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Abstract

In the setting of online learning, Implicit algorithms turn out to be highly suc-
cessful from a practical standpoint. However, the tightest regret analyses only
show marginal improvements over Online Mirror Descent. In this work, we shed
light on this behavior carrying out a careful regret analysis. We prove a novel
static regret bound that depends on the temporal variability of the sequence of
loss functions, a quantity which is often encountered when considering dynamic
competitors. We show, for example, that the regret can be constant if the tempo-
ral variability is constant and the learning rate is tuned appropriately, without the
need of smooth losses. Moreover, we present an adaptive algorithm that achieves
this regret bound without prior knowledge of the temporal variability and prove a
matching lower bound. Finally, we validate our theoretical findings on classifica-
tion and regression datasets.

1 Introduction

The online learning paradigm is a powerful tool to model common scenarios in the real world
when the data comes in a streaming fashion, for example in the case of time series. In the last
two decades there has been a tremendous amount of progress in this field (see, e.g., [30, 13, 24],
for an introduction), which also led to advances in seemingly unrelated areas of machine learning
and computer science. In this setting, a learning agent faces the environment in a game played
sequentially. The protocol is the following: given a time horizon 7', in every round ¢t = 1,...,7T the
agent chooses a model x; from a convex set V. Then, a convex loss function ¢, is revealed by the
environment and the agent pays a loss ¢;(x;). As usual in this setting, we do not make assumptions
about the environment, but allow it to be adversarial. The agent’s goal is to minimize her regret
against any decision maker, i.e., the cumulative sum of her losses compared to the losses of an agent
which always commits to the same choice u. So, formally the regret against any u € V' is defined
as

RT(U) £ th(ﬂfit) — th(u) .
t=1 t=1

Much of the progress in this field is driven by the strictly related model of Online Linear Opti-
mization (OLO): exploiting the assumption that the loss functions are convex, we can linearize them
using a first-order approximation through its (sub)gradient and subsequently minimize the linearized
regret. For example, the well-known Online Gradient Descent (OGD) [38] simply uses the direction
of the negative (sub)gradient of the loss function to update its model, multiplied by a given learning
rate. Usually, a properly tuned learning rate gives a regret bound of O(+/T), which is also optimal.
On the other hand, we can choose to not use any approximation to the loss function and instead up-
date our model using directly the loss function rather than its subgradient [17]. This type of update is
known as Implicit and algorithms designed in this way are known to have practical advantages [18].
Unfortunately, their theoretical understanding is still limited at this point.

*Work done while visiting the OPTIMAL Lab at Boston University.
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Our first contribution (Section 5) in this paper is a refined analysis of Implicit algorithms in the
framework of Online Mirror Descent (OMD). Doing this allows us to understand why Implicit algo-
rithms might practically work better compared to algorithms which use (sub)gradients in the update.
In particular, we describe how these algorithms can potentially incur only a constant regret if the
sequence of loss functions does not vary with time. In particular, we measure the hardness of the
sequence of loss functions with its temporal variability, which is defined as

T
Ve £ max f(z) — (). (1)
t=2

Our second contribution (Section 6) is a new adaptive Implicit algorithm, Adalmplicit, which retains
the worst-case O(+/T') regret bound but takes advantage of a slow varying sequence of loss functions
and achieve a regret of O(Vr + 1). Also, we prove a lower bound which shows that our algorithm is
optimal. Finally, in order to show the benefits of using Implicit algorithms in practice, in Section 7
we conduct an empirical analysis on real-world datasets in both classification and regression tasks.

