ fpxq. Denote by Kt P R

tˆt the Gram matrix
such that Ki,j “ Kpxi,xjq where xi,xj belong to St Ď S that contains the first2 t elements of the
training set S.

Our first assumption is related to the boundedness of the kernel and labels.

Assumption 1 (Boundedness). We assume K to be bounded, that is, sup
xPX Kpx,xq “ R2 ă 8.

To avoid superfluous notations and without loss of generality, we further assume R “ 1. We also
assume the labels to be bounded: Y “ r´Y, Y s where Y ă 8.

Denote by ρX the marginal probability measure on X and let L2

ρX
be the space of square integrable

functions with respect to ρX. We will assume that the support of ρX is X, whose norm is denoted by

}g}ρ :“
bş

X
g2pxqdρX. It is well known that the function minimizing the risk over all functions

in L2

ρX
is fρpxq :“

ş
Y
ydρpy|xq, which has the Bayes risk with respect to the square loss, R‹ “

Rpfρq “ inffPL2
ρ
X

Rpfq.

If we use a Universal Kernel (e.g., the Gaussian kernel) [Steinwart, 2001] and X is compact, we have
that inffPHK

Rpfq “ R‹ [Steinwart and Christmann, 2008, Corollary 5.29]. This suggests that using
a universal kernel is somehow enough to reach the Bayes risk. However, while fρ P L2

ρX
, this actually

does not imply that fρ P HK but only that fρ P ĚHK , which is the closure of HK . Thus, the question

2Note that the ordering of the elements in S is immaterial, but our algorithm will depend on it. So we can
just consider S ordered according to an initial random shuffling.
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Algorithm 1 KTR3: Kernel Truncated Randomized Ridge Regression

Input: A training set S “ tpxi, yiquni“1
, a regularization parameter λ ě 0

Randomly permute the training set S
for t “ 0, 1, . . . , n ´ 1 do

Set ft “ argminfPHK
λ}f}2 ` 1

n

řt
i“1

pfpxiq ´ yiq
2

(take the minimum norm solution when there is no unique solution)
end for
Return TY ˝ fk, where k is uniformly at random between 0 and n ´ 1

of whether it is possible to achieve the Bayes risk is relevant even for Universal kernels. We address
this by the standard parametrization called source condition that smoothly characterizes whether fρ
belongs or not to HK . To introduce the formalism, let LK : L2

ρX
Ñ L2

ρX
be the integral operator

defined by pLKfqpxq “
ş
X
Kpx,x1qfpx1qdρXpx1q. There exists an orthonormal basis tΦ1,Φ2, ¨ ¨ ¨ u

of L2

ρX
consisting of eigenfunctions of LK with corresponding non-negative eigenvalues tλ1, λ2, ¨ ¨ ¨ u

and the set tλiu is finite or λk Ñ 0 when k Ñ 8 [Cucker and Zhou, 2007, Theorem 4.7]. Since
K is a Mercer kernel, LK is compact and positive. Moreover, given that we assumed the kernel to
be bounded, LK is trace class, hence compact [Steinwart and Christmann, 2008]. Therefore, the
fractional power operator Lβ

K is well-defined for any β ě 0. We indicate its range space by

L
β
KpL2

ρX
q :“

"
f “

8ÿ

i“1

λ
β
i aiΦi :

8ÿ

i“1

a2i ă 8

*
.

This space has a key role in our analysis. In particular, we will use the following assumption.

Assumption 2 (Source Condition). We assume that fρ P L
β
KpL2

ρX
q for 0 ă β ď 1

2
, which is

Dg P L
2

ρX
: fρ “ L

β
Kpgq .

Note that the assumption above is always satisfied for β “ 0 because, by definition of the orthonormal
basis, L0

KpL2

ρX
q “ L2

ρX
. On the other hand, we have that L1{2

K pL2

ρX
q “ HK , that is every function

f P HK can be written as L1{2
K g for some g P L2

ρX
, and }f} “ }L

´1{2
K f}ρ [Cucker and Zhou, 2007,

Corollary 4.13]. Hence, the values of β in r0, 1

2
s allow us to consider spaces in between L2

ρX
and

HK , including the extremes. Thus, a bigger β means a simpler function fρ.

