
Momentum-Based Variance Reduction in Non-Convex SGD

Ashok Cutkosky

Google Research

Mountain View, CA, USA

ashok@cutkosky.com

Francesco Orabona

Boston University

Boston, MA, USA

francesco@orabona.com

April 21, 2020

Abstract

Variance reduction has emerged in recent years as a strong competitor to stochastic gradient descent
in non-convex problems, providing the first algorithms to improve upon the converge rate of stochastic
gradient descent for finding first-order critical points. However, variance reduction techniques typically
require carefully tuned learning rates and willingness to use excessively large “mega-batches” in order to
achieve their improved results. We present a new algorithm, Storm, that does not require any batches
and makes use of adaptive learning rates, enabling simpler implementation and less hyperparameter
tuning. Our technique for removing the batches uses a variant of momentum to achieve variance reduction
in non-convex optimization. On smooth losses F , Storm finds a point x with E[‖∇F (x)‖] ≤ O(1/

√
T +

σ1/3/T 1/3) in T iterations with σ2 variance in the gradients, matching the optimal rate and without
requiring knowledge of σ.

1 Introduction

This paper addresses the classic stochastic optimization problem, in which we are given a function F : Rd →
R, and wish to find x ∈ R

d such that F (x) is as small as possible. Unfortunately, our access to F is limited to
a stochastic function oracle: we can obtain sample functions f(·, ξ) where ξ represents some sample variable
(e.g. a minibatch index) such that E[f(·, ξ)] = F (·). Stochastic optimization problems are found throughout
machine learning. For example, in supervised learning, x represents the parameters of a model (say the
weights of a neural network), ξ represents an example, f(x, ξ) represents the loss on an example, and F
represents the training loss of the model.

We do not assume convexity, so in general the problem of finding a true minimum of F may be NP-hard.
Hence, we relax the problem to finding a critical point of F – that is a point such that ∇F (x) = 0. Also,
we assume access only to stochastic gradients evaluated on arbitrary points, rather than Hessians or other
information. In this setting, the standard algorithm is stochastic gradient descent (SGD). SGD produces a
sequence of iterates x1, . . . ,xT using the recursion

xt+1 = xt − ηtgt, (1)

where gt = ∇f(xt, ξt), f(·, ξ1), . . . , f(·, ξT) are i.i.d. samples from a distribution D, and η1, . . . ηT ∈ R are
a sequence of learning rates that must be carefully tuned to ensure good performance. Assuming the ηt are
selected properly, SGD guarantees that a randomly selected iterate xt satisfies E[‖∇F (xt)‖] ≤ O(1/T 1/4) [9].

Recently, variance reduction has emerged as an improved technique for finding critical points in non-
convex optimization problems. Stochastic variance-reduced gradient (SVRG) algorithms also produce iter-
ates x1, . . . , xT according to the update formula (1), but now gt is a variance reduced estimate of ∇F (xt).
Over the last few years, SVRG algorithms have improved the convergence rate to critical points of non-
convex SGD from O(1/T 1/4) to O(1/T 3/10) [2, 21] to O(1/T 1/3) [8, 31]. Despite this improvement, SVRG
has not seen as much success in practice in non-convex machine learning problems [5]. Many reasons may

1

contribute to this phenomenon, but two potential issues we address here are SVRG’s use of non-adaptive
learning rates and reliance on giant batch sizes to construct variance reduced gradients through the use
of low-noise gradients calculated at a “checkpoint”. In particular, for non-convex losses SVRG analyses
typically involve carefully selecting learning rates, the number of samples to construct the gradient on the
checkpoint points, and the frequency of update of the checkpoint points. The optimal settings balance var-
ious unknown problem parameters exactly in order to obtain improved performance, making it especially
important, and especially difficult, to tune them.

In this paper, we address both of these issues. We present a new algorithm called STOchastic Recursive
Momentum (Storm) that achieves variance reduction through the use of a variant of the momentum term,
similar to the popular RMSProp or Adam momentum heuristics [24, 13]. Hence, our algorithm does not
require a gigantic batch to compute checkpoint gradients – in fact, our algorithm does not require any batches
at all because it never needs to compute a checkpoint gradient. Storm achieves the optimal convergence rate
of O(1/T 1/3) [3], and it uses an adaptive learning rate schedule that will automatically adjust to the variance
values of ∇f(xt, ξt). Overall, we consider our algorithm a significant qualitative departure from the usual
paradigm for variance reduction, and we hope our analysis may provide insight into the value of momentum
in non-convex optimization.

The rest of the paper is organized as follows. The next section discusses the related work on variance
reduction and adaptive learning rates in non-convex SGD. Section 3 formally introduces our notation and
assumptions. We present our basic update rule and its connection to SGD with momentum in Section 4,
and our algorithm in Section 5. Finally, we present some empirical results in Section 6 and concludes with
a discussion in Section 7.

2 Related Work

Variance-reduction methods were proposed independently by three groups at the same conference: Johnson
and Zhang [12], Zhang et al. [30], Mahdavi et al. [17], and Wang et al. [27]. The first application of variance-
reduction method to non-convex SGD is due to Allen-Zhu and Hazan [2]. Using variance reduction methods,
Fang et al. [8], Zhou et al. [31] have obtained much better convergence rates for critical points in non-convex
SGD. These methods are very different from our approach because they require the calculation of gradients
at checkpoints. In fact, in order to compute the variance reduced gradient estimates gt, the algorithm must
periodically stop producing iterates xt and instead generate a very large “mega-batch” of samples ξ1, . . . , ξN
which is used to compute a checkpoint gradient 1

N

∑N
i=1∇f(v, ξi) for an appropriate checkpoint point v.

Depending on the algorithm, N may be as large as O(T), and typically no smaller than O(T 2/3). The only
exceptions we are aware of are SARAH [18, 19] and iSARAH [20]. However, their guarantees do not improve
over the ones of plain SGD, and they still require at least one checkpoint gradient. Independently and
simultaneously with this work, [25] have proposed a new algorithm that does improve over SGD to match
our same convergence rate, although it does still require one checkpoint gradient. Interestingly, their update
formula is very similar to ours, although the analysis is rather different. We are not aware of prior works for
non-convex optimization with reduced variance methods that completely avoid using giant batches.