2 Related Work

Implicit Updates. The implicit updates in online learning were proposed for the first time by Kivi-
nen and Warmuth [17]. However, such update with the Euclidean divergence is the Proximal update
in the optimization literature dating back at least to 1965 [22, 19, 29, 27], and more recently used
even in the stochastic setting [33, 2]. Later, this idea was re-invented by Crammer et al. [11] for
the specific case of linear prediction with losses that have a range of values in which they are zero,
e.g., hinge loss and epsilon-insensitive loss. Implicit updates were also used for online learning
with kernels [9] and to deal with importance weights [16]. Kulis and Bartlett [18] provide the first
regret bounds for implicit updates that match those of OMD, while McMahan [20] makes the first
attempt to quantify the advantage of the implicit updates in the regret bound. Finally, Song et al.
[31] generalize the results in McMahan [20] to Bregman divergences and strongly convex functions,
and quantify the gain differently in the regret bound. Note that in [20, 31] the gain cannot be exactly
quantified, providing just a non-negative data-dependent quantity subtracted to the regret bound.

Adaptivity. Our new analysis hinges on the concept of temporal variability V1 of the losses, a
quantity first defined in Besbes et al. [5] in the context of non-stationary stochastic optimization
and later generalized in Chen et al. [8]. In general, the temporal variability has been used in works
considering dynamic environments [e.g., 15, 37, 3, 36]. In particular, Jadbabaie et al. [15] consider
different notions of adaptivity at the same time: if we consider the static regret case with no op-

timistic updates, then their bound gives Ry = O(\/E;‘ll llg:]|2 + 1), which is never better than
ours. At first sight, our algorithm seems to achieve the same constant regret bound of Optimistic
algorithms [10, 28] if the sequence of loss functions is such that Vi = O(1). However, for this
result Optimistic algorithms need either smooth or linear loss functions. In contrast, our algorithm
does not need this assumption. Other examples of adaptivity to the sequence of loss functions can
be found in [14, 32], which consider bounds in terms of the variance of the sequence of linear losses.

Finally, it is worth mentioning that recently there have been attempts to analyze Implicit algorithms
in dynamic environments [see, e.g., 12, 1, 7]. Nevertheless, these works are not directly compa-
rable to ours since they either consider a different (noisy) setting and competitor or make stronger
assumptions (i.e. smoothness and/or strong convexity of the loss functions).

3 Definitions

For a function f : R? — (—o0, +00], we define a subgradient of f in € R? as a vector g € R?
that satisfies f(y) > f(x) + (g,y — x), Yy € R%. We denote the set of subgradients of f in « by
Of (x). The indicator function of the set V, iy : RY — (—00, +-00], is defined as

iv(x) = 0, x eV,
v " | 400, otherwise.

We denote the dual norm of || - || by || - ||x. A proper function f : RY — (—o0, +00] is u-strongly
convex over a convex set V C intdom f w.rt. | - || if Ve,y € V and g € 9f(x), we have



Algorithm 1 Implicit Online Mirror Descent (IOMD)

Require: Non-empty closed convexsetV € X CR% ) : X - R, > 0,2, €V
1: fort=1,...,Tdo
2:  Outputzx; € V
3:  Receive £; : R? — R and pay /;(x;)
4:  Update ;11 = argmingey By (x, ) + nele(x)
5: end for

fy) = f(®) + (g,y — =) + &z — y||?. Lety : X — R be strictly convex and continuously
differentiable on int X. The Bregman Divergence w.r.t. ¢ is By : X x int X — R, defined as
By(z,y) = ¥(x) — (y) — (V¢(y), z — y). We assume that ¢ is strongly convex w.r.t. a norm
| - || in int X. We also assume w.l.o.g. the strong convexity constant to be 1, which implies

1
By(@,y) > sllz—yl*, VoeXyeintX. )

4 Online Mirror Descent with Implicit Updates

In this section, we introduce the Implicit Online Mirror Descent IOMD) algorithm, its relationship
with OMD, and some of its properties.

