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Abstract

Dealing with high variance is a significant chal-
lenge in model-free reinforcement learning (RL).
Existing methods are unreliable, exhibiting high
variance in performance from run to run using
different initializations/seeds. Focusing on prob-
lems arising in continuous control, we propose a
functional regularization approach to augmenting
model-free RL. In particular, we regularize the
behavior of the deep policy to be similar to a pol-
icy prior, i.e., we regularize in function space. We
show that functional regularization yields a bias-
variance trade-off, and propose an adaptive tun-
ing strategy to optimize this trade-off. When the
policy prior has control-theoretic stability guaran-
tees, we further show that this regularization ap-
proximately preserves those stability guarantees
throughout learning. We validate our approach
empirically on a range of settings, and demon-
strate significantly reduced variance, guaranteed
dynamic stability, and more efficient learning than
deep RL alone.

1. Introduction

Reinforcement learning (RL) focuses on finding an agent’s
policy (i.e. controller) that maximizes long-term accumu-
lated reward. This is done by the agent repeatedly observing
its state, taking an action (according to a policy), and re-
ceiving a reward. Over time the agent modifies its policy to
maximize its long-term reward. Amongst other applications,
this method has been successfully applied to control tasks
(Lillicrap et al., 2016; Schulman et al., 2015; Ghosh et al.,
2018), learning to stabilize complex robots.

In this paper, we focus particularly on policy gradient (PG)
RL algorithms, which have become popular in solving con-
tinuous control tasks (Duan et al., 2016). Since PG algo-
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rithms focus on maximizing the long-term reward through
trial and error, they can learn to control complex tasks with-
out a prior model of the system. This comes at the cost
of slow, high variance, learning — complex tasks can take
millions of iterations to learn. More importantly, variation
between learning runs can be very high, meaning some runs
of an RL algorithm succeed while others fail depending on
randomness in initialization and sampling. Several studies
have noted this high variability in learning as a significant
hurdle for the application of RL, since learning becomes un-
reliable (Henderson et al., 2018; Arulkumaran et al., 2017,
Recht, 2019). All policy gradient algorithms face the same
issue.

We can alleviate the aforementioned issues by introduc-
ing a control-theoretic prior into the learning process using
functional regularization. Theories and procedures exist to
design stable controllers for the vast majority of real-world
physical systems (from humanoid robots to robotic grasping
to smart power grids). However, conventional controllers
for complex systems can be highly suboptimal and/or re-
quire great effort in system modeling and controller design.
It would be ideal then to leverage simple, suboptimal con-
trollers in RL to reliably learn high-performance policies.

In this work, we propose a policy gradient algorithm, CORE-
RL (COntrol REgularized Reinforcement Learning), that
utilizes a functional regularizer around a, typically subopti-
mal, control prior (i.e. a controller designed from any prior
knowledge of the system). We show that this approach sig-
nificantly lowers variance in the policy updates, and leads
to higher performance policies when compared to both the
baseline RL algorithm and the control prior. In addition, we
prove that our policy can maintain control-theoretic stability
guarantees throughout the learning process. Finally, we em-
pirically validate our approach using three benchmarks: a
car-following task with real driving data, the TORCS racecar
simulator, and a simulated cartpole problem. In summary,
the main contributions of this paper are as follows:

e We introduce functional regularization using a control
prior, and prove that this significantly reduces variance
during learning at the cost of potentially increasing bias.

e We provide control-theoretic stability guarantees through-
out learning when utilizing a robust control prior.

e We validate experimentally that our algorithm, CORE-
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RL, exhibits reliably higher performance than the base
RL algorithm (and control prior), achieves significant
variance reduction in the learning process, and maintains
stability throughout learning for stabilization tasks.

2. Related Work

Significant previous research has examined variance reduc-
tion and bias in policy gradient RL. It has been shown
that an unbiased estimate of the policy gradient can be ob-
tained from sample trajectories (Williams, 1992; Sutton
et al., 1999; Baxter & Bartlett, 2000), though these esti-
mates exhibit extremely high variance. This variance can be
reduced without introducing bias by subtracting a baseline
from the reward function in the policy gradient (Weaver &
Tao, 2001; Greensmith et al., 2004). Several works have
studied the optimal baseline for variance reduction, often
using a critic structure to estimate a value function or ad-
vantage function for the baseline (Zhao et al., 2012; Silver
et al., 2014; Schulman et al., 2016; Wu et al., 2018). Other
works have examined variance reduction in the value func-
tion using temporal regularization or regularization directly
on the sampled gradient variance (Zhao et al., 2015; Thodo-
roff et al., 2018). However, even with these tools, variance
still remains problematically high in reinforcement learning
(Islam et al., 2017; Henderson et al., 2018). Our work aims
to achieve significant further variance reduction directly on
the policy using control-based functional regularization.

Recently, there has been increased interest in functional reg-
ularization of deep neural networks, both in reinforcement
learning and other domains. Work by Le et al. (2016) has
utilized functional regularization to guarantee smoothness
of learned functions, and Benjamin et al. (2018) studied
properties of functional regularization to limit function dis-
tances, though they relied on pointwise sampling from the
functions which can lead to high regularizer variance. In
terms of utilizing control priors, work by Johannink et al.
(2018) adds a control prior during learning, and empiri-
cally demonstrates improved performance. Researchers in
Farshidian et al. (2014); Nagabandi et al. (2017) used model-
based priors to produce a good initialization for their RL
algorithm, but did not use regularization during learning.

Another thread of related work is that of safe RL. Several
works on model-based RL have looked at constrained learn-
ing such that stability is always guaranteed using Lyapunov-
based methods (Perkins & Barto, 2003; Chow et al., 2018;
Berkenkamp et al., 2017). However, these approaches do
not address reward maximization or they overly constrain ex-
ploration. On the other hand, work by Achiam et al. (2017)
has incorporated constraints (such as stability) into the learn-
ing objective, though model-free methods only guarantee
approximate constraint satisfaction after a learning period,
not during learning (Garcia & Ferndndez, 2015). Our work

proves stability properties throughout learning by taking
advantage of the robustness of control-theoretic priors.

3. Problem Formulation

Consider an infinite-horizon discounted Markov decision
process (MDP) with deterministic dynamics defined by the
tuple (S, A, f,r,7), where S is a set of states, A is a continu-
ous and convex action space, and f : S x A — S describes
the system dynamics, which is unknown to the learning
agent. The evolution of the system is given by the following
dynamical system and its continuous-time analogue,

Syl = f(3t7at) — fknown(st’at) + funknown(st7at)7
$ = fc(&a) _ fécnoum(&a) + fgnknown(s’ a)7

(D

where fFmown captures the known dynamics, funknown
represents the unknowns, $ denotes the continuous time-
derivative of the state s, and f.(s, a) denotes the continuous-
time analogue of the discrete time dynamics f(s¢,at). A
control prior can typically be designed from the known part
of the system model, fkmewn,

Consider a stochastic policy mg(als) : S x A — [0, 1] pa-
rameterized by 6. RL aims to find the policy (i.e. parameters,
6) that maximizes the expected accumulated reward .J(6):

J(0) =Ermn, [Z yir(se, a)). (2)
t=0

Here 7 ~ mp is a trajectory 7 = {sy,ay, ..., Stn, Qttn }
whose actions and states are sampled from the policy dis-
tribution 7y (a|s) and the environmental dynamics (1), re-
spectively. The function r(s,a) : S x A — R is the reward
function, and y € (0, 1) is the discount factor.