On the other hand, adaptive learning-rate schemes, that choose the values ηt in some data-dependent
way so as to reduce the need for tuning the values of ηt manually, have been introduced by Duchi et al.
[7] and popularized by the heuristic methods like RMSProp and Adam [24, 13]. In the non-convex setting,
adaptive learning rates can be shown to improve the convergence rate of SGD to O(1/

√
T + (σ2/T)1/4),

where σ2 is a bound on the variance of ∇f(xt) [16, 28, 22]. Hence, these adaptive algorithms obtain much
better convergence guarantees when the problem is “easy”, and have become extremely popular in practice.
In contrast, the only variance-reduced algorithm we are aware of that uses adaptive learning rates is [4], but
their techniques apply only to convex losses.

2

3 Notation and Assumptions

In the following, we will write vectors with bold letters and we will denote the inner product between vectors
a and b by a · b.

Throughout the paper we will make the following assumptions. We assume access to a stream of indepen-
dent random variables ξ1, . . . , ξT ∈ Ξ and a function f such that for all t and for all x, E[f(x, ξt)|x] = F (x).
Note that we access two gradients on the same ξt on two different points in each update, like in standard
variance-reduced methods. In practice, ξt may denote an i.i.d. training example, or an index into a training
set while f(x, ξt) indicates the loss on the training example using the model parameter x. We assume there
is some σ2 that upper bounds the noise on gradients: E[‖∇f(x, ξt)−∇F (x)‖2] ≤ σ2.

We define F ⋆ = infx F (x) and we will assume that F ⋆ > −∞. We will also need some assumptions on
the functions f(x, ξt). Define a differentiable function f : Rd → R to be G-Lipschitz iff ‖∇f(x)‖ ≤ G for
all x, and f to be L-smooth iff ‖∇f(x) − ∇f(y)‖ ≤ L‖x − y‖ for all x and y. We assume that f(x, ξt)
is differentiable, and L-smooth as a function of x with probability 1. We will also assume that f(x, ξt) is
G-Lipschitz for our adaptive analysis. We show in appendix B that this assumption can be lifted at the
expense of adaptivity to σ.

4 Momentum and Variance Reduction

Before describing our algorithm in details, we briefly explore the connection between SGD with momentum
and variance reduction.

The stochastic gradient descent with momentum algorithm is typically implemented as

dt = (1− a)dt−1 + a∇f(xt, ξt)

xt+1 = xt − ηdt,

where a is small, i.e. a = 0.1. In words, instead of using the current gradient ∇F (xt) in the update of xt,
we use an exponential average of the past observed gradients.

While SGD with momentum and its variants have been successfully used in many machine learning
applications [13], it is well known that the presence of noise in the stochastic gradients can nullify the
theoretical gain of the momentum term [e.g. 29]. As a result, it is unclear how and why using momentum
can be better than plain SGD. Although recent works have proved that a variant of SGD with momentum
improves the non-dominant terms in the convergence rate on convex stochastic least square problems [6, 11],
it is still unclear if the actual convergence rate can be improved.

Here, we take a different route. Instead of showing that momentum in SGD works in the same way as
in the noiseless case, i.e. giving accelerated rates, we show that a variant of momentum can provably reduce
the variance of the gradients. In its simplest form, the variant we propose is:

dt = (1− a)dt−1 + a∇f(xt, ξt) + (1− a)(∇f(xt, ξt)−∇f(xt−1, ξt)) (2)

xt+1 = xt − ηdt . (3)

The only difference is the that we add the term (1 − a)(∇f(xt, ξt) − ∇f(xt−1, ξt)) to the update. As in
standard variance-reduced methods, we use two gradients in each step. However, we do not need to use the
gradient calculated at any checkpoint points. Note that if xt ≈ xt−1, then our update becomes approximately
the momentum one. These two terms will be similar as long as the algorithm is actually converging to some
point, and so we can expect the algorithm to behave exactly like the classic momentum SGD towards the
end of the optimization process.

To understand why the above updates delivers a variance reduction, consider the “error in dt” which we
denote as ǫt:

ǫt := dt −∇F (xt) .

This term measures the error we incur by using dt as update direction instead of the correct but unknown
direction, ∇F (xt). The equivalent term in SGD would be E[‖∇f(xt, ξt) −∇F (xt)‖2] ≤ σ2. So, if E[‖ǫt‖2]

3

Algorithm 1 Storm: STOchastic Recursive Momentum

1: Input: Parameters k, w, c, initial point x1

2: Sample ξ1
3: G1 ← ‖∇f(x1, ξ1)‖
4: d1 ← ∇f(x1, ξ1)
5: η0 ← k

w1/3

6: for t = 1 to T do

7: ηt ← k
(w+

∑t
i=1

G2

t)
1/3

8: xt+1 ← xt − ηtdt

9: at+1 ← cη2t
10: Sample ξt+1

11: Gt+1 ← ‖∇f(xt+1, ξt+1)‖
12: dt+1 ← ∇f(xt+1, ξt+1) + (1− at+1)(dt −∇f(xt, ξt+1))
13: end for

14: Choose x̂ uniformly at random from x1, . . . ,xT . (In practice, set x̂ = xT).
15: return x̂

decreases over time, we have realized a variance reduction effect. Our technical result that we use to show
this decrease is provided in Lemma 2, but let us take a moment here to appreciate why this should be
expected intuitively. Considering the update written in (2), we can obtain a recursive expression for ǫt by
subtracting ∇F (xt) from both sides:

ǫt = (1− a)ǫt−1 + a(∇f(xt, ξt)−∇F (xt)) + (1− a)(∇f(xt, ξt)−∇f(xt−1, ξt)− (∇F (xt)−∇F (xt−1))) .

Now, notice that there is good reason to expect the second and third terms of the RHS above to be small:
we can control a(∇f(xt, ξt)−∇F (xt)) simply by choosing small enough values a, and from smoothness we
expect (∇f(xt, ξt)−∇f(xt−1, ξt)− (∇F (xt)−∇F (xt−1)) to be of the order of O(‖xt−xt−1‖) = O(ηdt−1).
Therefore, by choosing small enough η and a, we obtain ‖ǫt‖ = (1 − a)‖ǫt−1‖ + Z where Z is some small
value. Thus, intuitively ‖ǫt‖ will decrease until it reaches Z/a. This highlights a trade-off in setting η and
a in order to decrease the numerator of Z/a while keeping the denominator sufficiently large. Our central
challenge is showing that it is possible to achieve a favorable trade-off in which Z/a is very small, resulting
in small error ǫt.