Consider a set V C X C R?. The Online Mirror Descent [35, 4] update over V is

@it = argmin By(@,@0) +mi((@0) + (g, @ — @) = argmin By (@, @) + (g, @),
for g, € 0¢,(x;) received as feedback. In words, OMD updates the solution minimizing a first-order
approximation of the received loss, /;, around the predicted point, x;, constrained to be not too far

from the predicted point measured with the Bregman divergence. It is well-known, [e.g. 24], that
the regret guarantee for OMD for a non-increasing sequence of learning rates (1;)L_ is

By(u,x;) — By(uw, 1) e
Rr <Z u - A Z—Hgtﬂ VueV. 3)
t=1

This gives a O(v/T) regret with, e.g., max, yev By (®,y) < oo, Lipschitz losses, and 7; oc 1/+/%.

A natural variation of the classic OMD update is to use the actual loss function ¢;, rather than its
first-order approximation. This is called implicit update [17] and is defined as

Tyl = arg 523 By(x, ) + nele(x) - @)

Note that, in general, this update does not have a closed form, but for many interesting cases it is still
possible to efficiently compute it. Notably, for ¢y = 1| - [|3 and linear prediction with the square,

absolute, and hinge loss, these updates can all be computed in closed form when V' = R4 [see, e.g.,
11, 18]. This update leads to the Implicit Online Mirror Descent (IOMD) algorithm in Algorithm 1.
We next show how the update in Eq. (4) yields new interesting properties which are not shared with
its non-implicit counterpart. Their proofs can be found in Appendix B.

Proposition 4.1. Let @, be defined as in Eq. (4). Then, there exists g; € 0¢:(x+11) such that

gt(wt) - gt($t+1) - Bw(le, wt)/nt >0, (5
(Megh + V(@) — VY (2r),u — 2411) >0 Yu eV, (6)
(g1 i1 — 1) > (G, Tep1 — @) - (7N

The first property implies that, in contrast to OMD, the value of the loss function in x;; is always
smaller than or equal to its value in x;. This means that, if ; = ¢, the value ¢(x;) will be mono-
tonically decreasing over time. The second property gives an alternative way to write the update
rule expressed in Eq. (4). In particular, using ¢ (x) = %HCEH% and V' = R? the update becomes
Ty11 = T —1:g}, motivating the name “implicit”. Using this fact in the last property, we have that
with Lo regularization, the dual norm of g is smaller than the dual norm of g,, i.e. ||g}||2 < [|g;|l2-

2Eq. (7) is nothing else than the fact that subgradients are monotone operators.



Let’s gain some additional intuition on the implicit updates. Consider the case of V' = R and
¢(x) = %|| - |3. We have that x4y = @, — g}, where g} € 0l (@y11). Now, if {1 ~ {4,
we would be updating the algorithm approximately with the next subgradient. On the other hand,
knowing future gradients is a safe way to have constant regret. Hence, we can expect IOMD to have
low regret if the functions are slowly varying over time. In the next sections, we will see that this is
indeed the case.

5 Two Regret Bounds for IOMD

In the following, we will present a new regret guarantee for IOMD. First, we give a simple lemma
that provides a bound on the cumulative losses paid after the updates (proof in Appendix B).

Lemma 5.1. Let V C X C R? be a non-empty closed convex set. Let By, be the Bregman diver-
gence w.r.t. Y : X — R. Then, Algorithm 1 guarantees

- - — By(u,my) — By(w,111) <~ 1
Z£t<wt+1) —th(u) < Z " —Z;Bw(-’ﬂtﬂ,wt) - ®
t=1 t=1 t=1 t =1
Furthermore, assume that (n;)1_, is a non-increasing sequence and let D* £ maxg yev By (u, ).
Then the bound can further be expressed as

T T D2 T4
th(iﬂtﬂ) - Zﬁt(u) < — - Z —By(xt41,T¢) - 9)

t=1 t=1 K

Adding Zthl £, (x+) on both sides of Eq. (8), we immediately get our new regret bound.

