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Abstract

This paper presents competitive algorithms for a novel class of online optimization
problems with memory. We consider a setting where the learner seeks to minimize
the sum of a hitting cost and a switching cost that depends on the previous p
decisions. This setting generalizes Smoothed Online Convex Optimization. The
proposed approach, Optimistic Regularized Online Balanced Descent, achieves a
constant, dimension-free competitive ratio. Further, we show a connection between
online optimization with memory and online control with adversarial disturbances.
This connection, in turn, leads to a new constant-competitive policy for a rich class
of online control problems.

1 Introduction

This paper studies the problem of Online Convex Optimization (OCO) with memory, a variant of
classical OCO [25] where an online learner iteratively picks an action yt and then suffers a convex
loss gt(yt−p, · · · , yt), depending on current and previous actions. Incorporating memory into OCO
has seen increased attention recently, due to both its theoretical implications, such as to convex body
chasing problems [11, 8, 37, 12], and its wide applicability to settings such as data centers [32], power
systems [30, 9, 26], and electric vehicle charging [26, 17]. Of particular relevance to this paper is the
considerable recent effort studying connections between OCO with memory with online control in
dynamical systems, leading to online algorithms that enjoy sublinear static regret [4, 5], low dynamic
regret [29, 31], constant competitive ratio [23], and the ability to boost weak controllers [3].

Prior work on OCO with memory is typically limited in one of two ways. First, algorithms with the
strongest guarantees, a constant competitive ratio, are restricted to a special case known as Smoothed
Online Convex Optimization (SOCO), or OCO with switching costs [16, 32, 24], which considers
only one step of memory and assumes cost functions can be observed before actions are chosen.
Second, algorithms proposed for the general case typically only enjoy sublinear static regret [6],
which is a much weaker guarantee, because static regret compares to the offline optimal static solution
while competitive ratio directly compares to the true offline optimal. It is known that algorithms that
achieve sublinear static regret can be arbitrarily worse than the true offline optimal [22], and also
may have unbounded competitive ratios [7]. The pursuit of general-purpose constant-competitive
algorithms for OCO with memory remains open.

Our work is also motivated by establishing theoretical connections between online optimization
and control. Recently a line of work has shown the applicability of tools from online optimization
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for control, albeit in limited settings [4, 5, 28, 23]. Deepening these connections can potentially
be impactful since most prior work studies how to achieve sublinear regret compared to the best
static linear controller [20, 5, 4, 19]. However, the best static linear controller is a weak benchmark
compared to the true optimal controller [22], which may be neither linear nor static. To achieve
stronger guarantees, one must seek to bound either the competitive ratio [23] or dynamic regret
[29, 31], and connections to online optimization can provide such results. However, prior attempts
either have significant caveats (e.g., bounds depend on the path length of the instance [29, 31]) or
only apply to very restricted control systems (e.g., invertible control actuation matrices and perfect
knowledge of disturbances [23]). As such, the potential to obtain constant-competitive policies for
general control systems via online optimization remains unrealized.

Main contributions. We partially bridge the two gaps highlighted above. First, we propose a
novel setting, OCO with structured memory, where the cost function depends on the previous p
decisions and is not known precisely before determining the action. This setting generalizes SOCO
to include more than one step of memory and to eliminate the assumption that the cost function must
be perfectly known before choosing the action. Second, we propose a novel algorithm, Optimistic
Regularized Online Balanced Descent, that has a constant and dimension-free competitive ratio for
OCO with structured memory. This is the first algorithm with a constant competitive ratio for online
optimization with memory longer than one step. Third, we provide a nontrivial reduction from a rich
class of online control problems to OCO with structured memory and, via the reduction, show that a
constant-competitive policy exists for this class of control problems. While not completely general,
the class of problems is considerably more general than existing settings where competitive polices
are known, e.g., the control matrix must be invertible and the disturbances are known in advance [23].
Finally, we use examples to (i) demonstrate the gap between the best offline linear policy and the true
optimal offline policy can be arbitrarily large, and (ii) highlight that our algorithms can significantly
outperform the best offline linear controller, which serves as the benchmark of no-regret policies.