Another assumption needed to characterize the learning process is on the complexity of the RKHS
itself, rather than on the complexity of the optimal function. This is typically done assuming that the
eigenvalue of the integral operator satisfies a certain rate of decay. We will use equivalent condition,
assuming that the trace of some fractional power of the integral operator is bounded.

Assumption 3 (Eigenvalue Decay). Assume that there exists b P r0, 1s such that TrrLb
Ks ă 8.

Note that the sum of the eigenvalues of LK is at most sup
xPX Kpx,xq, which we assumed to be

bounded in Assumption 1. This implies that the assumption above is always satisfied with b “ 1.
Hence, a smaller b corresponds to an RKHS with a smaller complexity.

3 Kernel Truncated Randomized Ridge Regression

We now describe our algorithm called Kernel Truncated Randomized Ridge Regression (KTR3).
The pseudo-code is in Algorithm 1. The algorithm consists of two stages. In the first stage, we
generate n candidate functions solving KRR with increasing sizes of the training set and a fixed
regularization weight λ. In the second stage, we select the prediction function as the truncation of
one of the candidate functions uniformly at random. Note that this is equivalent to extracting a subset
of the training set of size i, where i is uniformly at random between 0 and n ´ 1 and training a KRR
on the subset with parameter λ. The truncation function is defined as follows

TY pzq :“ minpY, |z|q ¨ signpzq .

The definition of the truncation function implies that pTY pŷq ´ yq2 ď pŷ ´ yq2,@ŷ P R, y P Y.
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We now present our two main theorems on the excess risk of KTR3 where Theorem 1 is on λ ą 0 and
Theorem 2 is on λ “ 0 for an “easy” problem regime. The proof of Theorem 2 is in the Appendix.

Theorem 1. Let X Ă R
d be a compact domain and K a Mercer kernel such that Assumptions 1,2,

and 3 are verified. Define by fS,λ the function returned by the KTR3 algorithm on a training set S
with regularization parameter λ ą 0. Then

E rRpfS,λqs ´ Rpfρq

ď λ2β}L´β
K fρ}2ρ ` min

«
4Y 2 TrrLb

Ks

λbn
min

ˆ
ln1´b

ˆ
1 `

1

λ

˙
,
1

b

˙
,
λ2β´1}L´β

K fρ}2ρ
n

`
Rpfρq

λn

ff

,

where the expectation is with respect to S and the randomization of the algorithm.

Theorem 2. Let λ “ 0 and assume the same conditions as in Theorem 1 except for λ. Assume
β “ 1{2 and Rpfρq “ 0. Assume that the distribution ρ satisfies that Kn is invertible with

probability 1. Then, E rRpfS,0qs ´ Rpfρq “ Opn´1q.

Remark. Our algorithm can be changed to randomize at the prediction time for each test data point
rather than the training time while enjoying the same risk bound. Furthermore, our algorithm can
sample from tp1´αqnu to n´ 1 for some α P p0, 1s instead of from t0, . . . , n´ 1u and obtain a rate
1

α
factor worse than the bounds above; our choice of presentation of Algorithm 1 is for simplicity.

From the above theorem, with appropriate settings of the regularization parameter λ it is possible to
obtain the following convergence rates.

Corollary 1. Under the assumptions of Theorem 1, there exists a setting of λ ě 0 such that:

(i) When b ‰ 0,

E rRpfS,λqs ´ Rpfρq ď O
´
min

´
pn{Rpfρqq´ 2β

2β`1 ` n´2β , n´ 2β
2β`b

¯¯
.

(ii) In the case b “ 0 and β “ 1

2
,3

E rRpfS,λqs ´ Rpfρq ď O
`
n´1 TrrL0

Ks log
`
1 ` n{TrrL0

Ks
˘˘

.

The proof and the tuning of λ can be found in the Appendix. Before moving to the proof of Theorem 1
in the next section, there are some interesting points to stress.

• In the case of Rpfρq ‰ 0, our rate n´ 2β
2β`b matches the worst-case lower bound [Fischer

and Steinwart, 2017] without additional assumptions for the first time in the literature, to
our knowledge. Specifically, our bound is a strict improvement in the regime 2β ` b ă 1
upon the best-known bound Opn´2βq of KRR [Lin et al., 2018] and stochastic gradient
descent [Dieuleveut and Bach, 2016]. In this regime, our rate goes to Opn´1q as b goes to 0.