5 Storm: STOchastic Recursive Momentum

We now describe our stochastic optimization algorithm, which we call STOchastic Recursive Momentum
(Storm). The pseudocode is in Algorithm 1. As described in the previous section, its basic update is of the
form of (2) and (3). However, in order to achieve adaptivity to the noise in the gradients, both the stepsize
and the momentum term will depend on the past gradients, à la AdaGrad [7].

The convergence guarantee of Storm is presented in Theorem 1 below.

Theorem 1. Under the assumptions in Section 3, for any b > 0, we write k = bG
2

3

L . Set c = 28L2 +

G2/(7Lk3) = L2(28 + 1/(7b3)) and w = max
(

(4Lk)3, 2G2,
(
ck
4L

)3
)

= G2 max
(
(4b)3, 2, (28b + 1

7b2)3/64
)
.

Then, Storm satisfies

E [‖∇F (x̂)‖] = E

[

1

T

T∑

t=1

‖∇F (xt)‖
]

≤ w1/6
√

2M + 2M3/4

√
T

+
2σ1/3

T 1/3
,

where M = 8
k (F (x1)− F ⋆) + w1/3σ2

4L2k2 + k2c2

2L2 ln(T + 2).

4

In words, Theorem 1 guarantees that Storm will make the norm of the gradients converge to 0 at a

rate of O(lnT
√

T
) if there is no noise, and in expectation at a rate of 2σ1/3

T 1/3 in the stochastic case. We remark

that we achieve both rates automatically, without the need to know the noise level nor the need to tune
stepsizes. Note that the rate when σ 6= 0 matches the optimal rate [3], which was previously only obtained
by SVRG-based algorithms that require a “mega-batch” [8, 31].

The dependence on G in this bound deserves some discussion - at first blush it appears that if G → 0,
the bound will go to infinity because the denominator in M goes to zero. Fortunately, this is not so: the
resolution is to observe that F (x1) − F ⋆ = O(G) and σ = O(G), so that the numerators of M actually go
to zero at least as fast as the denominator. The dependence on L may be similarly non-intuitive: as L→ 0,
M → ∞. In this case this is actually to be expected: if L = 0, then there are no critical points (because
the gradients are all the same!) and so we cannot actually find one. In general, M should be regarded as an
O(log(T)) term where the constant indicates some inherent hardness level in the problem.

Finally, note that here we assumed that each f(x, ξ) is G-Lipschitz in x. Prior variance reduction results
(e.g. [18, 8, 25]) do not make use of this assumption. However, we we show in Appendix B that simply
replacing all instances of G or Gt in the parameters of Storm with an oracle-tuned value of σ allows us to
dispense with this assumption while still avoiding all checkpoint gradients.

Also note that, as in similar work on stochastic minimization of non-convex functions, Theorem 1 only
bounds the gradient of a randomly selected iterate [9]. However, in practical implementations we expect the
last iterate to perform equally well.

Our analysis formalizes the intuition developed in the previous section through a Lyapunov potential
function. Our Lyapunov function is somewhat non-standard: for smooth non-convex functions, the Lyapunov
function is typically of the form Φt = F (xt), but we propose to use the function Φt = F (xt) + zt‖ǫt‖2 for
a time-varying zt ∝ η−1

t−1, where ǫt is the error in the update introduced in the previous section. The use
of time-varying zt appears to be critical for us to avoid using any checkpoints: with constant zt it seems
that one always needs at least one checkpoint gradient. Potential functions of this form have been used to
analyze momentum algorithms in order to prove asymptotic guarantees, see, e.g., Ruszczynski and Syski
[23]. However, as far as we know, this use of a potential is somewhat different than most variance reduction
analyses, and so may provide avenues for further development. We now proceed to the proof of Theorem 1.

5.1 Proof of Theorem 1

First, we consider a generic SGD-style analysis. Most SGD analyses assume that the gradient estimates used
by the algorithm are unbiased of ∇F (xt), but unfortunately dt biased. As a result, we need the following
slightly different analysis. For lack of space, the proof of this Lemma and the next one are in the Appendix.

Lemma 1. Suppose ηt ≤ 1
4L for all t. Then

E[F (xt+1)− F (xt)] ≤ E
[
−ηt/4‖∇F (xt)‖2 + 3ηt/4‖ǫt‖2

]
.

The following technical observation is key to our analysis of Storm: it provides a recurrence that enables
us to bound the variance of the estimates dt.

Lemma 2. With the notation in Algorithm 1, we have

E
[
‖ǫt‖2/ηt−1

]
≤ E

[
2c2η3t−1G

2
t + (1− at)

2(1 + 4L2η2t−1)‖ǫt−1‖2/ηt−1 + 4(1− at)
2L2ηt−1‖∇F (xt−1)‖2

]
.

Lemma 2 exhibits a somewhat involved algebraic identity, so let us try to build some intuition for what
it means and how it can help us. First, multiply both sides by ηt−1. Technically the expectations make

this a forbidden operation, but we ignore this detail for now. Next, observe that
∑T

t=1 G
2
t is roughly Θ(T)

(since the the variance prevents ‖gt‖2 from going to zero even when ‖∇F (xt)‖ does). Therefore ηt is roughly
O(1/t1/3), and at is roughly O(1/t2/3). Discarding all constants, and observing that (1 − at)

2 ≤ (1 − at),

5

the above Lemma is then saying that

E[‖ǫt‖2] ≤ E
[
η4t−1 + (1− at)‖ǫt−1‖2 + η2t−1‖∇F (xt−1)‖2

]

= E

[

t−4/3 +
(

1− t−2/3
)

‖ǫt−1‖2 + t−1/3‖∇F (xt−1)‖2
]

.

We can use this recurrence to compute a kind of “equilibrium value” for E[‖ǫt‖2]: set E[‖ǫt‖2] =
E[‖ǫt−1‖2] and solve to obtain ‖ǫt‖2 is O(1/t2/3 + ‖∇F (xt)‖2). This in turn suggests that, whenever
‖∇F (xt)‖2 is greater than 1/t2/3, the gradient estimate dt = ∇F (xt)+ǫt will be a very good approximation
of ∇F (xt) so that gradient descent should make very fast progress. Therefore, we expect the “equilibrium
value” for ‖∇F (xt)‖2 to be O(1/T 2/3), since this is the point at which the estimate dt becomes dominated
by the error.