This work focuses on policy gradient RL methods, which
estimate the gradient of the expected return J(6) with re-
spect to the policy based on sampled trajectories. We can
estimate the gradient, VyJ, as follows (Sutton et al., 1999),

V0J(0) = Erury |Volog mo(r)Q (7)
T
~ > > [Vologmo(siz, air)Q™ (i ais)],
i=1 t=1
3)

where Qﬂ'e (Sa a) = E‘rwﬂ'g [Zzozo ’Ykr(st+k: at+k)‘5t =

s,ar = a} . With a good Q-function estimate, the term (3)
is a low-bias estimator of the policy gradient, and utilizes
the variance-reduction technique of subtracting a baseline
from the reward. However, the resulting policy gradient
still has very high variance with respect to 6, because the
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expectation in term (3) must be estimated using a finite set
of sampled trajectories. This high variance in the policy
gradient, varg[VyJ(6})], translates to high variance in the
updated policy, varg[my, , ], as seen below,

9k+1 = Gk + CVVQJ(GIC)7

d
Topsr = T, + Vo (0) + O(A6?),
varg| | =~ a2dw0’“ varg [V J (0 )]dm’“T for a < 1
0170, | & a”—ogmvarg Vo (Ok)l— g ;

“4)

where « is the user-defined learning rate. It is important to
note that the variance we are concerned about is with respect
to the parameters 0, not the noise in the exploration process.

To illustrate the variance issue, Fig. 1 shows the results
of 100 separate learning runs using direct policy search on
the OpenAl gym task Humanoid-vI (Recht, 2019). Though
high rewards are often achieved, huge variance arises from
random initializations and seeds. In this paper, we show that
introducing a control prior reduces learning variability, im-
proves learning efficiency, and can provide control-theoretic
stability guarantees during learning.
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Figure 1. Performance on humanoid walking task from 100 train-
ing runs with different initializations. Results from (Recht, 2018).

4. Control Regularization

The policy gradient allows us to optimize the objective from
sampled trajectories, but it does not utilize any prior model.
However, in many cases we have enough system information
to propose at least a crude nominal controller. Therefore,
suppose we have a (suboptimal) control prior, Upyior : S —
A, and we want to combine our RL policy, 7y, , with this
control prior at each learning stage, k. Before we proceed,
let us define ug, : S — A torepresent the realized controller
sampled from the stochastic RL policy g, (a|s) (we will
use u to represent deterministic policies and 7 to represent
the analogous stochastic ones). We propose to combine the
RL policy with the control prior as follows,

1 A
ug(s) = muek(s) + muprior(s)y )

where we assume a continuous, convex action space. Note
that u (s) is the realized controller sampled from stochastic
policy 7, whose distribution over actions has been shifted

1 A
by Uprior such that 7y, (ma—&— T Uprior s) = my, (a]s).

We refer to uy, as the mixed policy, and ug, as the RL policy.

Utilizing the mixed policy (5) is equivalent to placing a
functional regularizer ;o on the RL policy, ug, , with
regularizer weight \. Let 7y, (a|s) be Gaussian distributed:
mo,, = N (tuy,,, X), so that & describes the exploration noise.
Then we obtain the following,

1 A
ug(s) = mﬂek (s) + muprior(s)a (6)

where the control prior, ;. can be interpreted as a Gaus-
sian prior on the mixed control policy (see Appendix A). Let
us define the norm |ju; —us||s = (u1 —u2)TS ™ (ug —us).

Lemma 1. The policy Ty (s) in Equation (6) is the solution
to the following regularized optimization problem,

Uy (s) = arg min Hu(s) — g,

> @)
+ )‘HU(S) - Uprior(s)HE, Vs e S,

which can be equivalently expressed as the constrained
optimization problem,

ur(s) = argmin ||u(s) —u,
(s) = argmin [|u(s) ~ 7, || ©
s.t. ||u(s) — Uprior(9)||2 < (X)) Vs e S,

where [i constrains the policy search. Assuming conver-
gence of the RL algorithm, Ty (s) converges to the solution,

Uk (s) = arg min Hu(s) —argmaxE, g {r(s, a)] Hz:
u Ug

+ A|u(s) — uprior(s)||z, Vs €S as k— o0
)

This lemma is proved in Appendix A. The equivalence be-
tween (6) and (7) illustrates that the control prior acts as a
functional regularization (recall that %@y, solves the reward
maximization problem appearing in (9) ). The policy mix-
ing (6) can also be interpreted as constraining policy search
near the control prior, as shown by (8). More weight on the
control prior (higher \) constrains the policy search more
heavily. In certain settings, the problem can be solved in the
constrained optimization formulation (Le et al., 2019).

4.1. CORE-RL Algorithm

Our learning algorithm is described in Algorithm 1. At the
high level, the process can be described as:

o First compute the control prior based on prior knowledge
(Line 1). See Section 5 for details on controller synthesis.
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Algorithm 1 Control Regularized RL (CORE-RL)

1: Compute the control prior, wp,o using the known
model k7" (s, a) (or other prior knowledge)

2: Initialize RL policy g,
3: Initialize array D for storing rollout data
4: Set k = 1 (representing k*" policy iteration)
5: while k < Episodes do
6:  Evaluate policy mg, , at each timestep
7. if Using Adaptive Mixing Strategy then
8: At each timestep, compute regularization weight A
9: for the control prior using the TD-error from (12).
10:  else
11: Set constant regularization weight A
12 end if
13:  Deploy mixed policy m;_1 from (5) to obtain
14: rollout of state-action-reward for T timesteps.

15:  Store resulting data (s, as, ¢, S¢1) in array D.
16:  Using data in D, update policy using any policy

17: gradient-based RL algorithm (e.g. DDPG, PPO)
18: to obtain 6.
190 k=k+1

20: end while

21: return Policy mg, , Uprior > Overall controller

e For a given policy iteration, compute the regularization
weight, A, using the strategy described in Section 4.3
(Lines 7-9). The algorithm can also use a fixed regular-
ization weight, A (Lines 10-11).

e Deploy the mixed policy (5) on the system, and record
the resulting states/action/rewards (Lines 13-15).

e At the end of each policy iteration, update the policy
based on the recorded state/action/rewards (Lines 16-18).