• If Rpfρq “ 0, we have convergence of the risk to 0 at a faster rate of n´ 2β
mint2β`b,1u . It is

important to stress that this holds also in the case that fρ R HK , i.e., β ă 1

2
. As far as we

know, this result is new and we are not aware of lower bounds under the same assumptions.

• When Rpfρq “ 0, the optimal λ that minimizes the generalization upper bound in Theorem 1
goes to zero when β goes to 1{2 and becomes exactly 0 when β is exactly 1{2.

3.1 Proof of Theorem 1

Our proof technique is vastly different from the existing ones for analyzing KRR and stochastic
gradient descent methods. It is also extremely short and simple compared to the proofs of similar
results. Our technique is based on the well-known possibility to solve batch problems through a
reduction to online learning ones. In turn, we use a recent result on the performance of online kernel
ridge regression, Theorem 3 by Zhdanov and Kalnishkan [2013]. This result is the key to obtain
the improved rates in the regime 2β ` b ă 1. In particular, it allows us to analyze the effect of the

3When b “ 0 the space is finite dimensional, hence β can only have value 0 or 1{2 and there is no convergence
to the Bayes risk when β “ 0.
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eigenvalues using only the expectation of the Gram matrix Kn and nothing else. Instead, previous
proofs [e.g., Lin and Cevher, 2018] involved the study of the convergence of empirical covariance
operator to the population one, which seems to deteriorate when the regularization parameter becomes
too small, which is precisely needed in the regime 2β ` b ă 1.

Theorem 3. [Zhdanov and Kalnishkan, 2013, Theorem 1] Take a kernel K on a domain X and a
parameter λ ą 0. Then, with the notation of Algorithm 1, we have

1

n

nÿ

t“1

pft´1pxtq ´ ytq
2

1 ` dt

λn

“ min
fPHK

λ}f}2 `
1

n

nÿ

t“1

pfpxtq ´ ytq
2
,

where dt :“ Kpxt,xtq ´ kt´1pxtq
JpKt´1 ` λnIq´1

kt´1pxtq ě 0, kt´1pxtq :“
rKpxt,x1q, . . . ,Kpxt,xt´1qsJ, and Kt´1 is the Gram matrix of the samples x1, . . . ,xt´1.

We use the following well-known result to upper bound the approximation error, which is the gap
between the value of the regularized population risk minimization problem and the Bayes risk.

Theorem 4. [Cucker and Zhou, 2007, Proposition 8.5.ii] Let X Ă R
d be a compact domain and K

a Mercer kernel such that Assumption 2 holds. Then, for any 0 ă β ď 1{2, we have

min
fPHK

λ}f}2 ` Rpfq ´ Rpfρq ď λ2β}L´β
K fρ}2ρ .

We also need the following technical lemmas. The proof of the next lemma is in the Appendix.

Lemma 1. Under Assumptions 1 and 3, and with λ ą 0, we have

ES

„
ln

|λIn ` 1

n
Kn|

|λIn|


ď min

ˆ
ln1´b

ˆ
1 `

1

λ

˙
,
1

b

˙
TrrLb

Ks

λb
.

Furthermore, if b “ 0, then

ES

„
ln

|λIn ` 1

n
Kn|

|λIn|


ď ln

ˆ
1 `

1

TrrL0

Ksλ

˙
TrrL0

Ks .

Note that the logarithmic term is unavoidable when b “ 0 because in the finite dimensional case we
pay ´ lnpλq due to the online learning setting. The last lemma is a classic result in online learning [e.g.
Cesa-Bianchi et al., 2005].

Lemma 2. With the notation in Theorem 3, we have that

nÿ

t“1

dt

dt ` λn
ď ln

|λIn ` 1

n
Kn|

|λIn|
.

Proof. From the elementary inequality lnp1`xq ě x
x`1

, we have that dt

dt`λn
ď ln

`
1 ` dt

λn

˘
. Hence,

řn
t“1

dt

dt`λn
ď log

śn
t“1

`
1 ` dt

λn

˘
. Also, using Zhdanov and Kalnishkan [2013, Lemma 3] we haveśn

t“1
pλn ` dtq “ |λnIn ` Kn|. Putting all together, we have the stated bound.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Define fλ “ argminfPHK
λ}f}2 ` Rpfq, which is the solution of the regular-

ization true risk minimization problem.

