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Abstract—Modern parallel platforms, such as clouds or
servers, are often shared among many different jobs. However,
existing parallel programming runtime systems are designed and
optimized for running a single parallel job, so it is generally hard
to directly use them to schedule multiple parallel jobs without
incurring high overhead and inefficiency. In this work, we develop
AMCilk (Adaptive Multiprogrammed Cilk), a novel runtime sys-
tem framework, designed to support multiprogrammed parallel
workloads. AMCilk has client-server architecture where users
can dynamically submit parallel jobs to the system. AMCilk
has a single runtime system that runs these jobs while dynami-
cally reallocating cores, last-level cache, and memory bandwidth
among these jobs according to the scheduling policy. AMCilk
exposes the interface to the system designer, which allows the
designer to easily build different scheduling policies meeting the
requirements of various application scenarios and performance
metrics, while AMCilk transparently (to designers) enforces the
scheduling policy. The primary feature of AMCilk is the low-
overhead and responsive preemption mechanism that allows fast
reallocation of cores between jobs. Our empirical evaluation
indicates that AMCilk incurs small overheads and provides
significant benefits on application-specific criteria for a set of
4 practical applications due to its fast and low-overhead core
reallocation mechanism.
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I. INTRODUCTION

In recent years, the number of cores on multiprocessor
and multicore systems has been increasing at a rapid rate.
With this trend, there is an increasing interest in running
many parallel jobs on a single machine at the same time,
especially in the context of shared environments such as clouds
and shared clusters. However, most parallel runtime systems,
such as Cilk variants [1-4], OpenMP [5], and TBB [6], are
designed to run a single parallel job. To run multiprogrammed
workloads, one must frequently instantiate one runtime system
for each job. Since these runtime systems are unaware of
being in a multiprogrammed environment and often assume
that they have a certain number of cores, say p (often the entire
machine), dedicated to running their single job, they create p
pthreads, pin them to each of these cores and use them to
execute for the duration of the job. This leads to suboptimal
performance for jobs in these environments.

For multiprogrammed environments, the system scheduler
must decide how to allocate system resources among the
different jobs in the system. This allocation depends on the
performance goal of the system and different applications with
multiprogrammed workloads may have different performance

goals. For instance, an interactive web service running on
a cloud may care about minimizing some function of the
latency of the jobs. On the other hand, a real-time application
running on an embedded device may require that jobs meet
their deadlines. There has been significant theoretical research
on designing schedulers for various performance goals, e.g.,
minimizing some function of the job latencies [7-16] and guar-
anteeing no deadline misses [17-22]. However, most of these
schedulers have either not been implemented or implemented
using a custom-built system for that application scenario.

In this work, our goal is to design a high-performance,
flexible and extensible framework for enabling multipro-
grammed workloads. Since the different multiprogrammed
parallel workloads have various job arrival patterns, job
memory access characteristics, requirements and performance
objectives, we want to design the parallel runtime system that
enables the following functionalities: (1) Online arrival: Jobs
can arrive online, and the scheduler does not need to know
what jobs will arrive in the future; (2) Dynamic reallocation:
The scheduler can dynamically increase or decrease the num-
ber of cores allocated to a job while the job is executing; (3)
Efficient execution: The job must efficiently use the cores that
are assigned to it at any moment using an efficient parallel
scheduling algorithm such as work-stealing [1]; (4) Cache
management: The job scheduler can support cache partition-
ing and memory bandwidth allocation, as a complement to
core allocations, to mitigate the cache and memory bandwidth
contention and support quality of service.

In most parallel runtime systems, dynamically changing the
number of cores allocated to the job is difficult and expensive
for multiple reasons. Since multiprogrammed systems often
run each job in its process, deallocating a core from one
job and allocating it to another often involves an operating
system (OS) call. Since the OS may not be aware of what is
happening within the job, the thread running on a deallocated
core may be holding a lock or be in some unsafe state
when it is de-scheduled, compromising the efficiency of the
parallel program. Moreover, the kernel operations involved
when reallocating cores are likely to be expensive. Finally,
the job scheduler may have high inter-process communication
overhead for collecting runtime information required to make
scheduling decisions.

In this paper, we take a different approach. We design
AMCilk (adaptive multiprogrammed Cilk), a parallel runtime
framework extending the Cilk runtime systems to efficiently



support multiprogrammed scenarios. Specifically, AMCilk has
the following features:

o« AMCilk allows a system administrator to implement
their preferred scheduling policy to allocate cores among
different jobs to optimize the application-specific per-
formance criterion by exposing an easy interface. The
AMCilk framework then transparently (to the system
administrator) implements this policy by automatically
reallocating cores as dictated by the policy.

o« AMCilk’s client-server architecture allows jobs to be
submitted online, start new jobs dynamically and return
results of completed jobs to clients.

o AMCilk concurrently runs multiple parallel jobs in a
single runtime system, so that the AMCilk scheduler can
access the full runtime information of jobs and enforce
core reallocation with low overhead.

o AMCilk develops a safe, low-cost, and responsive pre-
emption mechanism, which allows reallocating cores be-
tween jobs in microseconds while the jobs are running.
Thus, it has little performance penalty on the jobs.

o AMCilk exposes interfaces that use the hardware-level
cache partitioning and memory bandwidth allocation to
restrict the interference between jobs and to control the
quality of service when multiprogrammed jobs compete
for the last-level cache and memory bandwidth.

Therefore, when building applications using AMCilk, sys-
tem administrators can customize the core allocation, cache
partitioning and memory bandwidth allocation policy via
AMCilk interfaces, without needing to understand the imple-
mentation details. Additionally, AMCilk exposes the resource
allocation interface to external systems enabling the control of
the resources used by AMCilk.