4.2. Bias-Variance Tradeoff

Theorem 1 formally states that mixing the policy gradient-
based controller, g, , with the control prior, uprior, de-
creases learning variability. However, the mixing may in-
troduce bias into the learned policy that depends on the (a)
regularization ), and (b) sub-optimality of the control prior.
Bias is defined in (10) and refers to the difference between
the mixed policy and the (potentially locally) optimal RL
policy at convergence.

Theorem 1. Consider the mixed policy (5) where g, is a

policy gradient-based RL policy, and denote the (potentially

local) optimal policy to be . The variance (4) of the

mixed policy arising from the policy gradient is reduced by
1

a factor (H—)\)2 when compared to the RL policy with no

control prior.

However, the mixed policy may introduce bias propor-
tional to the sub-optimality of the control prior. If we
let Dgyy, = Dry (Topt, Tprior), then the policy bias (i.e.

Dy (7, Topt)) is bounded as follows,

1
DTV (’/Tka Wopt) 2 Dsub - mDTV (7T6k 3 Wprior)
\ (10)
Dy (g, 71'opt) < mDsub as k — 00
where Dy (-, ) represents the total variation distance be-
tween two probability measures (i.e. policies). Thus, if Dgyp

and )\ are large, this will introduce policy bias.

The proof can be found in Appendix B. Recall that 750,
is the stochastic analogue to the deterministic control prior
Upriors SUCh that mp,ior(als) = L(a = uprior(s)) where 1
is the indicator function. Note that the bias/variance results
apply to the policy — not the accumulated reward.

Intuition: Using Figure 2, we provide some intuition for the
control regularization discussed above. Note the following:

1) The explorable region of the state space is denoted by the
set Sg¢, which grows as \ decreases and vice versa. This
illustrates the constrained policy search interpretation of
regularization in the state space.

2) The difference between the control prior trajectory and
optimal trajectory (i.e. Dg,p) may bias the final policy
depending on the explorable region S (i.e. A). Fig 2.
shows this difference, and its implications, in state space.

3) If the optimal trajectory is within the explorable region,
then we can learn the corresponding optimal policy —
otherwise the policy will remain suboptimal.

Points 1 and 3 will be formally addressed in Section 5.

High Regularization

— Control Prior Traj.
— Optimal Trajectory

Low Regularization

— Control Prior Traj.
— Optimal Trajectory

.~~~ Explorable Set S,

\_ 77" Explorable Set s,

State Space, S

(a) (b)

State Space, S

Figure 2. Illustration of optimal trajectory vs. control-theoretic
trajectory with the explorable set Ss;. (a) With high regularization,
set Ss¢ is small so we cannot learn the optimal trajectory. (b) With
lower regularization, set S; is larger so we can learn the optimal
trajectory. However, this also enlarges the policy search space.

4.3. Computing the mixing parameter \

A remaining challenge is automatically tuning A, especially
as we acquire more training data. While setting a fixed A
can perform well, intuitively, A should be large when the
RL controller is highly uncertain, and it should decrease as
we become more confident in our learned controller.
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Consider the multiple model adaptive control (MMAC)
framework, where a set of controllers (each based on a dif-
ferent underlying model) are generated. A meta-controller
computes the overall controller by selecting the weighting
for different candidate controllers, based on how close the
underlying system model for each candidate controller is to
the “true” model (Kuipers & loannou, 2010). Inspired by
this approach, we should weight the RL controller propor-
tional to our confidence in its model. Our confidence should
be state-dependent (i.e. low confidence in areas of the state
space where little data has been collected). However, since
the RL controller does not utilize a dynamical system model,
we propose measuring confidence in the RL controller via
the magnitude of the temporal difference (TD) error,

167 (s¢)| = [re1 +7Q™ (8¢415a0401) — Q7 (56, a¢)|, (11)

where a; ~ 7(a|st), at41 ~ mw(a|st41). This TD error
measures how poorly the RL algorithm predicts the value
of subsequent actions from a given state. A high TD-error
implies that the estimate of the action-value function at a
given state is poor, so we should rely more heavily on the
control prior (a high A value). In order to scale the TD-error
to a value in the interval A € [0, A,q2], We take the negative
exponential of the TD-error, computed at run-time,

A(s1) = Amaz (1= =00 1)

The parameters C' and A4, are tuning parameters of the
adaptive weighting strategy. Note that Equation (12) uses
d(s¢—1) rather than d(s;), because computing 0 (s;) requires
measurement of state s;;;. Thus we rely on the reasonable
assumption that 6(s;) & d(s¢—1), since s; should be very
close to s;_; in practice.

Equation (12) yields a low value of \ if the RL action-
value function predictions are accurate. This measure is
chosen because the (explicit) underlying model of the RL
controller is the value function (rather than a dynamical
system model). Our experiments show that this adaptive
scheme based on the TD error allows better tuning of the
variance and performance of the policy.

5. Control Theoretic Stability Guarantees

In many controls applications, it is crucial to ensure dynamic
stability, not just high rewards, during learning. When a
(crude) dynamical system model is available, we can utilize
classic controller synthesis tools (i.e. LQR, PID, etc.) to
obtain a stable control prior in a region of the state space. In
this section, we utilize a well-established tool from robust
control theory (> control), to analyze system stability
under the mixed policy (5), and prove stability guarantees
throughout learning when using a robust control prior.

Our work is built on the idea that the control prior should
maximize robustness to disturbances and model uncertainty,

so that we can treat the RL control, ug, , as a performance-
maximizing “disturbance” to the control prior, tppior. The
mixed policy then takes advantage of the stability properties
of the robust control prior, and the performance optimization
properties of the RL algorithm. To obtain a robust control
prior, we utilize concepts from H°° control (Doyle, 1996).

Consider the nonlinear dynamical system (1), and let us
linearize the known part of the model f*7°“" (s a) around
a desired equilibrium point to obtain the following,

$=As+ Bjw + Baa

(13)
z=C18+ Diiw + D12a

where w € R™! is the disturbance vector, and z € RP? is
the controlled output. Note that we analyze the continuous-
time dynamics rather than discrete-time, since all mechan-
ical systems have continuous time dynamics that can be
discovered through analysis of the system Lagrangian. How-
ever, similar analysis can be done for discrete-time dynam-
ics. We make the following standard assumption — condi-
tions for its satisfaction can be found in (Doyle et al., 1989),

Assumption 1. A H controller exists for linear system
(13) that stabilizes the system in a region of the state space.

Stability here means that system trajectories are bounded
around the origin/setpoint. We can then synthesize an H*°
controller, u*™”™ (s) = —Ks, using established techniques
described in (Doyle et al., 1989). The resulting controller is
robust with worst-case disturbances attenuated by a factor
(x, before entering the output, where (; < 1 is a parameter
returned by the synthesis algorithm. See Appendix F for
further details on > control and its robustness properties.