First, we use the so-called online-to-batch conversion [Cesa-Bianchi et al., 2004] to have

ES,krRpTY ˝ fkqs “ ES

«
1

n

n´1ÿ

t“0

R
`
TY ˝ ft

˘
ff

“ ES

«
1

n

n´1ÿ

t“0

ESt
R

`
TY ˝ ft

˘
ff

“ ES

«
1

n

n´1ÿ

t“0

ESt

`
TY pftpxqq ´ y

˘2
ff

“ ES

«
1

n

n´1ÿ

t“0

ESt

`
TY pftpxt`1qq ´ yt`1

˘2
ff

“ ES

«
1

n

nÿ

t“1

`
TY pft´1pxtqq ´ yt

˘2
ff

.
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Denote by d1
t “ dt

λn
, ℓ1

t “ pTY pft´1pxtqq ´ ytq
2, and ℓt “ pft´1pxtq ´ ytq

2. We have that

ES

«
1

n

nÿ

t“1

`
TY pft´1pxtqq ´ yt

˘2
ff

“ ES

«
1

n

nÿ

t“1

ℓ1
t

ff

“ ES

«
1

n

nÿ

t“1

ℓ1
td

1
t

1 ` d1
t

ff

` ES

«
1

n

nÿ

t“1

ℓ1
t

1 ` d1
t

ff

ď ES

«
1

n

nÿ

t“1

ℓ1
td

1
t

1 ` d1
t

ff

` ES

«
1

n

nÿ

t“1

ℓt

1 ` d1
t

ff

.

We now focus on the first sum in the last inequality and we upper bound it in two different ways.
First, using Lemma 2 and Lemma 1, we have

ES

«
1

n

nÿ

t“1

ℓ1
td

1
t

1 ` d1
t

ff

ď 4Y 2
ES

«
1

n

nÿ

t“1

d1
t

1 ` d1
t

ff

ď
4Y 2

n
ES

„
ln

|λI ` 1

n
Kn|

|λI|



ď
4Y 2

n
min

ˆ
ln1´b

ˆ
1 `

1

λ

˙
,
1

b

˙
TrrLb

Ks

λb
.

Also, we can upper bound the same term as

ES

«
1

n

nÿ

t“1

ℓ1
td

1
t

1 ` d1
t

ff

ď ES

«
1

n

nÿ

t“1

ℓtd
1
t

1 ` d1
t

ff

ď ES

«
maxt d

1
t

n

nÿ

t“1

ℓt

1 ` d1
t

ff

ď
1

λn
ES

«
1

n

nÿ

t“1

ℓt

1 ` d1
t

ff

.

Now, using Theorems 3 and 4 with the fact that dt ď 1, we bound the term ES

”
1

n

řn
t“1

ℓt
1`d1

t

ı
as

ES

«
1

n

nÿ

t“1

ℓt

1 ` d1
t

ff

“ ES

«

min
HK

λ}f}2 `
1

n

nÿ

t“1

pfpxtq ´ ytq
2

ff

ď ES

«

λ}fλ}2 `
1

n

nÿ

t“1

pfλpxtq ´ ytq
2

ff

“ λ}fλ}2 ` Rpfλq “ min
fPHK

λ}f}2 ` Rpfq ´ Rpfρq ` Rpfρq

ď λ2β}L´β
K fρ}2ρ ` Rpfρq .

Putting all together, we have the stated bound.

4 Detailed Comparison with Previous Results

The sheer volume of research on regression, see, e.g., Lin and Cevher [2018, Table 1], precludes
a complete survey of the results. In this section, we focus on the closely related ones that involve
infinite dimensional spaces.

First, it is useful to compare our convergence rate to the one we would get from known guarantees for
KRR. We can compare it to the stability bound in Shalev-Shwartz and Ben-David [2014] for KRR:

ES

“
R

`
fKRR
S,λ

˘‰
ď

ˆ
1 `

192

λn

˙
ES

«
1

n

nÿ

t“1

`
fKRR
S,λ pxtq ´ yt

˘2
ff

.

It is easy to see4 that this bound implies the following convergence rate

ES

“
R

`
fKRR
S,λ

˘‰
´ Rpfρq ď

ˆ
1 `

192

λn

˙
λ2β}L´β

K fρ}2ρ `
192Rpfρq

λn
.