Theorem 5.2. Under the assumptions of Lemma 5.1, the regret incurred by Algorithm 1 is bounded
as

T
(u, ;) — By(u,x By(xii1, @

Z t) ; w( t+1) +Z[€t ) — l(®psr) — w(:flt) )

=1 t —1 t

We note that this result could also be extrapolated from [31], by carefully going through the proof of
their Lemma 1. Howeyver, as in the other previous work, they did not identify that the key quantity
to be used in order to quantify an actual gain is the temporal variability Vi, as we will show later.

First Regret: Recovering OMD’s Guarantee. To this point, the advantages of an implicit update
are still not clear. Therefore, we now show how, from Theorem 5.2, one can get a possibly tighter
bound than the usual O(+/T). The key point in this new analysis is to introduce g/ as defined in
Proposition 4.1 and relate it to the Bregman divergence between x; and ;1.

Theorem 5.3. Let g, € 0li(xi11) satisfy Eq. (6). Assume 1) to be I-strongly convex w.rt. || - ||.
Then, under the assumptions of Lemma 5.1, we have that Algorithm 1 satisfies

llg: |l
2

By (x11,x4)

ft(mt) - ft(mt-u) -
U

< nt]|gy[lx min (292”*7 > , Vt,g, € 0ly(xy) . (11)

Proof. Using the convexity of the losses, we can bound the difference between ¢;(x;) and ¢;(ax¢11):
Ci(me) — Le(@es1) < (G, e — Titr) < | gllelle — Teqa ],
where g, € 0/;(x;). Given that ¢ is 1-strongly convex, we can use Eq. (2) to obtain
Ci(my) = Ci(@iy1) < |gelley/ 2By (@141, 21) - (12)

Note that ¢;(x¢) — (X+1) — By(@ig1,2)/me < () — €i(e41). Hence, to get the first term

in the min of Eq. (11), we can simply look for an upper bound on the term /2By (241, ;) in
Eq. (12) above. Using the fact that the Bregman divergence is convex in its first argument, we get

By (@1, @) < (Vip(@ig1) — V(@r), Tegr — o) < (G T — Tog1) < 0el|gil |@e1 — 24|

S 7715”92”* QBw(th,-’Et),



where we used Eq. (6) in the second inequality and Eq. (2) in the last one. Solving this inequality
with respect to By, (€41, 1), we get /2By (T11, ) < 21| gy]|«-

For the second term, it suffices to subtract By (41, x;)/m: on both sides of Eq. (12) and use the
fact that b — 22 < ¥ Vo € R with © = By(2441,2:). O

This Theorem immediately gives us that Algorithm 1 has a regret upper-bounded by

T T

R < Bw(u7$t)_Bw(u>wt+l) . 21la’ Hgt”* 13

r(u) < o + D millgellmin (2gil, =5 ) A3)
t=1 t=1

where g, € 0l:(x;). The presence of the minimum makes this bound equivalent in a worst-case
sense to the one of OMD in Eq. (3). Moreover, at least in the Euclidean case, from Eq. (7) we have
that ||g}|l2 < ||g.||2. However, it is difficult to quantify the gain over OMD because in general ||g, ||«
and ||g} ||+ are data-dependent. Hence, as in the other previous analyses, the gain over OMD would
be only marginal and not quantifiable. This is not a limit of our analysis: it is easy to realize that in
the worst case the OMD update and the IOMD update can coincide. To show instead that a real gain
is possible, we are now going to take a different path.

Second Regret: Temporal Variability in IOMD. Here we formalize our key intuition that IOMD
is using an approximation of the future subgradient when the losses do not vary much over time. We
use the notion of temporal variability of the losses, Vr, as given in Eq. (1). Considering again our
regret bound in Theorem 5.2 and using 7; = 7 for all ¢, we immediately have

Rp(u) < 20021 | 3 (Et(a:t) (o) — Jmm)

N t=1 N
By(u,x1) o By (41, 2)
< —F 4+ 61(3}1) — ET(CL‘T+1) + ; I;leae} Et(:c) — gtfl(il:) — f
By(u,x
< By(w,21) +41(x1) — br(Tri1) + V.