Having synthesized a robust 2> controller for the linear
system model (13), we are interested in how those robustness
properties (e.g. disturbance attenuation by () influence the
nonlinear system (1) controlled by the mixed policy (5). We
rewrite the system dynamics (1) in terms of the linearization
(13) plus a disturbance term as follows,

$ = fe(s,a) = As + Baa + d(s,a), (14)

where d(s, a) gathers together all dynamic uncertainties and
nonlinearities. To keep this small, we could use feedback
linearization based on the nominal nonlinear model (1).

We now analyze stability of the nonlinear system (14) under
the mixed policy (5) using Lyapunov analysis (Khalil, 2000).
Consider the Lyapunov function V(s) = s Ps, where P
is obtained when synthesizing the 7> controller (see Ap-
pendix F). If we can define a closed region, Sg;, around
the origin such that V(s) < 0 outside that region, then by
standard Lyapunov analysis, Sg; is forward invariant and
asymptotically stable (note V(s) is the time-derivative of
the Lyapunov function). Since the H°° control law satis-
fies an Algebraic Riccati Equation, we obtain the following
relation,



Control Regularization for Reduced Variance Reinforcement Learning

Lemma 2. For any state s, satisfaction of the condition,

1
T
2s P(d(s, a) + T )\Bgue) <
1
sTcTe, + C—QPBlBTP)&
k

implies that V (s) < 0.

This lemma is proved in Appendix C. Note that u, =
ug —uM” denotes the difference between the RL controller
and control prior, and (A, By, By, Cy) come from (13). Let
us bound the RL control output such that ||uel2 < Cr,

and define the set C = {(s,u) € (S,A4) ’ luellz <

Cr, H® control is stabilizing}. We also bound the “dis-
turbance” ||d(s,a)|ls < Cp, for all s € C, and define
the minimum singular value 0,,((x) = Tmin(CL Oy +
CigPBl BT P), which reflects the robustness of the control
prior (i.e. larger o,,, imply greater robustness). Then using
Lemma 2 and Lyapunov analysis tools, we can derive a
conservative set that is guaranteed asymptotically stable and
forward invariant under the mixed policy, as described in
the following theorem (proof in Appendix D).

Theorem 2. Assume a stabilizing H*® control prior within
the set C for the dynamical system (14). Then asymptotic
stability and forward invariance of the set S¢z C C

1
Sst : {s€R": ||s]2 < 7(2HP”2CD
Um(Ck) (15)
2
+ 1TA||PBQ||QC7,) , s€C)

is guaranteed under the mixed policy (5) for all s € C.
The set Ss; contracts as we (a) increase robustness of the
control prior (increase o,,(Ci)), (b) decrease our dynamic
uncertainty/nonlinearity Cp, or (c) increase weighting A
on the control prior.

Put simply, Theorem 2 says that all states in C will con-
verge to (and remain within) set Sy; under the mixed policy
(5). Therefore, the stability guarantee is stronger if Sg; has
smaller cardinality. The set Ss; is drawn pictorally in Fig.
2, and essentially dictates the explorable region. Note that
St 1s not the region of attraction.

Theorem 2 highlights the tradeoff between robustness pa-
rameter, (i, of the control prior, the nonlinear uncertainty
in the dynamics Cp, and the utilization of the learned con-
troller, \. If we have a more robust control prior (higher
om(Cx)) or better knowledge of the dynamics (smaller Cp),
we can heavily weight the learned controller (lower \) dur-
ing the learning process while still guaranteeing stability.

While shrinking the set S,; and achieving asymptotic sta-
bility along a trajectory or equilibrium point may seem
desirable, Fig. 2 illustrates why this is not necessarily the

case in an RL context. The optimal trajectory for a task
typically deviates from the nominal trajectory (i.e. the con-
trol theoretic-trajectory), as shown in Fig. 2 — the set Sy
illustrates the explorable region under regularization. Fig.
2(a) shows that we do not want strict stability of the nominal
trajectory, and instead would like /imited flexibility (a suffi-
ciently large Sg;) to explore. By increasing the weighting
on the learned policy 7y, (decreasing \), we expand the set
Sst¢ and allow for greater exploration around the nominal
trajectory (at the cost of stability) as seen in Fig. 2(b).

6. Empirical Results

We apply the CORE-RL Algorithm to three problems: (1)
cartpole stabilization, (2) car-following control with experi-
mental data, and (3) racecar driving with the TORCS sim-
ulator. We show results using DDPG or PPO or TRPO
(Lillicrap et al., 2016; Schulman et al., 2017; Schulman
et al., 2015) as the policy gradient RL algorithm (PPO +
TRPO results moved to Appendix G), though any similar
RL algorithm could be used. All code can be found at
https://github.com/rcheng805/CORE-RL.

Note that our results focus on reward rather than bias. Bias
(as defined in Section 4.2) assumes convergence to a (lo-
cally) optimal policy, and does not include many factors
influencing performance (e.g. slow learning, failure to con-
verge, etc.). In practice, Deep-RL algorithms often do not
converge (or take very long to do so). Therefore, reward
better demonstrates the influence of control regularization
on performance, which is of greater practical interest.

6.1. CartPole Problem

We apply the CORE-RL algorithm to control of the cart-
pole from the OpenAl gym environment (CartPole-v1). We
modified the CartPole environment so that it takes a con-
tinuous input, rather than discrete input, and we utilize a
reward function that encourages the cartpole to maintain its
x—position while keeping the pole upright. Further details
on the environment and reward function are in Appendix
E. To obtain a control prior, we assume a crude model (i.e.
linearization of the nonlinear dynamics with ~ 60% error in
the mass and length values), and from this we synthesize an
‘H° controller. Using this control prior, we run Algorithm
1 with several different regularization weights, A. For each
A, we run CORE-RL 6 times with different random seeds.

Figure 4a plots reward improvement over the control prior,
which shows that the regularized controllers perform much
better than the baseline DDPG algorithm (in terms of vari-
ance, reward, and learning speed). We also see that inter-
mediate values of \ (i.e. A =~ 4) result in the best learning,
demonstrating the importance of policy regularization.

Figure 4b better illustrates the performance-variance trade-
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off. For small A\, we see high variance and poor performance.
With intermediate A\, we see higher performance and lower
variance. As we further increase )\, variance continues to
decrease, but the performance also decreases since policy
exploration is heavily constrained. The adaptive mixing
strategy performs very well, exhibiting low variance through
learning, and converging on a high-performance policy.
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Figure 3. Stability region for CartPole under mixed policy. (a)
Ilustration of the stability region for different regularization, .
For each A shown, the trajectory goes to and remains within the
corresponding stability set throughout training. (b) Size of the
stability region in terms of the angle 6, and position z. As A
increases, we are guaranteed to remain closer to the equilibrium
point during learning.

While Lemma 1 proved that the mixed controller (6) has the
same optimal solution as optimization problem (7), when
we ran experiments directly using the loss in (7), we found
that performance (i.e. reward) was worse than CORE-RL
and still suffered high variance. In addition, learning with
pre-training on the control prior likewise exhibited high
variance and had worse performance than CORE-RL.