We formalize this intuition using a Lyapunov function of the form Φt = F (xt) + zt‖ǫt‖2 in the proof of
Theorem 1 below.

Proof of Theorem 1. Consider the potential Φt = F (xt) + 1
32L2ηt−1

‖ǫt‖2. We will upper bound Φt+1 − Φt

for each t, which will allow us to bound ΦT in terms of Φ1 by summing over t. First, observe that since
w ≥ (4Lk)3, we have ηt ≤ 1

4L . Further, since at+1 = cη2t , we have at+1 ≤ ck
4Lw1/3 ≤ 1 for all t. Then, we first

consider η−1
t ‖ǫt+1‖2 − η−1

t−1‖ǫt‖2. Using Lemma 2, we obtain

E
[
η−1
t ‖ǫt+1‖2 − η−1

t−1‖ǫt‖2
]

≤ E

[

2c2η3tG
2
t+1 +

(1− at+1)2(1 + 4L2η2t)‖ǫt‖2
ηt

+ 4(1− at+1)2L2ηt‖∇F (xt)‖2 −
‖ǫt‖2
ηt−1

]

≤ E




2c2η3tG

2
t+1

︸ ︷︷ ︸

At

+
(
η−1
t (1− at+1)(1 + 4L2η2t)− η−1

t−1

)
‖ǫt‖2

︸ ︷︷ ︸

Bt

+ 4L2ηt‖∇F (xt)‖2
︸ ︷︷ ︸

Ct




 .

Let us focus on the terms of this expression individually. For the first term, At, observe that w ≥ 2G2 ≥
G2 + G2

t+1 to obtain:

T∑

t=1

At =

T∑

t=1

2c2η3tG
2
t+1 =

T∑

t=1

2k3c2G2
t+1

w +
∑t

i=1 G
2
i

≤
T∑

t=1

2k3c2G2
t+1

G2 +
∑t+1

i=1 G
2
i

≤ 2k3c2 ln

(

1 +

T+1∑

t=1

G2
t

G2

)

≤ 2k3c2 ln (T + 2) ,

where in the second to last inequality we used Lemma 4 in the Appendix.
For the second term Bt, we have

Bt ≤ (η−1
t − η−1

t−1 + η−1
t (4L2η2t − at+1))‖ǫt‖2 =

(
η−1
t − η−1

t−1 + ηt(4L
2 − c)

)
‖ǫt‖2 .

Let us focus on 1
ηt
− 1

ηt−1

for a minute. Using the concavity of x1/3, we have (x + y)1/3 ≤ x1/3 + yx−2/3/3.

Therefore:

1

ηt
− 1

ηt−1
=

1

k





(

w +

t∑

i=1

G2
i

)1/3

−
(

w +

t−1∑

i=1

G2
i

)1/3


 ≤ G2
t

3k(w +
∑t−1

i=1 G
2
i)2/3

≤ G2
t

3k(w −G2 +
∑t

i=1 G
2
i)2/3

≤ G2
t

3k(w/2 +
∑t

i=1 G
2
i)2/3

≤ 22/3G2
t

3k(w +
∑t

i=1 G
2
i)2/3

≤ 22/3G2

3k3
η2t ≤

22/3G2

12Lk3
ηt ≤

G2

7Lk3
ηt,

where we have used that that w ≥ (4Lk)3 to have ηt ≤ 1
4L .

6

Further, since c = 28L2 + G2/(7Lk3), we have

ηt(4L
2 − c) ≤ −24L2ηt −G2ηt/(7Lk3) .

Thus, we obtain Bt ≤ −24L2ηt‖ǫt‖2. Putting all this together yields:

1

32L2

T∑

t=1

(‖ǫt+1‖2
ηt

− ‖ǫt‖
2

ηt−1

)

≤ k3c2

16L2
ln (T + 2) +

T∑

t=1

[
ηt
8
‖∇F (xt)‖2 −

3ηt
4
‖ǫt‖2

]

. (4)

Now, we are ready to analyze the potential Φt. Since ηt ≤ 1
4L , we can use Lemma 1 to obtain

E[Φt+1 − Φt] ≤ E

[

−ηt
4
‖∇F (xt)‖2 +

3ηt
4
‖ǫt‖2 +

1

32L2ηt
‖ǫt+1‖2 −

1

32L2ηt−1
‖ǫt‖2

]

.

Summing over t and using (4), we obtain

E[ΦT+1 − Φ1] ≤
T∑

t=1

E

[

−ηt
4
‖∇F (xt)‖2 +

3ηt
4
‖ǫt‖2 +

1

32L2ηt
‖ǫt+1‖2 −

1

32L2ηt−1
‖ǫt‖2

]

≤ E

[

k3c2

16L2
ln (T + 2)−

T∑

t=1

ηt
8
‖∇F (xt)‖2

]

.

Reordering the terms, we have

E

[
T∑

t=1

ηt‖∇F (xt)‖2
]

≤ E
[
8(Φ1 − ΦT+1) + k3c2/(2L2) ln (T + 2)

]

≤ 8(F (x1)− F ⋆) + E[‖ǫ1‖2]/(4L2η0) + k3c2/(2L2) ln(T + 2)

≤ 8(F (x1)− F ⋆) + w1/3σ2/(4L2k) + k3c2/(2L2) ln(T + 2),

where the last inequality is given by the definition of d1 and η0 in the algorithm.

Now, we relate E

[
∑T

t=1 ηt‖∇F (xt)‖2
]

to E

[
∑T

t=1 ‖∇F (xt)‖2
]

. First, since ηt is decreasing,

E

[
T∑

t=1

ηt‖∇F (xt)‖2
]

≥ E

[

ηT

T∑

t=1

‖∇F (xt)‖2
]

.

Now, from Cauchy-Schwarz inequality, for any random variables A and B we have E[A2]E[B2] ≥ E[AB]2.

Hence, setting A =
√

ηT
∑T−1

t=1 ‖∇F (xt)‖2 and B =
√

1/ηT , we obtain

E[1/ηT]E

[

ηT

T∑

t=1

‖∇F (xt)‖2
]

≥ E





√
√
√
√

T∑

t=1

‖∇F (xt)‖2




2

.