Our evaluation indicates that the overheads of starting a
new job, completing a job, reallocating cores, etc., within
AMCilk are small, and the core reallocation adds a minimal
performance penalty on job executions. Moreover, we imple-
mented four application scenarios using AMCilk to understand
whether AMCilk provides performance improvement to their
application-specific criteria. The first one [10] has the goal
of minimizing the average latency of online parallel jobs,
such as those in interactive services. We find that AMCilk
provides a performance advantage of between 60 to 70% over
the previous implementation, which uses the same scheduling
policy — the difference is purely due to AMCilk’s ability
to reallocate cores faster than the previous implementation.
The second one is an elastic real-time application [22] with
periodic tasks that must meet deadlines, where some tasks
can vary their demand causing other tasks to adjust their
deadlines accordingly. Again, we see that AMCilk provides
better responsiveness to the demand change, providing bet-
ter performance to the application. The third application is
an application that dynamically adapts the number of cores
according to the parallelism of the applications and requires
that we monitor the jobs to adjust the core allocation. We see
that the AMCilk implementation successfully adapts to the

changing parallelism providing better performance than the
best static allocation. The last application demonstrates the
importance of cache and memory bandwidth partitioning in
multiprogrammed environments.

II. BACKGROUND

AMCilk is implemented for the Cilk language using a home-
grown Cheetah runtime system, which is similar to Intel’s Cilk
Plus runtime system [4]. Cilk [2] is a parallel programming
language that extends C, while Cilk Plus is designed later for
C++. Here we describe the key features of Cheetah that are
critical for understanding the design of AMCilk.

Cilk Plus language and Cheetah runtime system. Cilk Plus
extends C++ with additional keywords, principally including
spawn and sync. A function that is spawned may execute
in parallel with the continuation of its parent function. The
sync keyword indicates that all function instances spawned by
the current function must return before the next instruction.
Therefore, the programmer expresses the logical parallelism of
the program, while the Cheetah runtime system is responsible
for scheduling this program on the given number of cores. The
compiler and linker compile the program by inserting calls
to the runtime system at function spawn, return, and sync.
The program’s main function is compiled as the cilk_main
function, while the newly added main function performs
runtime initialization by creating p threads, one for each core,
and pins them on their cores. It also sets up data structures
for scheduling this program on these threads. One key data
structure is a worker for each thread, which keeps track of
information about that thread from the perspective of the
program — for most of this paper, we will use the term
worker and thread interchangeably. After initialization, the
runtime calls the cilk_main function to begin executing
the program.

Work-Stealing. Work-stealing [1] is a theoretically good
and practically efficient scheduling algorithm used by many
programming languages and libraries, such as Cilk variants [1—
3], OpenMP [5], and Intel’s TBB [6]. Same as common Cilk
variants, in the Cheetah runtime system, each worker maintains
its own deque (a double-ended queue) of stack frames and
pushes/pops stack frames from the bottom of the deque. If a
worker’s deque is empty, it becomes a thief, picks a random
victim among the other workers, and steals the frame from the
top of the victim’s deque and starts executing it.

THE Protocol. A worker pushes and pops frames from
the bottom of its own deque, while a thief might steal work
from the top of another worker’s deque. Therefore, if there
is only one frame on a deque, any thief who tries to steal
it must synchronize with the owner to ensure consistency.
The Cheetah runtime system employs the THE protocol [3]
to perform the synchronization efficiently. The THE protocol
uses three shared atomic variables: T, H, and E. T and H mark
the head and tail of the deque, and E is an exception pointer
and marks a place where T cannot cross over.

Generally, E and H both point at the head of a deque, while
T points at the tail. When a worker pushes a frame on the



deque, it simply increments T. When a thief tries to steal from
the top of the deque, it grabs the lock of the victim’s deque
and increments E. If E < T, the thief steals the top frame and
increments H; otherwise, it gives up and restores E. It then
releases the deque lock. When a worker tries to pop a frame,
it decrements T and then compares it with E. If E<T, then
the worker can pop without getting any locks. If E > T, the
worker calls an exception handler within the runtime system.
Generally, this means that some thief is trying to steal while
the victim is trying to pop. In this case, the victim also tries
to get the deque lock, and either the thief or the victim wins
based on who gets the lock.

This E pointer can also be used to trigger exceptions of
other kinds — essentially, by setting E to be larger than T, we
can force the thread to enter the exception handling routine
within the runtime system and then modify the exception
handling routine to perform other operations. We will use this
functionality in AMCilk to inform the worker to perform core
reallocations — described in Section III.

III. AMCILK SCHEDULING FRAMEWORK

This section describes the key implementation details of the
AMCilk scheduling framework. In particular, AMCilk uses
client-server architecture (§111-A) to support online arrival and
completion of jobs. This design also separates the responsi-
bility between the system administrator and users. The users
simply submit their jobs to a server while the server runs the
parallel jobs concurrently in a runtime system. The scheduling
policy of the server is managed by the system administrator.

AMCilk  scheduling framework provides policy-
customization interfaces (§I11-B) that allows system
administrators to easily and flexibly customize the scheduling
policy that allocates shared resources, including cores,
last-level cache, and memory bandwidth, to concurrent
parallel jobs. In particular, AMCilk provides an integrated
and easy-to-use interface that implements a decentralized
AMCilk scheduler (§111-C), which is called automatically at
pre-defined events such as job arrivals, job completions, and
timer interrupts.

The scheduler may change the allocation between jobs while
the jobs are running — to support this, we implemented
a responsive and low-cost core reallocation mechanism
(§III-D). This preemption mechanism makes a good trade-
off between the system overheads, responsiveness to the
scheduling decisions, and transparency to user programs, by
leveraging the exception mechanism in the Cilk runtime.

Finally, to retain the theoretical guarantees of work-stealing
for a parallel job, the AMCilk scheduling framework augments
work-stealing within each job on the assigned cores with an
efficient work resumption mechanism (§111-E). It ensures that
when a core is taken away from a job (decided by the schedul-
ing policy and enforced by the preemption mechanism), the
leftover work of this job on the core gets completed in a timely
manner by other cores allocated to this job.