This convergence rate matches only half of our bound. In particular, it does not contain the term that
depends in the capacity of the RKHS through b. Also, the theorem in Shalev-Shwartz and Ben-David
[2014] holds only for λ ě 4

m
. This essentially prevents the setting of λ “ 0 and the possibility to

achieve the rate of n´1 in the case that β “ 1

2
and Rpfρq “ 0.

Another similar bound is the Leave-One-Out analysis in Zhang [2003], which gives

ES

“
R

`
fKRR
S,λ

˘‰
ď

ˆ
1 `

2

λn

˙2

min
fPHK

λ}f}2 `
1

n

nÿ

t“1

pfpxtq ´ ytq
2
.

4For completeness, the proof is in Theorem 5 in the Appendix.

6



As for the stability bound, using Theorem 4, this bound implies the following bound for λ ą 0:

ES

“
R

`
fKRR
S,λ

˘‰
´ Rpfρq ď

ˆ
1 `

2

λn

˙2

λ2β}L´β
K fρ}2ρ `

ˆ
4

λn
`

4

λ2n2

˙
Rpfρq .

Hence, this bound suffers from the same problems of the stability bound; it is suboptimal with respect
to the capacity of the space and the presence of the square always makes the λ that minimizes the
risk bound bounded away from zero.

The best known results for nonparametric least square under Assumptions 1–3 are obtained by
KRR [Lin et al., 2018] and by stochastic least square [Dieuleveut and Bach, 2016], with the rate

ES rR pfS,λqs ´ Rpfρq ď

#
O

´
n´ 2β

2β`b

¯
, if 2β ` b ě 1,

O
`
n´2β

˘
, otherwise.

This kind of rates are suboptimal in the regime 2β`b ă 1. In contrast, our result achieves the optimal
rate in all regimes. Also, these rates do not depend in any way on the risk of the optimal function fρ.
Hence, they never support the choice of a regularization parameter being zero. Pillaud-Vivien et al.
[2018] call the regime 2β ` b ă 1 the “hard” problems and prove that SGD with multiple passes
achieves the optimal rate for a subset of the hard problems However, their result makes an additional
assumption on the infinity norm of the functions in HK . Under the same assumption, Steinwart et al.

[2009] present a convergence rate of Opn´ 2β
2β`b q in all regimes for truncated KRR.

The only result we are aware of that shows an acceleration in the low noise case is Orabona [2014].

Using a SGD-like procedure that does not require to set parameters, he proves a rate of Opn´ 2β
2β`1 q

that accelerates to Opn´ 2β
β`1 q when Rpfρq “ 0, for smooth and Lipschitz losses.

Turning to KRR used for classification, in the extreme case of the Tsybakov’s noise condition
(also called Massart low noise condition [Massart and Nédélec, 2006]) Yao et al. [2007] proved an
exponential rate of convergence. However, this is specific to the classification case only and it does
not apply to the regression setting. Under stronger assumptions, i.e. data separable with margin, the
same effect was already proved in Zhang [2001]. It is also interesting to note that these results require
a non-zero implicit or explicit regularization.

More recently, Hastie et al. [2019] showed5 an asymptotic result (as nÑ8) that the best regularization
parameter λ of ridge regression is 0 when there is no label noise (i.e., Rpfρq “ 0) and β “ 1

2
. Their

result aligns well with ours, but we are not limited to asymptotic regimes nor finite dimensional
spaces. On the other hand, our guarantee is an upper bound on the risk rather than an equality.

5 Empirical Validation

In this section, we empirically validate some of our theoretical findings. Inspired by Pillaud-Vivien
et al. [2018], we consider a spline kernel of order q ě 2 where q is even [Wahba, 1990, Eq. (2.1.7)].
Specifically, we define

Λqpx, x1q “ 1 ` 2

8ÿ

k“1

cosp2πkps ´ tqq

p2πkqq
.

and use the kernel Kpx, x1q “ Λ1{bpx, x1q for some b P r0, 1s. We consider the uniform distribution
ρX on X “ r0, 1s and define the target function to be f‹pxq “ Λ β

b
` 1

2

px, 0q for x P X. We define the

observed response of x to be f‹pxq ` B where B is a uniform random variable r´ǫ, ǫs. One can
show that this problem satisfies Assumptions 1–3 [Pillaud-Vivien et al., 2018].