Therefore, if we set M = 1
k

[

8(F (x1)− F ⋆) + w1/3σ2

4L2k + k3c2

2L2 ln(T + 2)
]

, to get

E





√
√
√
√

T∑

t=1

‖∇F (xt)‖2




2

≤ E

[

8(F (x1)− F ⋆) + w1/3σ2

4L2k + k3c2

2L2 ln(T + 2)

ηT

]

= E

[
kM

ηT

]

≤ E



M

(

w +
T∑

t=1

G2
t

)1/3


 .

7

recognition benchmark [14] using a ResNet model [10], as implemented by the Tensor2Tensor package [26]1.
We compare Storm to AdaGrad and Adam, which are both very popular and successful optimization
algorithms. The learning rates for AdaGrad and Adam were swept over a logarithmically spaced grid. For
Storm, we set w = k = 0.1 as a default2 and swept c over a logarithmically spaced grid, so that all algorithms
involved only one parameter to tune. No regularization was employed. We record train loss (cross-entropy),
and accuracy on both the train and test sets (see Figure 1).

These results show that, while Storm is only marginally better than AdaGrad on test accuracy, on both
training loss and accuracy Storm appears to be somewhat faster in terms of number of iterations. We note
that the convergence proof we provide actually only applies to the training loss (since we are making multiple
passes over the dataset). We leave for the future whether appropriate regularization can trade-off Storm’s
better training loss performance to obtain better test performance.

7 Conclusion

We have introduced a new variance-reduction-based algorithm, Storm, that finds critical points in stochastic,
smooth, non-convex problems. Our algorithm improves upon prior algorithms by virtue of removing the need
for checkpoint gradients, and incorporating adaptive learning rates. These improvements mean that Storm

is substantially easier to tune: it does not require choosing the size of the checkpoints, nor how often
to compute the checkpoints (because there are no checkpoints), and by using adaptive learning rates the
algorithm enjoys the same robustness to learning rate tuning as popular algorithms like AdaGrad or Adam.
Storm obtains the optimal convergence guarantee, adapting to the level of noise in the problem without
knowledge of this parameter. We verified that on CIFAR-10 with a ResNet architecture, Storm indeed
seems to be optimizing the objective in fewer iterations than baseline algorithms.

Additionally, we point out that Storm’s update formula is strikingly similar to the standard SGD with
momentum heuristic employed in practice. To our knowledge, no theoretical result actually establishes an
advantage of adding momentum to SGD in stochastic problems, creating an intriguing mystery. While our
algorithm is not precisely the same as the SGD with momentum, we feel that it provides strong intuitive
evidence that momentum is performing some kind of variance reduction. We therefore hope that some of the
analysis techniques used in this paper may provide a path towards explaining the advantages of momentum.

Acknowledgements

This material is based upon work supported by the National Science Foundation under grant no. 1925930
“Collaborative Research: TRIPODS Institute for Optimization and Learning”.

References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015.

[2] Z. Allen-Zhu and E. Hazan. Variance reduction for faster non-convex optimization. In International
conference on machine learning, pages 699–707, 2016.

[3] Y. Arjevani, Y. Carmon, J. C. Duchi, D. J. Foster, N. Srebro, and B. Woodworth. Lower bounds for
non-convex stochastic optimization. arXiv preprint arXiv:1912.02365, 2019.

1https://github.com/google-research/google-research/tree/master/storm_optimizer
2We picked these defaults by tuning over a logarithmic grid on the much-simpler MNIST dataset [15]. w and k were not

tuned on CIFAR10.

9

[4] A. Cutkosky and R. Busa-Fekete. Distributed stochastic optimization via adaptive SGD. In Advances
in Neural Information Processing Systems, pages 1910–1919, 2018.

[5] Aaron Defazio and Léon Bottou. On the ineffectiveness of variance reduced optimization for deep
learning. In Advances in Neural Information Processing Systems, pages 1753–1763, 2019.

[6] A. Dieuleveut, N. Flammarion, and F. Bach. Harder, better, faster, stronger convergence rates for
least-squares regression. J. Mach. Learn. Res., 18(1):3520–3570, January 2017.

[7] J. C. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

[8] C. Fang, C. J. Li, Z. Lin, and T. Zhang. Spider: Near-optimal non-convex optimization via stochastic
path-integrated differential estimator. In Advances in Neural Information Processing Systems, pages
689–699, 2018.

[9] S. Ghadimi and G. Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic program-
ming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

[10] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proc. of the
IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[11] P. Jain, S. M. Kakade, R. Kidambi, P. Netrapalli, and A. Sidford. Accelerating stochastic gradient
descent for least squares regression. In S. Bubeck, V. Perchet, and P. Rigollet, editors, Proceedings
of the 31st Conference On Learning Theory, volume 75 of Proceedings of Machine Learning Research,
pages 545–604. PMLR, 06–09 Jul 2018.

[12] R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance reduction.
In Advances in neural information processing systems, pages 315–323, 2013.

[13] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In International Conference on
Learning Representations (ICLR), 2015.

[14] A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University of
Toronto, 2009.

[15] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324, November 1998.

[16] X. Li and F. Orabona. On the convergence of stochastic gradient descent with adaptive stepsizes. In
Proc. of the 22nd International Conference on Artificial Intelligence and Statistics, AISTATS, 2019.

[17] M. Mahdavi, L. Zhang, and R. Jin. Mixed optimization for smooth functions. In Advances in neural
information processing systems, pages 674–682, 2013.

[18] L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takáč. SARAH: A novel method for machine learning
problems using stochastic recursive gradient. In Proc. of the 34th International Conference on Machine
Learning-Volume 70, pages 2613–2621. JMLR. org, 2017.

[19] L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takáč. Stochastic recursive gradient algorithm for non-
convex optimization. arXiv preprint arXiv:1705.07261, 2017.

[20] L. M. Nguyen, K. Scheinberg, and M. Takáč. Inexact SARAH algorithm for stochastic optimization.
arXiv preprint arXiv:1811.10105, 2018.

[21] S. J. Reddi, A. Hefny, S. Sra, B. Poczos, and A. Smola. Stochastic variance reduction for nonconvex
optimization. In International conference on machine learning, pages 314–323, 2016.

10

[22] S. J. Reddi, S. Kale, and S. Kumar. On the convergence of Adam and beyond. In International
Conference on Learning Representations, 2018.

[23] A. Ruszczynski and W. Syski. Stochastic approximation method with gradient averaging for uncon-
strained problems. IEEE Transactions on Automatic Control, 28(12):1097–1105, December 1983.