A. Client-Server Architecture

Figure 1 illustrates the conceptual client-server architecture
of AMCilk. A client (i.e., user) creates a job request struct,
which stores the program id (indicating which program to run)
and its input parameters. It submits the job request to the server
via a pipe. AMCilk has a dedicated request receiver thread
(pinned to a dedicated core) that listens for requests and on
receiving a request, pushes it into a FIFO job request buffer.
The AMCilk scheduler takes job requests from the head of the
buffer, parses the request, and prepares to run the executable
of the corresponding program. When a job finishes, the server
sends the result to the client. The result is the return value
or the location where the return value stores. Both request
receiver and AMCilk scheduler are nonblocking — they do
not wait for a job request to complete before starting on the
next one.
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Fig. 1. AMCilk’s Client-Server Architecture.

AMCilk runs multiple Cilk jobs in a single runtime system.
Recall that (Section II) the original Cilk runtime system is
designed to run a single job, where the main function of the
job’s executable initializes the runtime and calls cilk_main
as an entry into the user code. In contrast, the AMCilk runtime
system is pre-initialized as a server and sets up the basic
data structures needed to execute jobs. The parallel programs
are pre-compiled and pre-linked with the runtime system and
have their cilk_main functions. To run multiple jobs, the
server runs each job within a data structure called a container
which contains all the metadata required to run Cilk jobs.
Since jobs arrive and leave online, the number of active
containers changes over time. However, creating a container
from scratch is relatively expensive, so AMCilk creates a pool
of containers at initialization and reuses the containers. When
a new job arrives, the server selects an inactive container and
calls the appropriate cilk_main function to start executing
the job. When all containers are busy', any new arriving job is
buffered. When a container becomes available, it picks a job
from the buffer in a FIFO order.

B. Policy-Customization Interface

AMCilk provides an interface that allows the system ad-
ministrator to customize the policy for allocating cores, cache,
and memory bandwidth between concurrent jobs. We provide
some useful allocation policies “out of the box” — these
are the policies we used in our case studies described in

I'This case rarely happens, since we use a large pool — we set the number
of container to be equal to the number of cores used for executing jobs.



Section V, namely (1) DREP; (2) ELASTIC_RT; and (3)
PARALLELISM_FB. System administrators can design their
own policies and implement them using a simple interface
provided within AMCilk.

The reallocation decision interface is event-driven. AM-
Cilk provides four events: (1) START_JOB; (2) EXIT_JOB;
(3) TIMER; (4) REQUESTED. When any event hap-
pens, the job_scheduler (e) function is called —
this is the function that the system administrator imple-
ments in order to design their own core-allocation policy.
The job_scheduler (e) has an argument e indicating
which event triggerred the current function call (to the
job_scheduler (e)). The system administrator can use
this argument to distinguish different events and define ap-
propriate response to different events (or ignore some events).

Within this function implementation, the system adminis-
trator can use pre-defined functions to both get information
about the current state of the runtime and to change the
allocation of cores, memory bandwidth and cache. In general,
to perform core-reallocation, one must (1) analyze the runtime
information; (2) make a core-reallocation decision; (3) assign
cores to jobs. AMCilk collects the runtime information in
backend, and the interface exposes the information to the
system administrator, like the number of running jobs, the
number of available cores and the current scheduling state
showing which core belongs to which job. The interface also
exposes in-depth runtime details, like the number of cycles
when each core was working vs. stealing in the previous
interval. Within job_scheduler (e), the system admin-
istrator can call various functions to access this informa-
tion and use this information to make scheduling decisions.
Once she is done, these decisions can be communicated
to the AMCilk scheduler by using setter functions — for
example, AMCilk defines core_id to denote a core and
container_id to denote a container, and the system admin-
istrator can use give_core_to_container (core_id,
container_id) to allocate a core to a container. AMCilk-
will then automatically enforce this reallocation using a safe,
responsive, and low overhead preemption and core reallocation
method described in Section III-D.

AMCilk provides a similar interface to customize cache
partitioning and memory bandwidth allocation policies. Again,
the system administrator can access runtime information via
the interface, like cache misses, and the administrator can
use the interface to allocate cache blocks and set maximum
memory bandwidth usage of each container. Note that AMCilk
is extensible, and system experts could develop their own run-
time information collectors and events under our scheduling
framework.

C. Decentralized AMCilk Scheduler

AMCilk scheduling framework enables concurrent running
of multiple parallel jobs and reallocates computing resources,
including core, last-level cache, and memory bandwidth, be-
tween jobs according to the customized scheduling policy.
Figure 2 zooms into the architecture of the scheduler itself.

The Runtime Monitoring Module keeps track of the run-
time information, such as core utilization, of running jobs
(stepl) and sends the information to the Resource Allocation
Module (step2). The Resource Allocation Module decides
how many resources should be allocated to each job based
on the scheduling policy (which was implemented by the
system administrator) and sends the decision to the Resource
Enforcement Module (step3), which fulfills the allocation to
jobs via their containers (step4).

The AMCilk scheduling framework provides interfaces
that allow the system administrator to easily customize the
scheduling policy for its application scenario in the Resource
Allocation Module (step 5). Furthermore, AMCilk exposes an
interface that allows external systems to control the resources
used by AMCilk via sending the demand to the request
receiver thread (step 6), which invokes the AMCilk scheduler
to enforce the allocation demand (step 7).

To perform the cache partitioning and memory bandwidth
allocation decided by the scheduling policy, Resource En-
forcement Module calls the interfaces provided by third-party
infrastructures. For example, Intel RDT [23] that we use in
this work provides interfaces for allocating last-level cache and
memory bandwidth to core groups. So the AMCilk scheduler
groups the cores assigned to each running job and calls Intel
RDT to perform the allocation to the core groups.