This means that using a constant learning rate yields a regret bound of O(Vp + 1), which might
be better than O(\/T) if the temporal variability is low. In particular, we can even get constant
regret if Vi = O(1). On the contrary, OMD cannot achieve a constant regret for any convex loss
even if Vp = 0, since it would imply an impossible O(1/T') rate for non-smooth batch black-box
optimization [23, Theorem 3.2.1]. Instead, IOMD does not violate the lower bound since it is not a
black-box method. As far as we know, the connection between IOMD and temporal variability has
never been observed before. On the other hand, even when the temporal variability is high, we can
still use a O(1/+/T) learning rate to achieve a worst case regret of the order O(v/T).

We would like to point out that a similar behaviour arises from Follow The Regularized Leader algo-
rithm (FTRL) employed with full losses, rather than linearized ones. We show a detailed derivation
in Appendix E. Unfortunately, contrarily to the OMD case employing FTRL would entail solving
a constrained convex optimization problem whose size (in terms of number of functions) grows
each step, that would have a high running time even when the implicit updates have closed form
expressions, e.g., linear classification with hinge loss.

Finally, a natural question arises: can we get a bound which interpolates between O(Vr + 1) and

O(\/T), without any prior knowledge on the quantity V1?7 We give a positive answer to this question
by presenting an adaptive strategy in the next section.

6 Adapting to the Temporal variability with Adalmplicit

In this section, we present an adaptive strategy to set the learning rates, in order to give a regret
guarantee that depends optimally on the temporal variability.

From the previous section, we saw that the key quantity in the IOMD regret bound is

By(xii1, T
(St é Et(wt) — ft($t+1) — l/)(:;—lt) .
t

(14)



Algorithm 2 Adalmplicit

Require: Non-empty closed convex set V' C X C RL,y: X R M =0,82>0,x,€V
1: fort=1,...,Tdo
2:  Outputzx; € V
3:  Receive ¢; : R? — R and pay /;(x;)
4 Update ;41 = argmingey 4(x) + By (x, )
5: Set 5,5 = ft(l't) — Kt(wt_ﬂ) — AtB¢($t+1, l‘t)
6 Update A\¢11 = At + 3 L6,
7: end for

From Eq. (5), we have that §; > 0. At this point, one might think of using a doubling trick: monitor

Z 1 0; over time and restart the algorithm with a different learning rate once it exceeds a certain
threshold In Appendix A, we show that it is indeed possible to use such a strategy. However,
while theoretically effective, we can’t expect the doubling trick to have any decent performance in
practice. Consequently, we are going to show how to use instead an adaptive learning rate.

Adalmplicit. Define D? £ maxg ycv By(u, ) and assume D < oo. For ease of notation, we
let 7; = 1/\; where )\; will be decided in the following. Assuming ()\;)Z_; to be an increasing
sequence, from Theorem 5.2 we get

T
Rr(u) < D*Ap + > [le(m) — Le(@er1) — MBy(@er1,a)] - (15)
t=1
Ideally, to minimize the regret we would like to have A\ to be as close as possible to the sum over

time in the r.h.s. of this expression. However, setting \; o Zi=1 &; would introduce an annoying
recurrence in the computation of A;. To solve this issue, we explore the same strategy adopted in

AdaFTRL [25], adapting it to the OMD case: we set Ayy1 = é 22:1 6; for t > 2, for a parameter

[ to be defined later, and \; = 0. We call the resulting algorithm Adalmplicit and describe it
in Algorithm 2. Before proving a regret bound for it, we first provide a technical lemma for the
analysis. This lemma can be found in [24, 26] and for completeness we give a proof in Appendix B.