[24] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent
magnitude. COURSERA: Neural Networks for Machine Learning, 2012.

[25] Quoc Tran-Dinh, Nhan H Pham, Dzung T Phan, and Lam M Nguyen. Hybrid stochastic gradient
descent algorithms for stochastic nonconvex optimization. arXiv preprint arXiv:1905.05920, 2019.

[26] A. Vaswani, S. Bengio, E. Brevdo, F. Chollet, A. N. Gomez, S. Gouws, L. Jones, L. Kaiser, N. Kalchbren-
ner, N. Parmar, R. Sepassi, N. Shazeer, and J. Uszkoreit. Tensor2tensor for neural machine translation.
CoRR, abs/1803.07416, 2018.

[27] C. Wang, X. Chen, A. J. Smola, and E. P. Xing. Variance reduction for stochastic gradient optimization.
In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems 26, pages 181–189. Curran Associates, Inc., 2013.

[28] R. Ward, X. Wu, and L. Bottou. AdaGrad stepsizes: Sharp convergence over nonconvex landscapes,
from any initialization. arXiv preprint arXiv:1806.01811, 2018.

[29] K. Yuan, B. Ying, and A. H. Sayed. On the influence of momentum acceleration on online learning.
Journal of Machine Learning Research, 17(192):1–66, 2016.

[30] L. Zhang, M. Mahdavi, and R. Jin. Linear convergence with condition number independent access of full
gradients. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems 26, pages 980–988. Curran Associates, Inc., 2013.

[31] D. Zhou, P. Xu, and Q. Gu. Stochastic nested variance reduced gradient descent for nonconvex opti-
mization. In Advances in Neural Information Processing Systems, pages 3921–3932, 2018.

11

A Extra Lemmas

In this section we (re)state and prove some Lemmas.
First, we provide the proof of Lemma 1, restated below for convenience.

Lemma 1. Suppose ηt ≤ 1
4L for all t. Then

E[F (xt+1)− F (xt)] ≤ E
[
−ηt/4‖∇F (xt)‖2 + 3ηt/4‖ǫt‖2

]
.

Proof. Using the smoothness of F and the definition of xt+1 from the algorithm, we have

E[F (xt+1)] ≤ E

[

F (xt)−∇F (xt) · ηtdt +
Lη2t

2
‖dt‖2

]

= E

[

F (xt)− ηt‖∇F (xt)‖2 − ηt∇F (xt) · ǫt +
Lη2t

2
‖dt‖2

]

≤ E

[

F (xt)−
ηt
2
‖∇F (xt)‖2 +

ηt
2
‖ǫt‖2 +

Lη2t
2
‖dt‖2

]

≤ E

[

F (xt)−
ηt
2
‖∇F (xt)‖2 +

ηt
2
‖ǫt‖2 + Lη2t ‖ǫt‖2 + Lη2t ‖∇F (xt)‖2

]

≤ E

[

F (xt)−
ηt
2
‖∇F (xt)‖2 +

3ηt
4
‖ǫt‖2 +

ηt
4
‖∇F (xt)‖2

]

,

where in the second inequality we used Young’s inequality, the third one uses ‖x + y‖2 ≤ 2‖x‖2 + 2‖y‖2,
and the last one uses ηt ≤ 1/4L.

This next Lemma is a technical observation that is important for the proof of Lemma 2.

Lemma 3.

E
[
(∇f(xt, ξt)−∇F (xt)) · η−1

t−1(1− at)
2ǫt−1

]
= 0

E
[
(∇f(xt, ξt)−∇f(xt−1, ξt)−∇F (xt) +∇F (xt−1)) · η−1

t−1(1− at)
2ǫt−1

]
= 0 .

Proof. From inspection of the update formula, the hypothesis implies that ǫt−1 = dt−1 −∇F (xt−1) and xt

are both independent of ξt. Then, by first taking expectation with respect to ξt and then with respect to
ξ1, . . . , ξt−1, we obtain

E
[
(∇f(xt, ξt)−∇F (xt)) · η−1

t−1(1− at)
2ǫt−1

]

= E
[
E
[
(∇f(xt, ξt)−∇F (xt)) · η−1

t−1(1− at)
2ǫt−1|ξ1, . . . , ξt−1

]]
= 0 .

Analogously, for the second equality we have

E
[
(∇f(xt, ξt)−∇f(xt−1, ξt)−∇F (xt) +∇F (xt−1)) · η−1

t−1(1− at)
2ǫt−1

]

= E
[
E
[
(∇f(xt, ξt)−∇f(xt−1, ξt)− (∇F (xt)−∇F (xt−1))) · η−1

t−1(1− at)
2ǫt−1|ξ1, . . . , ξt−1

]]

= 0 .

The following Lemma is a standard consequence of convexity.

Lemma 4. Let a0 > 0 and a1, . . . , aT ≥ 0. Then

T∑

t=1

at

a0 +
∑t

i=1 ai
≤ ln

(

1 +

∑t
i=1 ai
a0

)

.

Proof. By the concavity of the log function, we have

ln

(

a0 +

t∑

i=1

ai

)

− ln

(

a0 +

t−1∑

i=1

ai

)

≥ at

a0 +
∑t

i=1 ai
.

Summing over t = 1, . . . , T both sides of the inequality, we have the stated bound.

12

A.1 Proof of Lemma 2

In this section we present the deferred proof of Lemma 2, restating the result below for reference

Lemma 2. With the notation in Algorithm 1, we have

E
[
‖ǫt‖2/ηt−1

]
≤ E

[
2c2η3t−1G

2
t + (1− at)

2(1 + 4L2η2t−1)‖ǫt−1‖2/ηt−1 + 4(1− at)
2L2ηt−1‖∇F (xt−1)‖2

]
.