For each n in fine-grained grid points in r102, 103s and λ in another fine-grained set of numbers, we
draw n training points, compute fn by Algorithm 1, and estimate its excess risk by a test set. Finally,
for each n we choose the λ that minimizes the average excess risk. We repeat the same 5 times. First,
we set b “ 1

8
and β “ 7

16
, and ǫ “ 0.1. Figure 1(a) plots the excess risk of the best λ’s vs n, which

approximately achieves the predicted rate n´ 7

8 .

5To see this, set σ2 “ 0 in Hastie et al. [2019, Theorem 6].
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(a) (b)

Figure 1: Expected excess risk of KTR3 vs the number of training points on a synthetic dataset with
a spline kernel. (a) and (b) show two different difficulties of the task, as parametrized by β and b.

To verify our improved rate in the regime 2β ` b ă 1, we also consider the case of β “ 1

4
, b “ 1

6
,

and ǫ “ 0.1. Figure 1(b) plots the excess risk of the best λ’s vs n, which approximately achieves the
predicted rate n´ 3

4 rather than the slow rate n´ 1

2 of prior art.6

6 Discussion and Open Problems

We have presented a new algorithm for kernel-based nonparametric least squares that achieves optimal
generalization rates with respect to the source condition and complexity of the RKHS. Moreover,
faster rates are possible when the Bayes risk is zero, even when the optimal predictor is not in HK .

One natural open problem is to prove similar guarantees for KRR. We conjecture that the randomiza-
tion used in our analysis is not strictly necessary; it only greatly simplifies the proof. One may try to
prove that the generalization error of KRR is nonincreasing with n in which case the randomization
only harms the generalization and thus implies that KRR enjoys the same error bound as KTR3. Such
a claim is, unfortunately, not true, shown by Viering et al. [2019, Example III] where the error rate of
KRR can increase with n.

It would also be interesting to prove lower bounds for the Rpfρq “ 0 case, to understand if the ob-
tained rates are optimal or not. Furthermore, alleviating the boundedness assumption (Assumption 1)
would be interesting, possibly with some mild moment conditions that appear in Hsu et al. [2012],
Audibert and Catoni [2011] and Hsu and Sabato [2016].

One consequence of our work is that it shows a gap between the best-known bounds for SGD and
ERM-based algorithms. Indeed, before this work, the rates of SGD and ERM-based algorithms (e.g.,
KRR) under Assumptions 1–3 were the same. It would be interesting to understand if some variants
of SGD can achieve the optimal rates or if there is indeed a clear separation between the rates.

The limitation of this work is mainly with regards to the parametrization of the problem via the source
condition and the complexity of the RKHS. Specifically, our rates are only valid for β ď 1{2 (see
Assumption 2), due to use of Theorem 4. However, this is unlikely to be a limitation of the analysis
but rather a consequence of the use of a regularizer and the consequent “saturation” phenomenon,
see discussion in Yao et al. [2007]. Another limitation of our framework is that it is well-known
that the guarantee on the approximation error in Theorem 4 is non-trivial for a Gaussian kernel
with fixed bandwidth only if fρ P C8 [Smale and Zhou, 2003]. While this is a strong condition
from a mathematical point of view, it is unclear how strong it is for real-world problems, where the
bandwidth of the Gaussian kernel is often tuned.

6We remark that the considered kernel satisfies an extra assumption (e.g., Pillaud-Vivien et al. [2018,
Assumption (A3)]) that in fact allows KRR to achieve the same optimal rate as ours. We are not aware of simple
problems where that condition is not satisfied. However, our theory clearly does not make such an assumption
yet achieves the optimal rate.
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Finally, we believe the assumptions considered too strong in the theory community can be reconsid-
ered with modern machine learning tasks. Indeed, most results in the community have ignored the
case of Rpfρq “ 0, perhaps due to the fact that it was considered too strong as a condition. However,
most of the visual perception tasks on which modern machine learning has been successful seem to
satisfy this assumption; for example, humans have zero or very close to zero error in recognizing cats
versus dogs from a photograph. In this view, a more ambitious open problem is to find the correct
characterization of “easiness” for real-world problems, rather than using mathematically appealing
ones.
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