Importantly, according to Theorem 2, the system should
maintain stability (i.e. remain within an invariant set around
our desired equilibrium point) throughout the learning pro-
cess, and the stable region shrinks as we increase A. Our
simulations exhibit exactly this property as seen in Figure
3, which shows the maximum deviation from the equilib-
rium point across all episodes. The system converges to
a stability region throughout learning, and this region con-
tracts as we increase A. Therefore, regularization not only
improves learning performance and decreases variance, but
can capture stability guarantees from a robust control prior.

6.2. Experimental Car-Following

We next examine experimental data from a chain of 5 cars
following each other on an 8-mile segment of a single-lane
public road. We obtain position (via GPS), velocity, and
acceleration data from each of the cars, and we control
the acceleration/deceleration of the 4" car in the chain.
The goal is to learn an optimal controller for this car that
maximizes fuel efficiency while avoiding collisions. The

experimental setup and data collection process are described
in (Ge et al., 2018). For the control prior, we utilize a bang-
bang controller that (inefficiently) tries to maintain a large
distance from the car in front and behind the controlled
car. The reward function penalizes fuel consumption and
collisions (or near-collisions). Specifics of the control prior,
reward function, and experiments are in Appendix E.

For our experiments, we split the data into 10 second
“episodes”, shuffle the episodes, and run CORE-RL six times
with different random seeds (for several different \).

Figure 4a shows again that the regularized controllers per-
form much better than the baseline DDPG algorithm for the
car-following problem, and demonstrates that regularization
leads to performance improvements over the control prior
and gains in learning efficiency. Figure 4b reinforces that
intermediate values of A (i.e. A & 5) exhibit optimal per-
formance. Low values of A exhibit significant deterioration
of performance, because the car must learn (with few sam-
ples) in a much larger policy search space; the RL algorithm
does not have enough data to converge on an optimal policy.
High values of A also exhibit lower performance because
they heavily constrain learning. Intermediate A allow for
the best learning using the limited number of experiments.

Using an adaptive strategy for setting A (or alternatively tun-
ing to an optimal \), we obtain high-performance policies
that improve upon both the control prior and RL baseline
controller. The variance is also low, so that the learning
process reliably learns a good controller.

6.3. Driving in TORCS

Finally we run CORE-RL to generate controllers for cars in
The Open Racing Car Simulator (TORCS) (Wymann et al.,
2014). The simulator provides readings from 29 sensors,
which describe the environment state. The sensors provide
information like car speed, distance from track center, wheel
spin, etc. The controller decides values for the acceleration,
steering and braking actions taken by the car.

To obtain a control prior for this environment, we use a
simple PID-like linearized controller for each action, similar
to the one described in (Verma et al., 2018). These types
of controllers are known to have sub-optimal performance,
while still being able to drive the car around a lap. We
perform all our experiments on the CG-Speedway track in
Torcs. For each A, we run the algorithm 5 times with
different initializations and random seeds.

For TORCS, we plot laptime improvement over the control
prior so that values above zero denote improved perfor-
mance over the prior. The laps are timed out at 150s, and
the objective is to minimize lap-time by completing a lap as
fast as possible. Due to the sparsity of the lap-time signal,
we use a pseudo-reward function during training that pro-
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vides a heuristic estimate of the agent’s performance at each
time step during the simulation (details in Appendix E).

Once more, Figure 4a shows that regularized controllers
perform better on average than the baseline DDPG algo-
rithm, and that we improve upon the control prior with
proper regularization. Figure 4b shows that intermediate
values of \ exhibit good performance, but using the adap-
tive strategy for setting A in the TORCS setting gives us
the highest-performance policy that significantly beats both
the control prior and DDPG baseline. Also, the variance
with the adaptive strategy is significantly lower than for
the DDPG baseline, which again shows that the learning
process reliably learns a good controller.

Note that we have only shown results for DDPG. Results for
PPO and TRPO are similar for CartPole and Car-following
(different for TORCS), and can be found in Appendix G.
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Figure 4. Learning results for CartPole, Car-Following, and TORCS RaceCar Problems using DDPG. (a) Reward improvement over
control prior with different set values for A or an adaptive A. The right plot is a zoomed-in version of the left plot without variance
bars for clarity. Values above the dashed black line signify improvements over the control prior. (b) Performance and variance in the
reward as a function of the regularization A, across different runs of the algorithm using random initializations/seeds. Dashed lines show
the performance (i.e. reward) and variance using the adaptive weighting strategy. Variance is measured for all episodes across all runs.
Adaptive A and intermediate values of A exhibit best learning. Again, performance is baselined to the control prior, so any performance
value above 0 denotes improvement over the control prior.

A significant criticism of RL is that random seeds can pro-
duce vastly different learning behaviors, limiting application
of RL to real systems. This paper shows, through theoreti-
cal results and experimental validation, that our method of
control regularization substantially alleviates this problem,
enabling significant variance reduction and performance im-
provements in RL. This regularization can be interpreted as
constraining the explored action space during learning.

Our method also allows us to capture dynamic stability
properties of a robust control prior to guarantee stability
during learning, and has the added benefit that it can easily
incorporate different RL algorithms (e.g. PPO, DDPG, etc.).
The main limitation of our approach is that it relies on a
reasonable control prior, and it remains to be analyzed how
bad of a control prior can be used while still aiding learning.
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Appendix: Control Regularization for Reduced Variance Reinforcement
Learning

A. Proof of Lemma 1

Lemma 1. The policy Ty (s) in Equation (6) is the solution
to the following regularized optimization problem,
2

Ty (s) = argmin Hu(s) — Uy,

(16)
+ M|u(s) — tprior (s)||?, Vs €S,

which can be equivalently expressed as the constrained

optimization problem:

2

ug(s) = arginin Hu(s) — g, an

st [u(s) = Uprior(s)||* < A(\) Vs € S,

where [i constrains the policy search. Assuming conver-
gence of the RL algorithm, Ty (s) converges to the solution,

2
Uy (s) = arg min Hu(s) —argmaxE, ., [r(s, a)} H
u ue

+ Mu(s) = uprior(s)||?, Vs€S as k— oo
(18)

Proof.