To support concurrent execution and dynamic core alloca-
tion of multiple parallel jobs, AMCilk decouples the concept
of the core (physical processing unit) and the worker (software
abstraction of a core). For a machine with p cores (excluding
the core dedicated to the request receiver thread), AMCilk
creates p workers (threads) for each container dedicated to a
job, and each of these workers is pinned to a different core.
Hence, each core has multiple workers, one for each container.
The Resource Enforcement Module ensures that each running
job occupies a disjoint set of cores according to the core
allocation decision, by activating at most one worker on each
core. An example snapshot is shown in Figure 3.

For each job, the cores allocated to this job must complete
its work using a modified work-stealing scheduler that we
augmented to support three novel functionalities needed by
the AMCilk scheduling framework: decentralized scheduling,
core reallocation, and work resumption. We explain the de-
centralized scheduling here and the other two mechanisms in
the next subsections.

Although a core is dedicated for the AMCilk scheduler
(leaving p — 2 cores allocated by the scheduling policy for
executing jobs?), instead of a dedicated centralized thread for
the scheduler, each container handles its own allocation by
setting its worker 1 be a dedicated scheduler worker when
starting a job and removing a job. Specifically, to start a new
job from the request buffer, a container from the container
pool is activated by waking up its worker 1. This worker
prepares all the necessary data structures for this job and

20ne core is dedicated for the AMCilk scheduler, and one core is dedicated
for receiving job requests, leaving p — 2 cores to execute jobs.
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Fig. 2. AMCilk scheduling framework.

decides which cores should be allocated to this job, based
on the customized scheduling policy provided by the system
administrator. This will trigger reallocation so that these cores
are allocated to this new job. At this point, the cilk_main
function of this new job is called and the job execution begins.
When a container completes a job, one random worker returns
from the cilk_main and enters the runtime. This worker
will activate the worker 1 of its container before putting itself
to sleep. Then this worker 1 will clean up the data structures
for this job, trigger the core reallocation per the scheduling
policy, and inactivate itself (and this container) once done. If
other scheduling events occur, for instance, due to external
triggers or timing triggers, a dedicated thread pinned on core
1 for the AMCilk scheduler will wake up to make the new
scheduling decision and trigger the core reallocation.

D. Responsive and Low-Cost Core Reallocation

During job execution, the scheduling policy may decide to
change the core allocation of jobs, i.e., some job(s) must give
some of their cores to other jobs, and some job(s) may reclaim
the cores it gives out in the previews scheduling, triggering
AMCiIK’s core reallocation mechanism. Reallocating a core x
that is currently used by job a to job b involves two procedures:
putting the running worker of job a on core x to sleep and
waking up the worker of job b on core x. The second procedure
can be achieved by simply sending a signal to wake up the
corresponding thread. If the woken-up worker has some work
on its deque, then it resumes working on its deque. Otherwise,
it immediately starts stealing.

The first procedure, namely worker preemption where a
worker stops working and goes to sleep, is the key to core
allocation. This operation must be safe (i.e., we don’t want to
preempt a worker while it is holding a lock, for example),
responsive (i.e., given a reallocation decision, the worker
should go to sleep as soon as possible), and low overhead (i.e.,
its overhead should have minimal impact on performance).

There are a few options for implementing worker preemp-
tion. One possibility is to use the priority mechanism of the
operating system (OS). Say the scheduling policy decides to
allocate a core x to job b while it is currently allocated to
job a. The containers for both jobs have a thread pinned to
core z, so the scheduler could increase the priority of the job

is allocated with 2 cores.

b’s thread on core = and decrease the priority of the job a’s
thread. One disadvantage of this method is that this context
switch has high overheads. More importantly, it is difficult to
ensure correctness and performance since the thread of job a
might be holding a lock when it is put to sleep by OS, causing
it to block other threads from doing work.

To ensure that the thread is put to sleep when it is safe to do
so, another approach, taken by Agrawal et. al [10], is to allow
worker preemption only when the worker attempts to steal. In
particular, on receiving the decision that a worker w must be
put to sleep, the corresponding work-stealing scheduler waits
until worker w has no work on its deque and is about to steal.
At this point, it puts the thread to sleep. This is, in some sense,
the safest and easiest place to implement a preemption within
the runtime system since, as described in Section II, the worker
is not working on anything and does not have any work on its
deque. However, this mechanism would not be very responsive
since the worker may not steal for a long time. Therefore, the
time between the occurrence of the decision that some core x
should be moved from job a to job b and the time when job
a actually puts its worker on core z to sleep can be huge.

In contrast, we employ the middle road and use the ex-
ception mechanism of the Cilk runtime system (described
in Section II) to implement preemption. When the AMCilk
scheduler decides to take away core x from a job, it sets the
exception pointer (E) of the worker w on core x to a large
number. When worker w finishes its current frame, it finds
that £ > T and jumps to the exception handling routine. This
routine then sets up the state indicating that worker w is now
inactive and puts the associated thread to sleep. It is important
to note that the preempted worker may still have work on its
deque but it may never be woken up again, so efficient work
resumption, explained in Section III-E, is needed to complete
the work left on this deque by other workers of the same job.

Our design choice for worker preemption is reasonably
responsive since it implements preemption at frame (function)
boundaries — the worker to be preempted is preempted as
soon as it finishes the function it is currently executing. For
most fine-grained parallel code, the individual functions are
reasonably small. In addition, since the preemption is handled
by the runtime system, it can ensure that the thread is not
holding locks when it is preempted. Finally, the overhead is



small since it does not use heavy-duty kernel functions.