Lemma 6.1. Let {a;}°, be any sequence of non-negative real numbers. Suppose that
{A}32, is a sequence of non-negative real numbers satisfying A1 = 0 and® Ny < Ay +

min {ba¢, cai/(2A)}, for any t > 1. Then, for any T > 0, Apiq < 1/ (b? + ¢) Zthl as.

We are now ready to prove a regret bound for Algorithm 2.

Theorem 6.2. Let V C X C RY be a non-empty closed convex set. Let By, be the Bregman
divergence w.rt. ¢ : X — R and let D* = maxg yey By(u,x). Assume v to be 1-strongly
convex with respect to || - || in V. Then, for any uw € V, running Algorithm 2 with 8 = D guarantees

T
Ry(u) < minQ 2(6y(@1) — br(zria) + V), 2D |3 g2 p, Vg, € bulas) . (16)

Proof. Using the definition of A; and the fact that the sequence (At)tlel is increasing over time, the
regret in Eq. (15) can be upper bounded as Ry (u) < (D? + 32) A1 1. Therefore, we need an upper
bound on Ar4;. We split the proof in two parts, one for each term in the min in Eq. (16). For the
first term, using the definition of \; we have

T
B*Ari1 = Z[ft(wt) —ly(41) — M By (xig1, 1))

t=1

T
<l (@) = Lr(@rn) + Y _[l(@) = boa(20)] < (1) — br(@ri) + Vi,
t=2

*With a small abuse of notation, let min(z, y/0) = .



from which using # = D the result follows.
For the second term, from Lemma 5.3 for ¢ > 2 we have §; < %. On the other hand,
0 = by(@y) — be(@g1) — M By (g1, @) < Le(xy) — (1) < (g, ®e — Tig1)

< llgillllze = @esr]| < V2Dlgy]l.,

where in the last step we used Eq. (2) and the definition of D. Therefore, putting the last two results
together we get

b < min (VEDllg Il lgil2/20)) . Va, € Oa(w)
Note that ;1 = A\ + %5,5. Hence, A\; = 0, Ao = ({1(x1) — ¢1(x2))/B% < V2D||g,||/B?, and

ﬁ t = t+@mln ||gt||*7 2)\; ) -
1

Therefore, using Lemma 6.1 with A, = A, b = \/B%D and c = 55, ar = [|gy[+, we get

Atr1 = A +

T
Ay < 4| 2D%/84+1/82) ) llg.3,
t=1

from which setting 8 = D we obtain the second term in the min in Eq. (16). O

This last theorem shows that Algorithm 2 can have a low regret if the temporal variability of the
losses Vr is low. Moreover, differently from Optimistic Algorithms, Algorithm 2 does not need
additional assumptions on the losses (for example smoothness), as done for example in [15].

Lower Bound. Next, we are going to prove a lower bound in terms of the temporal variability
Vr, which shows that the regret bound in Theorem 6.2 cannot be improved further. The proof is a
simple modification of the standard arguments used to prove lower bounds for constrained OLO and
is reported in Appendix B.

Theorem 6.3. Letd > 2, || - || an arbitrary norm on R%, and V = {x € R : ||z| < D/2}. Let A
be a deterministic algorithm on V. Let T be any non-negative integer. Then, for any Vi > 0, there
exists a sequence of convex loss functions £1(x), . .., Lr(x) with temporal variability equal to V.
and w € V such that the regret of algorithm A satisfies Ry (u) > V.