Equivalence between (6) and (16) : Let 7y, (a|s) be a
Gaussian distributed policy with mean wg, (s): g, (als) ~
N (g, (s),X). Thus, ¥ describes exploration noise. From
the mixed policy definition (6), we can obtain the following
Gaussian distribution describing the mixed policy:
1 1
1+ \ 1+ )\uprzom
1+ A

- %N(agk () 1+ NE) - N (tprior (). =),
19)

mi(als) = N( g, + %)

where the second equality follows based on the properties
of products of Gaussians. Let us define ||u; — us||s =
(uy —u2)TX 71 (uy — us), and let |3| be the determinant of
|X|. Then, distribution (19) can be rewritten as the product,

P(X(s)) = —e1 exp(—ﬁ||X<s> T (5)]) X
Cent exp(—2(1A+A)IIX(s) — tprion(3)]x)

1
~en/@mF(IF NEY

C1

(20)

where X (s) is a random variable with P(X (s)) representing
the probability of taking action X from state s under policy
(6). Further simplifying this PDF, we obtain:

P(X(s)) = cexp ( = [|X(5) = T, (5)]]5

— MIX(s) —upmr(s)llz) 1)

[SIE

A
en (2m)F(1 4+ A)F|X]

Cy =

Since the probability P(X (s)) is maximized when the argu-
ment of the exponential in Equation (21) is minimized, then
the maximum probability policy can be expressed as the
solution to the following regularized optimization problem,

uy(s) = argmin(s) [lu(s) — g, (s)[|s +

“ (22)
AMu(s) = tprior(s)||s, Vs e S.
Therefore the mixed policy uy(s) from Equation (6) is the
solution to Problem (16) .

Convergence of (16) to (18): Note that g, and 7y, are
parameterized by the same 6}, and represent the iterative so-

lution to the optimization problem arg maxy E; ., [T(T)}

at the latest policy iteration. Thus, assuming convergence of
the RL algorithm, we can rewrite problem (22) as follows,

2
Uy = arg min Hu(s) —argmaxE . ,, {r(& a)] H
u g,
+ )\||U(S) - uprior(s)Hg, Vs € S.
(23)

Equivalence between (16) and (17) : Finally, we want to
show that the solutions for regularized problem (16) and the
constrained optimization problem (17) are equivalent.

First, note that Problem (16) is the dual to Problem (17),
where A is the dual variable. Clearly problem (16) is convex
in u. Furthermore, Slater’s condition holds, since there is
always a feasible point (e.g. trivially u(s) = Uprior(s)).
Therefore strong duality holds. This means that 3\ > 0
such that the solution to Problem (17) must also be optimal
for Problem (16).
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To show the other direction, fix A > 0 and define R(u) =
Ju(s) — g, (5) 12 and C(ux) = [[u(s) — ttprion ()| for al
s € 5. Let us denote u* as the optimal solution for Problem
(16) with C(u*) = 7 > f1 (note we can choose fi). However
supposed u* is not optimal for Problem (17). Then there
exists & such that R(u*) < R(u) and C(@) < fi. Denote
the difference in the two rewards by R(@) — R(u*) = Rgify.
Thus the following relations hold,

R(@) + AC() < R(u*) + AC(u*) + Raigy + A[fi — 7].
(24)

This leads to the conditional statement,

Ryigs +A[p—7] >0

S R(E) 4+ AC(d) < R(u") + AC@). &

For fixed A, there always exists ji > 0 such that the con-
dition Rgirr + A [ﬁ — T} > 0 holds. However, this leads
to a contradiction, since we assumed that v* is optimal for
Problem (16). We can conclude then that 34 such that the
solution to Problem (16) must be optimal for Problem (17).
Therefore, Problems (16) and (17) have equivalent solutions.

O

B. Proof of Theorem 1

Theorem 1. Consider the mixed policy (5) where my, is

an RL controller learned through policy gradients, and

denote the (potentially local) optimal policy to be ;. The

variance (4) of the mixed policy arising from the policy
1

gradient is reduced by a factor (H—)\)2 when compared to

the RL policy with no control prior.

However, the mixed policy may introduce bias proportional
to the sub-optimality of the control prior. More formally, if
we let Dy, = Dy (Topt, Tprior), then the policy bias (i.e.
Dy (7, Topt)) is bounded as follows:

1
DTV (’/Tka Wopt) 2 Dsub - 7DTV (7T6k ) Wprior)
14+ A
A\ (26)
Drv (7, Topt) < T 3 Dsus ask = o0
where Dy (-, ) represents the total variation distance be-
tween two probability measures (i.e. policies). Thus, if Dgyp

and X are large, this will introduce policy bias.

Proof. Let us define the stochastic action (i.e. random vari-
able) A<, ~ mg,,, (als). Then recall from Equation (4)
that assuming a fixed, Gaussian distributed policy, 7y, (als),

T

d d
varg[A2 |s] & 02 0 varg [V J (01)] e . (27)

db do

Based on the mixed policy definition (5), we obtain the
following relation between the variance of 75, and 7y, (the

mixed policy and RL policy, respectively),

]' act >\
T T

(AR 5]

varg[mgy1] = varg [ uprior‘5i|

Compared to the variance (4), we achieve a variance re-
duction when utilizing the same learning rate «. Taking
the same policy gradient from (4), var[VJ(6)], then the
variance is reduced by a factor of (H%\)2 by introducing
policy mixing.

Lower variance comes at a price — potential introduc-
tion of bias into policy. Let us define the policy
bias as Drpy (mk, Topt), and let us denote Dy, =
Dy (Topt, Tprior). Since total variational distance, Dy
is a metric, we can use the triangle inequality to obtain:

DTV ('ﬂ—kv Wopt) 2 DTV (Wpriora Wopt) - DTV (Wpriom 7Tk)~

(29)
We can further break down the term Dpy (Tprior, Tk ):
DTV (Wpriora 7Tk)
1 A
= su Tprior — T~ 0, — 7~ Nprior
(s,a)EI.)S'xA b 1+ A O 1+ A P
: | |
= T3 sup 70, — Tprior
I+ A (s,a)eSxA " i
1
= mDTV(ﬂ-Ok 3 7Tprior)'
(30)

This holds for all £ € N. From (29) and (30), we can obtain
the lower bound in (26),

1
DTV (7Tk7 7Topt) Z Dsub - mDTV (WOk;ﬁprior)

To obtain the upper bound, let the policy gradient algorithm
with no control prior achieve asymptotic convergence to the
(locally) optimal policy 7, (as proven for certain classes
of function approximators in (Sutton et al., 1999)). Denote

this policy as wéi ), such that wé’; ) 5 Topr as k — oo, In

this case, we can derive the total variation distance between
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the mixed policy (5) and the optimal policy as follows,

Dy (Topt, 7))

= sup |7Topt - Lﬂép) - A 7Tp'rior|
(s,a)€SxA L+A 7 L+ A
_ A . k
= TR o ] a8k
- m TV (ﬂ_opta Wprzor) as k — oo
= LD as k — oo
1+ A sub .

€2y

Note that this represents an upper bound on the bias, since it

(p)

assumes that g, is uninfluenced by 7,50, during learning.

It shows that ﬂéf ) is a feasible policy, but not necessar-

ily optimal when accounting for regularization with 7,.;,..
Therefore, we can obtain the upper bound:

Dry (Topt, 7k) < Drv (Topt, ”z(cp))
A (32)

= mDsub as k — oo.