2 Background and model

In this section, we formally present the problem setting in this paper. We first survey prior work on
OCO with memory and then introduce our new model of OCO with structured memory. Throughout
this paper, Mi:j denotes either {Mi,Mi+1, · · · ,Mj} if i ≤ j, or {Mi,Mi−1, · · · ,Mj} if i > j.

2.1 Online convex optimization with memory

Online convex optimization (OCO) with memory is a variation of classical OCO that was first
introduced by Anava et al. [6]. In contrast to classical OCO, in OCO with memory, the loss function
depends on previous actions in addition to the current action. At time step t, the online agent picks
yt ∈ K ⊂ Rd and then a loss function gt : Kp+1 → R is revealed. The agent incurs a loss of
gt(yt−p:t). Thus, p quantifies the length of the memory in the loss function. Within this general
model of OCO with memory, Anava et al. [6] focus on developing policies with small policy regret,
which is defined as:

PolicyRegret =
T∑
t=p

gt(yt−p:t)−min
y∈K

T∑
t=0

gt(y, · · · , y).

The main result presents a memory-based online gradient descent algorithm that achieves O(
√
T )

regret under some moderate assumptions on the diameter of K and the gradient of the loss functions.

Online convex optimization with switching costs (SOCO). While the general form of OCO with
memory was introduced only recently, specific forms of OCO problems involving memory have
been studied for decades. Perhaps the most prominent example is OCO with switching costs, often
termed Smoothed Online Convex Optimization (SOCO) [32, 14, 16, 23, 30, 24]. In SOCO, the
loss function is separated into two pieces: (i) a hitting cost ft, which depends on only the current
action yt, and a switching cost c(yt, yt−1), which penalizes big changes in the action between rounds.
Often the hitting cost is assumed to be of the form ‖yt − vt‖ for some (squared) norm, motivated
by tracking some unknown trajectory vt, and the switching cost c is a (squared) norm motivated by
penalizing switching in proportion to the (squared) distance between the actions, e.g., a common
choice c(yt, yt−1) = 1

2 ‖yt − yt−1‖
2
2 [23, 30]. The goal of the online learner is to minimize its total

cost over T rounds: cost(ALG) =
∑T
t=1 ft(yt) + c(yt, yt−1).
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Under SOCO, results characterizing the policy regret are straightforward, and the goal is instead to
obtain stronger results that characterize the competitive ratio. The competitive ratio is the worst-case
ratio of total cost incurred by the online learner and the offline optimal. The cost of the offline optimal
is defined as the minimal cost of an algorithm if it has full knowledge of the sequence {ft}, i.e.:
cost(OPT ) = miny1...yT

∑T
t=1 ft(yt) + c(yt, yt−1). Using this, the competitive ratio is defined as:

CompetitiveRatio(ALG) = sup
f1:T

cost(ALG)

cost(OPT )
.

Bounds for competitive ratio are stronger than for policy regret, since the dynamic offline optimal
can change its decisions on different time steps [6].

In the context of SOCO, the first results bounding the competitive ratio focused on one-dimensional
action sets [33, 10], but after a long series of papers there now exist algorithms that provide constant
competitive ratios in high dimensional settings [16, 23, 24]. Among different choices of switching cost
c, we are particularly interested in c(yt, yt−1) = 1

2 ‖yt − yt−1‖
2
2 due to the connection to quadratic

costs in control problems. The state-of-the-art algorithm for this switching cost is Regularized
Online Balanced Descent (ROBD), introduced by Goel et al. [24], which achieves the lowest possible
competitive ratio of any online algorithm. Other recent results study the case where c(yt, yt−1) =
‖yt − yt−1‖ [11, 8, 37, 12]. Variations of the problem with predictions [14, 15, 30], non-convex cost
functions [35], and constraints [34, 40] have been studied as well.