E. Efficient Work Resumption Mechanism

As discussed above, since AMCilk implements preemption
at frame boundaries, a worker w of job a can go to sleep
while there is still work (frames) on its deque. This work
must be resumed by some workers of job a so that job
a can successfully complete. To facilitate work resumption,
each worker has a status field. Before an active worker w
goes to sleep, it first checks if its deque has any remaining
work. If there is remaining work, it marks its status as
inactive_with_work; otherwise, it marks its status as
inactive_without_work.

All workers of the job are stored in an array of size p, where
p is the number of (active and inactive) workers. This array is
sorted to store all the inactive_with_work workers at the
beginning and the active workers in the middle, followed
by all the inactive_without_work workers. We also
maintain two auxiliary pointers pointing to the last location
storing an inactive_with_work worker and the first
location storing an inactive_without_work worker, as
shown in Figure 4.

last_inactive_with_work first_inactive_V\iithout_work

3la]s[1]2]7]8]1n]e6]e
inactive_with_work workers  active workers inactive_without_work workers
Fig. 4. A job’s worker array, storing all its workers sorted in a way that

makes it easy for active workers to mug and steal.

In addition to the above data structures, we implement the
key operation, called mugging, for efficient work resumption.
Recall that, in original work-stealing, when a worker runs
out of work, it randomly picks a victim and steals work
from the top of the victim’s deque. In AMCilk, when an
active worker of job a runs out of work (i.e., its deque is
empty), it first checks the worker array to see if there are
any inactive_with_work workers. If so, it picks one
as the victim and mugs the victim’s worker by swapping the
victim’s nonempty deque with its own empty deque. It then
moves the victim to the last portion of the worker array (the
inactive_without_work portion, since this worker now
has an empty deque) and updates both auxiliary pointers. Once
there is no inactive_with_work worker, regular work-
stealing among the active workers is resumed efficiently by
storing the active workers contiguously. With the help of
the two auxiliary pointers, AMCilk avoids the unsuccessful
steal attempts from sleeping workers with empty deques.

Our design for the work resumption mechanism has the
advantage that it maintains the theoretical and practical per-
formance guarantees provided by work-stealing [1]. Intuitively,
these guarantees depend on the fact that if there are d total
deques for a job, then d random steal attempts will reduce the
critical-path length of the job with high probability. However,
if we have more deques, we need more steal attempts to
make progress. In AMCilk, if there are sleeping workers with

nonempty deques, we prioritize making their deques empty
and never steal from sleeping workers with empty deques.
Therefore, if the job has z active workers, this design only
needs x steal attempts to reduce the critical-path length —
in systems with many jobs, the number of cores may be
much larger than z and this design is efficient. The theoretical
guarantees provided by some multiprogrammed application
scenarios [13] depend on this mechanism.

IV. EVALUATION

We evaluate AMCilk performance using two types of bench-
marks. In this section, we try to understand the efficiency of
AMCilk implementation by quantifying the system overhead
and examining the advantage of cache and memory bandwidth
allocation functionalities. In the next section, we will try
to understand the impact of AMCilk on multiprogrammed
applications to see if AMCilk can provide a performance boost
for their application-specific metrics.

We conducted the evaluation on a machine with 40 physical
cores (two 2.40GHz Intel Xeon CPUs that support Intel RDT).
We disabled hyperthreading. Two cores are reserved for the
request receiver and the AMCilk scheduler, respectively; the
remaining 38 cores are used to execute jobs.

A. System Overhead

We first conduct experiments to quantify the time costs
of the four core functionalities that AMCilk promises (as
discussed in Section III): (1) starting a job; (2) removing a
job; (3) core reallocation; (4) work resumption.

Experimental Design. We measured the overhead by in-
strumenting each individual operation and running a latency-
sensitive application [15], where requests arrive over time fol-
lowing a Poisson distribution. We wanted to examine whether
the load affects the overhead and varied the total load of the
application, i.e., machine utilization from 60% to 90%, by
changing the average number of requests arrived per second.
We observed that the machine utilization has a very small
impact on the overhead, so we only report the results for a
machine utilization of 75%. The experiments were run long
enough, and we measured the time to run each operation for
100,000 times and report the mean and standard deviation.
To improve the readability of boxplots, we randomly sample
1,000 of the 100,000 measurements to draw Figure 5.

Evaluation Results. As explained in Section III-C, starting a
Job includes taking a job from the request buffer, setting up the
container for this job, and allocating resources to this job. In
our evaluation, this functionality takes 295us on average with
a standard deviation of 489us. Note that allocating resources
to a new job often involves reallocating cores, so this time cost
is dominated by core reallocation (272us). Recall that in our
design, containers are created at AMCilk system initialization
and are reused upon job arrivals. We evaluate this design
choice with an experiment where we create containers from
scratch every time a new job arrives. As expected, always
creating containers is significantly more expensive with a mean
overhead of 4379us, due to the cost of creating pthreads for
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workers and allocating and (more importantly) initializing the
data structures for the closures, frames, and fibers that the
runtime system uses.

Removing a job involves deallocating cores (and other
resources) of the completed job and releasing the container
back to the container pool. This functionality costs 10.0us on
average with a standard deviation of 21.5us. Removing a job
takes a significantly shorter time than starting a job because
it only deallocates cores. The reallocation of these cores is
either performed in starting a new job or performing the core
reallocation for the active jobs based on the scheduling policy.

Core reallocation includes deciding the resource allocation
for jobs according to the customized scheduling policy and
enforcing the decision. Of the 272us average overhead (std.
480us), on average only 17.5us is spent on making the deci-
sion, so enforcing the decision introduces the major overhead.
Recall that enforcing the decision involves putting a worker
to sleep for one job and activating a worker for another job.
Activating a worker costs 57.5us, while putting a worker
to sleep costs 85.2us. The latter operation takes more time
because it includes waiting until the worker reaches the frame
boundary. Obviously, this overhead would be significantly
higher if the worker has to reach a steal boundary instead.