Proof. First, observe that

E
[
η3t−1‖∇f(xt, ξt)−∇F (xt)‖2

]

= E
[
η3t−1(‖∇f(xt, ξt)‖2 + ‖∇F (xt)‖2 − 2∇f(xt, ξt) · ∇F (xt))

]

= E
[
η3t−1E

[
‖∇f(xt, ξt)‖2 + ‖∇F (xt)‖2 − 2∇f(xt, ξt) · ∇F (xt)

∣
∣ξ1, . . . , ξt−1

]]

= E
[
η3t−1(‖∇f(xt, ξt)‖2 − ‖∇F (xt)‖2)

]

≤ E
[
η3t−1‖∇f(xt, ξt)‖2

]
. (5)

In the same way, we also have that

E
[
η−1
t−1(1− a2t)‖∇f(xt, ξt)−∇f(xt−1, ξt)−∇F (xt) +∇F (xt−1)‖2

]

≤ E
[
η−1
t−1(1− a2t)‖∇f(xt, ξt)−∇f(xt−1, ξt))‖2

]
. (6)

By definition of ǫt and the notation in Algorithm 1, we have ǫt = dt − ∇F (xt) = ∇f(xt, ξt) + (1 −
at)(dt−1 −∇f(xt−1, ξt))−∇F (xt). Hence, we can write

E
[
η−1
t−1‖ǫt‖2

]
= E

[
η−1
t−1‖∇f(xt, ξt) + (1− at)(dt−1 −∇f(xt−1, ξt))−∇F (xt)‖2

]

= E
[
η−1
t−1‖at(∇f(xt, ξt)−∇F (xt)) + (1− at)(∇f(xt, ξt)−∇f(xt−1, ξt)−∇F (xt) +∇F (xt−1))

+ (1− at)(dt−1 −∇F (xt−1))‖2
]

≤ E
[
2c2η3t−1‖∇f(xt, ξt)−∇F (xt)‖2 + 2η−1

t−1(1− at)
2‖∇f(xt, ξt)−∇f(xt−1, ξt)−∇F (xt) +∇F (xt−1)‖2

+η−1
t−1(1− at)

2‖ǫt−1‖2
]

≤ E
[
2c2η3t−1‖∇f(xt, ξt)‖2 + 2η−1

t−1(1− at)
2‖∇f(xt, ξt)−∇f(xt−1, ξt)‖2 + η−1

t−1(1− at)
2‖ǫt−1‖2

]

≤ E
[
2c2η3t−1G

2
t + 2η−1

t−1(1− at)
2L2‖xt − xt−1‖2 + η−1

t−1(1− at)
2‖ǫt−1‖2

]

= E
[
2c2η3t−1G

2
t + 2(1− at)

2L2ηt−1‖dt−1‖2 + η−1
t−1(1− at)

2‖ǫt−1‖2
]

= E
[
2c2η3t−1G

2
t + 2(1− at)

2L2ηt−1‖ǫt−1 +∇F (xt−1)‖2 + η−1
t−1(1− at)

2‖ǫt−1‖2
]

≤ E
[
2c2η3t−1G

2
t + 4(1− at)

2L2ηt−1(‖ǫt−1‖2 + ‖∇F (xt−1)‖2) + η−1
t−1(1− at)

2‖ǫt−1‖2
]

= E
[
2c2η3t−1G

2
t + η−1

t−1(1− at)
2(1 + 4L2η2t−1)‖ǫt−1‖2 + 4(1− at)

2L2ηt−1‖∇F (xt−1)‖2
]
,

where in the first inequality we used Lemma 3 (See Appendix A) and ‖x + y‖2 ≤ 2‖x‖2 + 2‖y‖2, in the
second inequality we used (5) and (6), in the third one the Lipschitzness and smoothness of the functions f ,
and in the last inequality we used again ‖x + y‖2 ≤ 2‖x‖2 + ‖y‖2.

B Non-adaptive Bound Without Lipschitz Assumption

In our analysis of Storm in Theorem 1 we assume that the losses are G-Lipschitz for some known constant
G with probability 1. Often this kind of Lipschitz assumption is avoided in other variance-reduction analyses
[18, 8, 25]. These works also require oracle knowlede of the parameter σ. It turns out that our use of this
assumption is actually only necessary in order to facilitate our adaptive analysis - in fact even for ordinary
(non-variance-reduced) gradient descent methods the Lipschitz assumption seems to be a common thread in
adaptive analyses [16, 28]. If we are given access to the true value of σ, then we can choose a deterministic

13

Algorithm 2 Storm without Lipschitz Bound

1: Input: Parameters k, w, c, initial point x1

2: Sample ξ1
3: G1 ← ‖∇f(x1, ξ1)‖
4: d1 ← ∇f(x1, ξ1)
5: η0 ← k

w1/3

6: for t = 1 to T do

7: ηt ← k
(w+σ2t)1/3

8: xt+1 ← xt − ηtdt

9: at+1 ← cη2t
10: Sample ξt+1

11: Gt+1 ← ‖∇f(xt+1, ξt+1)‖
12: dt+1 ← ∇f(xt+1, ξt+1) + (1− at+1)(dt −∇f(xt, ξt+1))
13: end for

14: Choose x̂ uniformly at random from x1, . . . ,xT . (In practice, set x̂ = xT).
15: return x̂

learning rate schedule in order to avoid requiring a Lipschitz bound. All that needs be done is replace all
instances of G or Gt in Storm with the oracle-tuned value σ, which we outline in Algorithm 2 below.

The convergence guarantee of Algorithm 2 is presented in Theorem 2 below, which is nearly identical to
Theorem 1 but losses adaptivity to σ in exchange for removing the G-Lipschitz requirement.

Theorem 2. Under the assumptions in Section 3, for any b > 0, we write k = bσ
2

3

L . Set c = 28L2 +

σ2/(7Lk3) = L2(28 + 1/(7b3)) and w = max
(

(4Lk)3, 2σ2,
(
ck
4L

)3
)

= σ2 max
(
(4b)3, 2, (28b + 1

7b2)3/64
)
.

Then, Algorithm 2 satisfies

1

T
E

[
T∑

t=1

‖∇F (xt)‖2
]

≤ M w1/3

k

T
+

M wσ2/3

k

T 2/3
,

where M = 8(F (x1)− F ⋆) + w1/3σ2

4L2k + k3c2

2L2 ln(T + 2).

In order to prove this Theorem, we need a non-adaptive analog of Lemma 2:

Lemma 5. With the notation in Algorithm 2, we have

E

[‖ǫt‖2
ηt−1

]

≤ E

[

2c2η3t−1σ
2 +

(1− at)
2(1 + 4L2η2t−1)‖ǫt−1‖2

ηt−1
+ 4(1− at)

2L2ηt−1‖∇F (xt−1)‖2
]

.