2.2 OCO with structured memory

Though competitive algorithms have been proposed for many SOCO instances, the SOCO setting has
two limitations. First, the hitting cost ft is revealed before making action yt, i.e., SOCO requires one
step exact prediction of ft. Second, the switching cost in SOCO only depends on one previous action
in the form c(yt, yt−1), so only one step of memory is considered. In this paper, our goal is to derive
competitive algorithms (as exist for SOCO) in more general settings where more than one step of
memory is considered. Working with the general model of OCO with memory is too ambitious for
this goal. Instead, we introduce a model of OCO with structured memory that generalizes SOCO,
and is motivated by a nontrivial connection with online control (as shown in Section 4.2).

Specifically, we consider a loss function gt at time step t that can be decomposed as the sum of a
hitting cost function ft : Rd → R+ ∪ {0} and a switching cost function c : Rd×(p+1) → R+ ∪ {0}.
Additionally, we assume that the switching cost has the form:

c(yt:t−p) =
1

2

∥∥∥yt − p∑
i=1

Ciyt−i

∥∥∥2
2
,

with known Ci ∈ Rd×d, i = 1, · · · , p. Note that SOCO is a special case p = 1 and C1 = I . As
we show in Section 4.2, this form connects online optimization with online control. Intuitively,
this connection results from the fact that the hitting cost penalizes the agent for deviating from
an optimal point sequence, while the switching cost captures the cost of implementing a control
action. Specifically, suppose yt is a robot’s position at t, and then the classical SOCO switching
cost ‖yt − yt−1‖2 is approximately its velocity. Under our new switching cost, we can represent
acceleration by ‖yt − 2yt−1 + yt−2‖2, and many other higher-order dynamics.

To summarize, we consider an online agent and an offline adversary interacting as follows in each
time step t, and we assume yi is already fixed for i = −p,−(p− 1), · · · , 0.

1. The adversary reveals a function ht and a convex estimation set Ωt ⊆ Rd. We assume ht is
both m-strongly convex and l-strongly smooth, and that arg miny ht(y) = 0.

2. The agent picks yt ∈ Rd.
3. The adversary picks vt ∈ Ωt.
4. The agent incurs hitting cost ft(yt) = ht(yt − vt) and switching cost c(yt:t−p).

Notice that the hitting cost ft is revealed to the online agent in two separate steps. The geometry of
ft (given by ht whose minimizer is at 0) is revealed before the agent picks yt. After yt is picked, the
minimizer vt of ft is revealed.

Unlike SOCO, due to the uncertainty about vt, the agent cannot determine the exact value of the
hitting cost it incurs at time step t when determining its action yt. To keep the problem tractable, we
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Algorithm 1: Regularized OBD (ROBD), Goel et al. [24]
Parameter: λ1 ≥ 0, λ2 ≥ 0
for t = 1 to T do

Input: Hitting cost function ft, previous decision points yt−p, · · · , yt−1
vt ← arg miny ft(y)

yt ← arg miny ft(y) + λ1c(y, yt−1:t−p) + λ2

2 ‖y − vt‖
2
2

Output: yt

assume an estimation set Ωt, which contains all possible vt’s, is revealed to bound the uncertainty.
The agent can leverage this information when picking yt. SOCO is a special case where Ωt contains
only one point, i.e., Ωt = {vt}, and then the agent has a precise estimate of the minimizer vt when
choosing its action [23, 24]. Like SOCO, the offline optimal cost in the structured memory model is
defined as cost(OPT ) = miny1...yT

∑T
t=1 ft(yt) + c(yt:t−p) given the full sequence {ft}Tt=1.

3 Algorithms for OCO with memory

In OCO with structured memory, there is a key differentiation depending on whether the agent has
knowledge of the hitting cost function (both ht and vt) when choosing its action or not, i.e., whether
the estimation set Ωt is a single point, vt, or not. We deal with each case in turn in the following.

3.1 Case 1: exact prediction of vt (Ωt = {vt})

We first study the simplest case where Ωt = {vt}. Recall that Ωt is the convex set which contains all
possible vt and so, in this case, the agent has exact knowledge of the hitting cost when picking action.
This assumption, while strict, is standard in the SOCO literature, e.g., [23, 24]. It is appropriate for
situations where the cost function can be observed before choosing an action, e.g., [30, 26, 23].