Work resumption starts when a worker with a non-empty
deque goes to sleep and ends when another worker suc-
cessfully jumps to the user code after finding and mugging
this nonempty deque of a sleeping worker. This functionality
costs 7.20us on average with a standard deviation of 7.50us.
For resuming the work of inactive workers, we could let
a thief steal from the victim’s deque one frame at a time,
instead of mugging the entire deque. To verify our choice
of mugging, we measure the overhead of both operations.
We observe that a mugging operation costs 0.363us (std.
0.204us), which is actually less than the cost of 1.44us (std.
3.00us) of a successful steal. This result is as expected since a
successful steal involves grabbing multiple locks, manipulating
data structures, and promoting the child frame to make it ready
for a potential future steal. Mugging is much simpler; we
just grab a lock and change some pointers around. Therefore,
mugging not only reduces the number of active deques, but
also has a smaller overhead.

The experiments show that all operations have small average
costs, but their variations are not negligible. The variations

come from contention, instead of noise. In particular, the
measured time includes the operation of locking data structures
before modifying them. Therefore, the cost is higher when we
have to wait on the lock. Additionally, some optimizations —
there are fast paths and slow paths depending on the particular
situation — also lead to variation.

B. Cache partitioning and memory bandwidth allocation

Since the overheads of cache and memory bandwidth al-
location of AMCilk are the same as Intel RDT, we do not
measure these costs. Instead, we demonstrate their capability
of reducing interference in a scenario where data-intensive
parallel jobs co-run with streaming applications.

Experimental Design. We use aparallel_sort program,
which takes an array as the input and returns the sorted array,
as the data-intensive job. We randomly generate an array with
50,000,000 64-bit elements. We use AMCilk to run 4 such
jobs concurrently, where each job is allocated with 4 cores.
We also design a parallel streaming job that repeatedly loads
data from memory, modify the data, and store the data into
the memory. When co-running with the 4 data-intensive jobs,
this streaming job is allocated with the remaining cores in the
platform. We measure the running time of the 4 data-intensive
jobs in 4 cases: (1) only running the 4 jobs; (2) co-running
the 4 jobs with the streaming job; (3) partitioning the cache
between the 4 jobs and the streaming job; (4) restricting the
memory bandwidth usage of the streaming job. For each case,
we record the running time for 1,000 times.

Evaluation Results. As shown in Table I, when co-running
with the streaming job, the data-intensive job‘s running time
increases by 13.4%. With cache partitioning, the job running
time reduces by 2.8%. With memory bandwidth allocation
(restricting 10% for the streaming job), the job running time
decreases back to the time of running alone. This simple ex-
periment shows that cache and memory bandwidth allocation
can effectively reduce interference between jobs and providing
this functionality is crucial to enable the design of efficient
multiprogrammed systems using AMCilk.

V. CASE STUDIES

Multiprogrammed applications are ubiquitous. In this sec-
tion, we present four concrete examples of multiprogrammed
application scenarios with differing needs. We implemented
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TABLE I
RUNNING TIME OF DATA-INTENSIVE JOBS

(1) Alone (2) Co-run (3) Co-run+CP (4) Co-run+MBA
1.86 2.11 2.05 1.87
0.0264 0.0600 0.0360 0.0286

Mean (second)
Std. (second)

all four scenarios using AMCilk and ask the following ques-
tion: does the AMCilk implementation provide improved
performance to these applications for the criteria that these
applications care about — in other words, do the responsive
and low-overhead core reallocation and cache partitioning and
memory bandwidth allocation provide a measurable impact on
the application-specific performance of these applications?

A. Online Scheduling to Minimize Average Flow Time

In the context of interactive services, users send requests
to the service, and the service must process the requests
while optimizing some service-wide performance criterion. We
consider the online scenario where the jobs (computation done
to satisfy requests) are parallel and the service does not know
the characteristics of the jobs (such as their running times or
arrival times). One of the most commonly used quality-of-
service metrics is the average flow time of all jobs, where the
flow time of a job is the elapsed time between the job’s arrival
time and its completion time.

Several scheduling algorithms have been designed and the-
oretically analyzed for minimizing average flow for parallel
jobs [7-10]. The only one that has been implemented is the
Distributed Random Egqui-Partition (DREP) algorithm [10],
which was shown to have good performance theoretically and
practically. While the details are not important, when a new job
arrives, DREP allocates some of the cores that were previously
working on other jobs to this new job and when a job leaves,
DREP allocates the cores working on this job to other jobs.

In Agrawal et al’s implementation [10], preemption only
occurs at steal boundaries (as described in Section III). When
a new job arrives, the DREP scheduler allocates certain cores
to it which were allocated to other jobs. The cores only
stop working on their current jobs and start working on the
new jobs when their deque becomes empty and they try to
steal. In contrast, AMCilk implements preemptions at frame
boundaries, leading to more responsive reallocations.

We compared the frame-boundary preemption of AMCilk
and the steal-boundary implementation® using the workload
distribution from real applications: bing search workload and
finance server workload [15]. For each workload, we vary the
average number of jobs arrived per second to generate three
different system loads: low, medium, and high loads, where
the average system utilizations are approximately 60%, 75%,
and 90%. For each setting, we randomly generate 100,000
jobs and record the average flow time. Figure 6 shows the
results for the bing workload (the finance workload results

3The implementation in [10] was based on the Cilk Plus runtime system.
For a fair comparison with AMCilk, we implemented their steal-boundary
preemption in the Cilk-based Cheetah runtime system.

are even better). The results shows that the frame-boundary
implementation reduces the average flow times for 60-70%
compared to the steal-boundary implementation. Figure 7
compares both systems by increasing the job arrival rate of
the Bing workload. We can see that AMCilk supports the
job arrival rate of up to 230 jobs per second without being
overloaded (where overloading is indicated by having the
average flow time increase unboundedly as time passes) while
the frame-boundary implementation supports at most 160 jobs
per second — an improvement of 43.8%, indicating that fast
preemption can indeed lead to measurable impact on service-
level performance for this application.