Proof. The proof is nearly identical to that of Lemma 2: the only difference is that instead of using the
identity E[η3t−1‖∇f(xt, ξt)−∇F (xt)‖2] ≤ E[η3t−1‖∇f(xt, ξt)‖2] = E[η3t−1G

2
t], we directly use the value of σ:

E[η3t−1‖∇f(xt, ξt)−∇F (xt)‖2] ≤ η3t−1σ
2.

Now we can prove Theorem 2:

Proof of Theorem 2. This proof is also nearly identical to the analogous adaptive result of Theorem 1.
Again, we consider the potential Φt = F (xt) + 1

32L2ηt−1

‖ǫt‖2 and upper bound Φt+1 − Φt for each t.

Since w ≥ (4Lk)3, we have ηt ≤ 1
4L . Further, since at+1 = cη2t , we have at+1 ≤ ck

4Lw1/3 ≤ 1 for all t.

14

Then, we first consider η−1
t ‖ǫt+1‖2 − η−1

t−1‖ǫt‖2. Using Lemma 5, we obtain

E
[
η−1
t ‖ǫt+1‖2 − η−1

t−1‖ǫt‖2
]

≤ E

[

2c2η3t σ
2 +

(1− at+1)2(1 + 4L2η2t)‖ǫt‖2
ηt

+ 4(1− at+1)2L2ηt‖∇F (xt)‖2 −
‖ǫt‖2
ηt−1

]

≤ E




2c2η3t σ

2

︸ ︷︷ ︸

At

+
(
η−1
t (1− at+1)(1 + 4L2η2t)− η−1

t−1

)
‖ǫt‖2

︸ ︷︷ ︸

Bt

+ 4L2ηt‖∇F (xt)‖2
︸ ︷︷ ︸

Ct




 .

Let us focus on the terms of this expression individually. For the first term, At, observe that w ≥ 2σ2 to
obtain:

T∑

t=1

At =

T∑

t=1

2c2η3t σ
2 =

T∑

t=1

2k3c2σ2

w + tσ2
≤

T∑

t=1

2k3c2

t + 1
≤ 2k3c2 ln (T + 2) .

For the second term Bt, we have

Bt ≤ (η−1
t − η−1

t−1 + η−1
t (4L2η2t − at+1))‖ǫt‖2 =

(
η−1
t − η−1

t−1 + ηt(4L
2 − c)

)
‖ǫt‖2 .

Let us focus on 1
ηt
− 1

ηt−1

for a minute. Using the concavity of x1/3, we have (x + y)1/3 ≤ x1/3 + yx−2/3/3.

Therefore:

1

ηt
− 1

ηt−1
=

1

k

[(
w + tσ2

)1/3 −
(
w + (t− 1)σ2

)1/3
]

≤ σ2

3k(w + (t− 1)σ2)2/3

≤ σ2

3k(w − σ2 + tσ2)2/3
≤ σ2

3k(w/2 + tσ2)2/3

≤ 22/3σ2

3k(w + tσ2)2/3
≤ 22/3σ2

3k3
η2t ≤

22/3σ2

12Lk3
ηt ≤

σ2

7Lk3
ηt,

where we have used that that w ≥ (4Lk)3 to have ηt ≤ 1
4L .

Further, since c = 28L2 + σ2/(7Lk3), we have

ηt(4L
2 − c) ≤ −24L2ηt − σ2ηt/(7Lk3) .

Thus, we obtain Bt ≤ −24L2ηt‖ǫt‖2. Putting all this together yields:

1

32L2

T∑

t=1

(‖ǫt+1‖2
ηt

− ‖ǫt‖
2

ηt−1

)

≤ k3c2

16L2
ln (T + 2) +

T∑

t=1

[
ηt
8
‖∇F (xt)‖2 −

3ηt
4
‖ǫt‖2

]

. (7)

Now, we analyze the potential Φt. This analysis is completely identical to that of Theorem 1, and is only
reproduced here for convenience. Since ηt ≤ 1

4L , we can use Lemma 1 to obtain

E[Φt+1 − Φt] ≤ E

[

−ηt
4
‖∇F (xt)‖2 +

3ηt
4
‖ǫt‖2 +

1

32L2ηt
‖ǫt+1‖2 −

1

32L2ηt−1
‖ǫt‖2

]

.

Summing over t and using (7), we obtain

E[ΦT+1 − Φ1] ≤
T∑

t=1

E

[

−ηt
4
‖∇F (xt)‖2 +

3ηt
4
‖ǫt‖2 +

1

32L2ηt
‖ǫt+1‖2 −

1

32L2ηt−1
‖ǫt‖2

]

≤ E

[

k3c2

16L2
ln (T + 2)−

T∑

t=1

ηt
8
‖∇F (xt)‖2

]

.

15

Reordering the terms, we have

E

[
T∑

t=1

ηt‖∇F (xt)‖2
]

≤ E

[

8(Φ1 − ΦT+1) +
k3c2

2L2
ln (T + 2)

]

≤ 8(F (x1)− F ⋆) +
1

4L2η0
E[‖ǫ1‖2] +

k3c2

2L2
ln(T + 2)

≤ 8(F (x1)− F ⋆) +
w1/3σ2

4L2k
+

k3c2

2L2
ln(T + 2),

where the last inequality is given by the definition of d1 and η0 in the algorithm.
At this point the rest of the proof could proceed in an identical manner to that of Theorem 1. However,

since ηt is now idependent of ∇F (xt) by virtue of being deterministic, we can simplify the remainder of the
proof somewhat by avoiding the use of Cauchy-Schwarz inequality.

Since ηt is deterministic, we have E

[
∑T

t=1 ηt‖∇F (xt)‖2
]

≥ ηTE
[
∑T

t=1 ‖∇F (xt)‖2
]

. Then divide by

TηT to conclude

1

T
E

[
T∑

t=1

‖∇F (xt)‖2
]

≤ M w1/3

k

T
+

M wσ2/3

k

T 2/3
,

where we have used the definition M = 8(F (x1)−F ⋆) + w1/3σ2

4L2k + k3c2

2L2 ln(T + 2) and the identity (a+ b)1/3 ≤
a1/3 + b1/3

16

	Introduction
	Related Work
	Notation and Assumptions
	Momentum and Variance Reduction
	Storm: STOchastic Recursive Momentum
	Proof of Theorem 1

	Empirical Validation
	Conclusion
	Extra Lemmas
	Proof of Lemma 2

	Non-adaptive Bound Without Lipschitz Assumption