C. Proof of Lemma 2

Lemma 2. For any state s, satisfaction of the condition,

1
T [
2s P(d(S, a) + T )\Bgue) <

1
sT(Cl'Cy + PB Bl P)s,
Tk
implies that V (s) < 0.

Proof. Recall that we are analyzing the Lyapunov function
V(s) = sT Ps, where P is taken from the Algebraic Ric-
cati Equation (50). Let us take the time derivative of the
Lyapunov function as follows:

V(s) = Cfi—‘; § = 23TP(A3 + Baa + d(s, a))
1
= s"(~C{ C1 — — PBB{ P)s + 2s" Pd(s, a)+
k

2
STPBz(uek - uprior)

14+

1
= sT(~CTC1 — — PBiBI P)s + 25" P(d(s, )+
k

1
71 + )\ Bgue) .
(33)

The second equality comes from the Algebraic Riccati Equa-
tion (50), which the dynamics satisfy by design of the H*>°
controller. From here, it follows directly that if,

1
QSTP(d(S, CL) + mBQUe) <

1
sT(Cl'Cy + 4 PB B P)s,
Tk
then V(s) < 0. O

D. Proof of Theorem 2

Theorem 2. Assume a stabilizing H*® control prior within
the set C for our dynamical system (14). Then asymptotic
stability and forward invariance of the set S¢¢ C C

1

Set 1 {s € R" : ||s]|2 < 2|| Pl C
oo Isll2 < o~ (21Pll2Co ”

2
—||PB .
+ 15 IPBallCr) s € €y

is guaranteed under the mixed policy (5) for all s € C.
The set Ss; contracts as we (a) increase robustness of the
control prior (increase o, (V)), (b) decrease our dynamic
uncertainty/nonlinearity C'p, or (c) increase weighting A
on the control prior.

Proof.

Step (1): Find a set in which Lemma 2 is satisfied.

Consider the condition in Lemma 2. Since the right hand
side is positive (quadratic), we can consider a bound on the
stability condition as follows,

1257 Pd(s,a) + sT PByu,| <

14+ A

) (35)
s"(CfCy + —PB,B{ P)s.
Tk
Clearly any set of s that satisfy condition (35) also satisfy
the condition in Lemma 2. To find such a set, we bound the
terms in Condition (35) as follows,

2
25T Pd TPBoyu,
|25 (s,a)+1+>\s 2Ue|
2
< 21sTPd T PBou,
< 2[s" Pd(s,a)| + 1+A\s 2Ue|
2
< 2 P = PB -
< 22| H20D+1+AIISII2II 2|[2C:

(36)

where the first inequality follows from the triangle inequal-
ity; the second inequality uses our bounds on the distur-
bance, Cp and control input difference C;, as well as
the Cauchy-Schwarz inequality. Now consider the right
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hand side of Condition (35). Recall that o,,(v) =

Omin(CTCy + ,Y%PB1 BT P), the minimum singular value.
k

Then the following holds,

1
om(ve)|s2 < sT(CTCy + ?PBlBlTP)s (37)
k

Using the bounds in (36) and (37), we can say that Condition
(35) is guaranteed to be satisfied if the following holds,

2
20lsllzllPll2Cp + 7 [sll2llP B2 [[2Cx < m (i) lIsl13
(38)

The set for which this condition (38) is satisfied can be
described by,

C\Sst: {s€eR":|s]l2 >

2||P[|2Cp
2
75 IPBlleCr) L s e ).

Recall that C is the set in which the stabilizing 7> con-
troller exists. From Lemma 2, V' (s) < 0 forall s € C \ Sy
described by the set (39).

Step (2): Establish stability and forward invariance of Sg;.

The Lyapunov function V (s) = s” Ps decreases towards
the origin, and we have established that the time derivative
of the Lyapunov function is negative for s in set (39). There-
fore, any state s described by the set (39) (intersected with
C) must move towards the origin (i.e. towards Sy;). This
follows directly from the properties of Lyapunov functions.
Therefore, the set S,; described in (34) must be asymptoti-
cally stable and forward invariant for all s € C.

O

E. Description of Experiments
E.1. Experimental Car-Following

In the original car-following experiments, a chain of 8 cars
followed each other on an 8-mile segment of a single-lane
public road. We obtain position (via GPS), velocity, and
acceleration data from each of the cars. We cut this data
into 4 sets of chains of 5 cars, in order to maximize the data
available to learn from. We then cut this into 10 second
“episodes” (100 data points each). We shuffle these training
episodes randomly before each run and feed them to the
algorithm, which learns the controller for the 4t car in the
chain.

The reward function we use in learning is described below:

r = —0min(0,a) — 100|G1(s)| — 50G3(s),
1

Sfront —Scurr

if Sfront — Scurr < 10
Gl(s) =

Sewurr—Sback if Scurr — Sback S 10
0 otherwise 40)

1 if Sfront — Scurr <2
GQ(S) = 1

0  otherwise

if Scurr — Sback < 2

where Scyrr, Sfront, and Sp.cr denote the position of the
controlled car, the car in front of it, and the car behind
it. Also, a denotes the control action (i.e. accelera-
tion/deceleration), and v denotes the velocity of the con-
trolled car. Therefore, the first term represents the fuel
efficiency of the controlled car, and the other terms encour-
age the car to maintain headway from the other cars and
avoid collision.

The control prior we utilize is a simple bang-bang controller
that (inefficiently) tries to keep us between the car and front
and back. It is described by,

2.5 if KpAs+ KgAv >0
if KpAs+ KgAv <0
0 otherwise (41)

a=4 —b

As = Sfront — 2Scurr — Sback

Av = VUfront — 2Veurr — Vback

where Veurr, Ufront, and Upgcr denote the velocity of the
controlled car, the car in front of it, and the car behind it.
We set the constants K, = 0.4 and K; = 0.5. Essentially,
the control prior tries to maximize the distance from the car
in front and behind, taking into account velocities as well as
positions.

E.2. TORCS Racecar Simulator

In its full generality TORCS provides a rich environment
with input from up to 89 sensors, and optionally the 3D
graphic from a chosen camera angle in the race. The con-
trollers have to decide the values of up to 5 parameters
during game play, which correspond to the acceleration,
brake, clutch, gear and steering of the car. Apart from the
immediate challenge of driving the car on the track, con-
trollers also have to make race-level strategy decisions, like
making pit-stops for fuel. A lower level of complexity is
provided in the Practice Mode setting of TORCS. In this
mode all race-level strategies are removed. Currently, so
far as we know, state-of-the-art DRL models are capable of
racing only in Practice Mode, and this is also the environ-
ment that we use. In this mode we consider the input from
29 sensors, and decide values for the acceleration, steering
and brake actions.
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The control prior we utilize is a linear controller of the form:

Ky(e—0;)+ K, Z (e —05) + Kq(0i—1 —0;) (42)
j=i—N

Where o; is the most recent observation provided by the
simulator for a chosen sensor, and N is a predetermined
constant. We have one controller for each of the actions,
acceleation, steering and braking.