B. Elastic Parallel Real-Time Scheduling

In cyber-physical systems, such as autonomous vehicles and
robotics, sensors periodically collect environment data, and the
computing component must process the data to calculate the
control demands by the end of the period. Abstractly, such
a system contains a set of real-time tasks — each task 7;
is defined by a tuple {C;,T;}, where C; is the maximum
execution requirement of each job of the task and the task
can release jobs with a period (minimum inter-arrival time) of
T;. In the simplest scenario, each job has a deadline of T; —
it must complete in T} time after it is released.*

We are interested in parallel real-time tasks where the
jobs of real-time tasks may contain internal parallelism —
in particular, we focus on elastic real-time tasks [22]. In
this model, tasks can change or tolerate a change in their
utilizations U; = C;/T; (by changing either C; or T; or both)
due to the change in the physical system — for instance, if the
system enters a less stable state and requires a more expensive
or faster control algorithm. The tasks that can increase its
utilization are demanding tasks. To satisfy the utilization
increase of a demanding task, additional cores must be given to
this task (to meet its deadline) by reducing the cores given to
the non-demanding tasks. Orr et al. [22] established an elastic
scheduling algorithm to calculate the core allocation for all
tasks when a demanding task changes its demand — the details
are complex and not relevant to this discussion — the key is
that the platform running these applications must be able to
reallocate cores among jobs due to external stimuli.

Orr et al. [22] conducted experiments on elastic schedul-
ing using OpenMP; however, they did not have access to
a platform with responsive and low-cost core reallocation
mechanism while jobs were running. In their system, after
the elastic scheduler computes a new allocation, a demanding
task gets additional cores only after the currently running jobs
of non-demanding tasks have completed. Hence, the delay
between demanding more cores and actually getting these
cores depends on the other tasks’ period. In contrast, AMCilk
allows reallocation at any time during the job’s execution, so
the demanding tasks get additional cores much more quickly.

We demonstrate the benefit of fast reallocation on the
performance of elastic task systems by running a simple

“In the general setting, the deadline may be different from the period.
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experiment with 2 tasks. We vary Task 1’s period from 10 to
600 milliseconds, while fixing Task 2’s period as 50 millisec-
onds. For each setting, we run task 1 for 1000 iterations. We
randomly select 10 iterations to let task 1’s period be reduced
to 1/3 of its original value and let this change lasts for a
random length from 1 to 10 iterations. Figure 8 shows task
I’s deadline miss rate — the number of jobs missing their
deadlines divided by the total number of jobs. In real-time
systems, the goal is to not miss any deadlines. Since AMCilk
allows for fast core reallocation regardless of tasks’ period,
task 1 never misses any deadlines. In contrast, the deadline
miss rate of Orr et al.’s system depends heavily on the periods
of the two tasks. As task 1’s period gets smaller (compared to
task 2’s period), task 1 misses more deadlines.

The ability of AMCilk to reallocate cores with predictable
delays that are independent of job periods is a huge advantage
for real-time systems. The goal of real-time system is to
provide an a priori guarantee on the timing properties of the
system. AMCilk makes it easier to provide such guarantees,
since the predictable delays can be incorporated into the a
priori timing analysis, while this is harder to do so when the
delay depends on the job characteristic.

C. Adaptive Scheduling Using Parallelism Feedback

Fine-grained multithreaded jobs, such as those written using
Cilk, can change parallelism as they execute. Thus, statically
allocating a fixed number of cores when a job arrives is often
inefficient, as the number of cores that can be used by the job
depends on whether it is in its low- or high-parallelism phases.
Thus, Agrawal et al. [13] proposed an adaptive scheduling
strategy that dynamically adapts the number of cores allocated
to a job based on an estimate of the job’s dynamic parallelism.
While the details are not relevant, this scheduler monitors all
jobs’ runtime characteristics and periodically changes the core
allocation based on these characteristics.

We implemented this adaptive scheduling algorithm using
AMCilk. This implementation demonstrates an interesting fea-
ture of AMCilk that the previous examples don’t. For DREP,
the core allocation changes only when new jobs arrive or when
jobs complete. In elastic scheduling, core allocation changes
due to external signals. In adaptive scheduling, AMCilk mon-
itors the internal characteristics of the jobs and changes the
allocations based on these characteristics.

We evaluate the AMCilk implementation of adaptive
scheduling using a simple experiment with 2 jobs that change

their parallelism frequently: each job repeatedly switches
between high- and low-parallelism phases for 10 times, where
the phase of one job is opposite to the other job. In the high-
parallelism phase, the job has one large parallel for-loop with
12,800,000 iterations, while in the low-parallelism phase, the
job has 4000 small parallel for-loops, each with 100 iterations.
There is no existing implementation of adaptive scheduling, so
we compare against static allocations. We measure the running
times of the jobs and normalized them using the running
time of 1.65 seconds when each job run individually on all
(38) cores. As shown in Figure 9, if we do not partition the
cores and let the two jobs share the 38 cores, their running
times become 2.4 times of their solo running times. If we
statically and equally partition the cores, i.e., giving each job
19 cores, they complete in 2.32 and 2.34 seconds. Using
the AMCilk implementation of adaptive scheduling (with a
reasonable setting of parameters), the two jobs complete in
1.86 and 1.87 seconds — 19.8% and 20.1% reductions over
equal-partition. This is because our implementation is able to
monitor the parallelism of jobs and give fewer cores (about
8 cores) to the job in the low-parallelism phase and more
cores (about 30 cores) to the job in the high-parallelism phase.
More specifically, when a job changes from low-parallelism to
high-parallelism, it experiences 8 times of getting more cores
decided by the adaptive scheduling policy, which takes 47.9
milliseconds in total. The functionalities provided by AMCilk
makes it possible to implement the adaptive scheduling effi-
ciently for multiple parallel jobs with dynamic parallelism.