7 Empirical results

In this section, we compare the empirical performance of our al- 10% Slow varying losses
gorithm Adalmplicit with standard baselines in online learning:
OGD [38], OGD with adaptive learning rate 1, = ———2—— :
1) P e = e
(AdaOGD) [21], and IOMD with 7, = 3/+/t (Implicit) [18]. Hy

—— Adalmplicit
Implicit

Synthetic Experiment. We first show the benefits of Adalm-
plicit on a synthetic dataset. The loss functions are chosen to 10-3 Ad20GD
have a small temporal variability V. In particular, we consider — 0GD

a 1-d case using £, (z) = 1 (z — y;)? with y, = 100 sin(7 7). 0 500 1000 1500 2000
a time horizon 1" = 2000 and the L ball of diameter D = 150.
We set 5 = 1 in all algorithms. The update of the implicit al-

gorithms can be computed in closed form: x;1; = x; — 2%? (¢ — y¢). In Fig. 1 we show the

cumulative loss Ly = ZL £, (x4) of the algorithms (note that the y-axis is plotted in logarith-
mic scale). From the figure we can see that, contrarily to the other algorithms, the cumulative loss
of Adalmplicit grows slowly over time, reflecting experimentally the bound given in Theorem 6.2.
Also, even if not directly observable, OGD and IOMD basically incur the same total cumulative
loss.

Figure 1: Synthetic experiment.

Real world datasets. We are now going to show some experiments conducted on real data. Here,
there is no reason to believe that the temporal variability is small. However, we still want to verify
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Figure 2: Plots on classification tasks using the hinge loss (top) and regression tasks using the
absolute loss (bottom).

if Adalmplicit can achieve a good worst-case performance. We consider both classification and
regression tasks. Additional plots can be found in Appendix D.

We used datasets from the LIBSVM library [6]. Before running the algorithms, we preprocess the
data by dividing each feature by its maximum absolute value so that all the values are in the range
[—1, 1], then we add a bias term. Details about the datasets can be found in Appendix D.

Given that in the online setting we cannot tune the hyperparameter 3 using hold-out data, we plot
the average cumulative loss of each algorithm, i.e., L;/t = 1 Zzzl 4;(x;), as a function of the
hyperparameter 8. This allows us to evaluate at the same time the sensitivity of the algorithms to 3
and their best performance with oracle tuning. Note that in all the algorithms we consider the optimal
worst-case setting of [ is proportional to the diameter of the feasible set, hence it is fair to plot their
performance as a function of 3. We consider values of 3 in [272°,22°] with a grid containing 41
points. Then, each algorithm is run 10 times and results are averaged. For classification tasks we
use the hinge loss, while for regression tasks we use the absolute loss. In both cases, we adopt the
squared Lo function for ¢/. The details about implicit updates are discussed in Appendix C.

Results are illustrated in Fig. 2. From the plots, we can see that when fine-tuned, all the algorithms
achieve similar results, i.e., the minimum value of average cumulative loss is very close for all the
algorithms considered and there is not a clear winner. However, note that the range of values which
allows an algorithm to reach the minimum is considerably wider for Implicit algorithms and confirms
their robustness regarding learning rate misspecification, as already investigated in other works [see,
e.g., 33, 34]. This is a great advantage when considering online algorithms since, contrarily to the
batch setting, algorithms cannot be fine-tuned in advance relying on training/validation sets.

8 Conclusions

In this paper, we investigated online Implicit algorithms from a theoretical perspective. Our analysis
revealed interesting insights regarding the behavior of these algorithms and allowed us to design
a new adaptive algorithm, which may take advantage of “easy” data. The obtained experimental
results indicate that in real-world tasks (such as online classification with hinge loss or online re-
gression with the absolute loss), Implicit algorithms provide a better solution in terms of robustness,
which is particularly relevant in online settings. Future directions include extending our analysis to
a broader area, for example considering dynamic environments or strongly-convex loss functions, to
see if the same gains can be proved. Finally, other examples of “easy” data can be considered, such
as the case of stochastic loss functions.



Broader Impact

We believe our investigation will foster further studies promoting the adoption of adaptive learning
rates in online learning and beyond. Indeed, in recent years adaptive methods in optimization proved
to be one of the preferred methods for training deep neural networks. On the other hand, this work
confirm the robustness of implicit updates and opens up to new possibilities in this field. From a
societal aspect, this work in mainly theoretical and does not present any foreseeable consequence.
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