The pseudo-reward used during training is given by:
ry = Vcos(f) — Vsin(f) — V]trackPos| (43)

Here V is the velocity of the car, 6 is the angle the car makes
with the track axis, and t rackPos provides the position on
the track relative to the track’s center. This reward captures
the aim of maximizing the longitudinal velocity, minimizing
the transverse velocity, and penalizing the agent if it deviates
significantly from the center of the track.

E.3. CartPole Stabilization

The CartPole simulator is implemented in the OpenAl gym
environment (’CartPole-v1’). The dynamics are the same as
in the default, as described below,

9t+1 = x¢ + 27,

Mgsinf — Fcose—mlé2sin9cos6‘>
T?

Orir =00 + ( %Ml—mlcosQQ

It+1 = Tt +i37',

. . F + mlf2sin @ — mlf cos O
$t+1:$t+( M )7‘,

(44)

where the only modification we make is that the force on the
cart can take on a continuous value, F' € [—10, 10], rather
than 2 discrete values, making the action space much larger.
Since the control prior can already stabilize the CartPole,
we also modify the reward to characterize how well the
control stabilizes the pendulum. The reward function is
stated below, and incentivizes the CartPole to keep the pole
upright while minimizing movement in the x-direction:

r = —100/0] — 222 (45)

F. Control Theoretic Stability Guarantees

This section in the Appendix goes over the same material
in Section 5, but goes into more detail on the > problem
definition. Consider the linear dynamical system described
by:

$ = As+ Biw + Baa

z = ClS + D11w + D12a (46)

y = Cas+ Darw + Daa

where w € R™1 is the disturbance vector, u € R™! is the
control input vector, z € RP? is the error vector (controlled
output), y € RP? is the observation vector, and s € R" is
the state vector. The system transfer function is denoted,

s _ Plsl P152
P (5) B (P51 P282
Dll D12 C’1 -1
= I1—A B, B
(o p2)+|a]er-a i B,
(47)

where A, B;, C;, D;; are defined by the system model (46).
Let us make the following assumptions,

e The pairs (A, Bz) and (Cy, A) are stabilizable and
observable, respectively.

e The algebraic Riccati equation AT P+ PA+ CTCy +
P(ByBY — 7gBlBlT )P = 0 has positive-semidefinite
k
solution P,

e The algebraic Riccati equation APy + Py AT +
B B) = Py(C:C3 — 5C10])Py has positive-
k
semidefinite solution Py,

e The matrix v — Py P is positive definite.

Under these assumptions, we are guaranteed existence of a
stabilizing linear 7{>° controller, uM” = —Ks (Doyleetal.,
1989). The closed-loop transfer function from disturbance,
w, to controlled output, z, is:

Tw. = P + P, K(I — Py, K) ™' Ps,. (48)

Let o(-) denotes the maximum singular value of the argu-
ment, and recall that ||T3, |0 := sup,, 0 (T (jw)). Then
the H, controller solves the problem,

m}?l sg}p o (Twz(jw)) =V, (49)

to give us controller u®~ = —K's. This generates the max-
imally robust controller so that the worst-case disturbance
is attenuated by factor v in the system before entering the
controlled output. We can synthesize the H., controller
using techniques described in (Doyle et al., 1989).

The H., controller is defined as u*~ = —Bg Pz, where
P is a positive symmetric matrix satisfying the Algebraic
Riccati equation,

1
ATp+pPA+CTCy+ =PBBfP - PB,BIP =0,
1 72 1 2
k

(50)
where (A, By, By, C7) are defined in (46). The result is that
the control law u*> stabilizes the system with disturbance
attenuation || Ty |loo < Y-
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Since we are not dealing with a linear system, we need to
consider a modification to the dynamics (46) that linearizes
the dynamics about some equilibrium point and gathers
together all non-linearities and disturbances,

$= fe(s,a) = As + Baa + d(s,a), (51

where d(s, a) captures dynamic uncertainty/nonlinearity as
well as disturbances. To keep this small, we could use feed-
back linearization based on our nominal nonlinear model
(1), but this is outside the scope of this work.

Consider the Lyapunov function V (s) = s” Ps, where P
is taken from Equation (50). We can analyze stability of
the uncertain system (14) under the mixed policy (5) using
Lyapunov analysis. We can utilize Lemma 2 in this analysis
(see Appendix C) in order to compute a set Ss; such that
V(s) < 0 in a region outside that set. Satisfaction of this
condition guarantees forward invariance of that set (Khalil,
2000), as well as its asymptotic stability (from the region
for which V' (s) < 0).

By bounding terms as described in Section 5, we can con-
servatively compute the set S,; for which V(s) < 0, which
is shown in Theorem 2. See Appendix D for the derivation
of the set (i.e. proof of Theorem 2).

G. PPO + TRPO Results

We also ran all experiments using Proximal Policy Optimiza-
tion (PPO) or Trust Region Policy Optimization (TRPO)
in place of DDPG. The results are shown in Figures 5 and
6. The trends mirror those seen in the main paper using
DDPG. Low values of A exhibit significant deterioration
of performance, because of the larger policy search space.
High values of A also exhibit lower performance because
they heavily constrain learning. Intermediate A allow for
the best learning, with good performance and low variance.
Furthermore, adaptive strategies for setting A allows us to
better tune the reward-variance tradeoff.

Note that we do not show results for the TORCS Race-
car. This is because we were not able to get the baseline
PPO or TRPO agent to complete a lap throughout learning.
The code for the PPO, TRPO, and DDPG agent for each
environment can be found at https://github.com/
rcheng805/CORE-RL.
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CartPole

Car
Following

Figure 5. Learning results for CartPole and Car-Following Problems using PPO. (a) Reward improvement over control prior with different
set values for \ or an adaptive A. The right plot is a zoomed-in version of the left plot without variance bars for clarity. Values above
the dashed black line signify improvements over the control prior. (b) Performance and variance in the reward as a function of the
regularization A, across different runs of the algorithm using random initializations/seeds. Dashed lines show the performance (i.e. reward)
and variance using the adaptive weighting strategy. Variance is measured for all episodes across all runs. Again, performance is baselined
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to the control prior, so any performance value above 0 denotes improvement over the control prior.
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Figure 6. Learning results for CartPole and Car-Following Problems using TRPO. (a) Reward improvement over control prior with
different set values for A or an adaptive A. The right plot is a zoomed-in version of the left plot without variance bars for clarity. Values
above the dashed black line signify improvements over the control prior. (b) Performance and variance in the reward as a function of
the regularization A, across different runs of the algorithm using random initializations/seeds. Dashed lines show the performance (i.e.
reward) and variance using the adaptive weighting strategy. Variance is measured for all episodes across all runs. Again, performance is
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baselined to the control prior, so any performance value above 0 denotes improvement over the control prior.
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