D. Co-scheduling Throughput and Tail-sensitive Jobs

The previous experiments have explored the impact of the
fast core-reallocation ability of AMCilk. The final experiment
explores the impact of its cache and memory bandwidth parti-
tioning functionality. On many shared platforms, throughput-
oriented applications and latency-sensitive applications may be
scheduled together — for instance, an interactive application
and a streaming application may share the system. While the
applications may occupy disjoint cores, they share memory
resources such as the last-level cache and memory bandwidth.
Therefore, the latency-sensitive application may have unex-
pected performance slow down due to interferences.

As explained in Section III, modern hardware often enables
cache partitioning and memory bandwidth allocation to control
the interference between jobs and improve the quality of
service. AMCilk exposes these functionalities to the AMCilk



scheduler through an easy-to-use interface allowing the system
administrator to manage cores, last-level cache, and memory
bandwidth at the same time.

To understand the impact of these functionalities on perfor-
mance, we run one latency-sensitive application along with
a streaming application. The streaming application runs in
parallel and repeatedly loads data from memory, modifies
it, and stores it back. The latency-sensitive application is an
interactive service where clients send requests to the service
and the service tries to minimize average flow time (using the
DREP scheduler described above in Section V-A). Since we
wish to understand the impact of cache and bandwidth, each
job in this latency-sensitive application is a sorting job (since
sorting is moderately memory intensive) and the size of jobs
vary — 95% of the jobs are short (sorting 500, 000 numbers)
and the other 5% are long (sorting 50,000,000 numbers).
We run the latency-sensitive application on core 2-23 and the
streaming application on core 24-39.

Figure 10 shows the impact of the streaming application
on the average flow time of the interactive application. As a
baseline, we ran the interactive application alone (without the
streaming application) and use its average flow time to nor-
malize the results of different co-running scenarios. When co-
running without any cache or memory bandwidth partitioning,
the average flow time increases to 5.29 times for medium load
and 18.3 times for high load. Only applying cache partitioning
already improves the performance significantly, especially for
medium load where the impact of the streaming application
virtually disappears. Cache partitioning has minimal impact
on its performance since the streaming application itself is
insensitive to cache size. For high load, we see further im-
provement as we apply memory bandwidth allocation (where
we give 10% of the bandwidth to the streaming application).
Finally, we get virtually all of the performance back when we
use both cache partitioning and memory bandwidth allocation.
Noted that reducing memory bandwidth allocation does have
an impact on the streaming application — causing about 150%
slowdown (reducing the processing speed from 1855.64 to
724.14 Mflop/sec)..

This experiment shows that it is crucial to use cache
partitioning and memory bandwidth allocation if we wish
to get good performance in multiprogrammed environments.
AMCilk allows system administrators to easily access these
functionalities using an easy-to-use interface.

VI. RELATED WORK

Co-scheduling multiprogrammed parallel applications.
The primary concern of co-scheduling multiple parallel appli-
cations comes from the fact that current resource schedulers
have little information about the application’s runtime systems.
To address this problem, Harris and Maas [24] proposed Cal-
listo — a resource management layer to co-schedule parallel
runtime systems. Application runtime systems tell Callisto to
run their parallel tasks and Callisto schedules the tasks and
runs the tasks via “upcall” to the application code. Qin and
Li [25] proposed Arachne, a core-aware thread management

system. In the Arachne, each application always knows exactly
which cores it has been allocated and it decides how to sched-
ule application threads on cores. AMCilk takes a different
approach compared to these two platforms. It runs multiple
applications in a single runtime, such that any worker has
a comprehensive view of the entire system runtime, which
enables highly flexible scheduling policies.

Scheduling multiprogrammed parallel workloads. There
is extensive theoretical work on scheduling multiprogrammed
parallel workloads in various situations and for different
metrics. For example, Edmonds et al. [26] designed a dy-
namic equipartitioning strategy, which provides a variety of
theoretical advantages. For online systems, researchers have
considered minimizing average flow time [7-10], maximum
flow time [11], [12], makespan [13] and tail-latency [14—16].
Various real-time scheduling policies for parallel jobs also
require support for multiple jobs running in a single ma-
chine [17-22]. AMCilk is specifically designed to support the
above types of scheduling algorithms in an efficient manner.

Several platforms were implemented for various real-world
applications, from interactive cloud services [10], [14], [15],
[27] to parallel real-time systems [17], [22], [28]. Among
them, some platforms can only run the jobs of the specifically
modified application program [14], [17], [27]; some create
one runtime system for each program and can only support
their particular scheduling algorithms [22], [28]; the others use
one runtime for multiple jobs, but do not support responsive
preemption nor the different scheduling algorithms [10], [15].
AMCilk is an efficient platform that meets the requirements
of real-world applications and various scheduling algorithms.

VII. CONCLUSION

We presented AMCilk, a framework for multiprogrammed
parallel workloads based on the Cilk runtime system. AMCilk
allows system administrators to customize scheduling policies
to support various application scenarios and performance
metrics via the low-overhead and responsive core reallocation
mechanism and cache and memory bandwidth partitioning.
Supporting multiprogrammed workloads efficiently and flexi-
bly is crucial when running large scale systems. While AMCilk
is designed for shared memory systems and for a particular
language, we believe that the lessons learned in the imple-
mentation and performance evaluation of AMCilk are more
generally applicable in the design of both small and large-scale
systems, such as servers and clouds. The fact that we were able
to implement the different applications described in Section V
indicates that it is possible to design a unified framework that
can be easily customized for specific application needs. In
addition, our experience with the 4 applications indicates low-
overhead and responsive preemption can significantly impact
the performance of these applications along with the metrics
that these applications care about.
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