Our main result in this setting is the following theorem, which shows that the ROBD algorithm
(Algorithm 1), which is the state-of-the-art algorithm for SOCO, performs well in the more general
case of structured memory. Note that, in this setting, the smoothness parameter l of hitting cost
functions is not involved in the competitive ratio bound.

Theorem 1. Suppose the hitting cost functions arem−strongly convex and the switching cost is given
by c(yt:t−p) = 1

2 ‖yt −
∑p
i=1 Ciyt−i‖

2

2, where Ci ∈ Rd×d and
∑p
i=1 ‖Ci‖2 = α. The competitive

ratio of ROBD with parameters λ1 and λ2 is upper bounded by:

max
{m+ λ2

mλ1
,

λ1 + λ2 +m

(1− α2)λ1 + λ2 +m

}
,

if λ1 > 0 and (1−α2)λ1+λ2+m > 0. If λ1 and λ2 satisfym+λ2 =
m+α2−1+

√
(m+α2−1)2+4m

2 ·λ1,
then the competitive ratio is:

1

2

(
1 +

α2 − 1

m
+

√(
1 +

α2 − 1

m

)2
+

4

m

)
.

The proof of Theorem 1 is given in Appendix C. To get insight into Theorem 1, first consider the case
when α is a constant. In this case, the competitive ratio is of order O(1/m), which highlights that the
challenging setting is when m is small. It is easy to see that this upper bound is in fact tight. To see
this, note that the case of SOCO with `2 squared switching cost considered in Goel and Wierman
[23], Goel et al. [24] is a special case where p = 1, C1 = I, α = 1. Substituting these parameters
into Theorem 1 gives exactly the same upper bound (including constants) as Goel et al. [24], which
has been shown to match a lower bound on the achievable cost of any online algorithm, including
constant factors. On the other hand, if we instead assume that m is a fixed positive constant. The
competitive ratio can be expressed as 1 +O

(
α2
)
. Therefore, the competitive ratio gets worse quickly

as α increases. This is also the best possible scaling, achievable via any online algorithm, as we show
in Appendix D.
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Perhaps surprisingly, the memory length p does not appear in the competitive ratio bound, which
contradicts the intuition that the online optimization problem should get harder as the memory length
increases. However, it is worth noting that α becomes larger as p increases, so the memory length
implicitly impacts the competitive ratio. For example, an interesting form of switching cost is

c(yt:t−p) =
1

2

∥∥∥ p∑
i=0

(−1)i
(
p

i

)
yt−i

∥∥∥2
2
,

which corresponds to the pth derivative of y and generalizes SOCO (p = 1). In this case, we have
α = 2p − 1. Hence α grows exponentially in p.

3.2 Case 2: inexact prediction of vt (vt ∈ Ωt)

For general Ωt, ROBD is no longer enough. It needs to be adapted to handle the uncertainty that
results from the estimation set Ωt. Note that this uncertainty set is crucial for many applications, such
as online control with adversarial disturbances.

Algorithm 2: Optimistic ROBD
Parameter: λ ≥ 0
for t = 1 to T do

Input: vt−1, ht,Ωt

Initialize a ROBD instance with λ1 = λ, λ2 = 0
Recover ft−1(y) = ht−1(y − vt−1)
ŷt−1 ← ROBD(ft−1, ŷt−p−1:t−2)
ṽt ← arg minv∈Ωt

miny ht(y−v)+λc(y, ŷt−1:t−p)

Estimate f̃t(y) = ht(y − ṽt)
yt ← ROBD(f̃t, ŷt−p:t−1)
Output: yt (the decision at time step t)

To handle this additional complexity, we
propose Optimistic ROBD (Algorithm 2).
Optimistic ROBD is based on two key
ideas. The first is to ensure that the al-
gorithm tracks the sequence of actions it
would have made if given observations
of the true cost functions before choosing
an action. To formalize this, we define
the accurate sequence {ŷ1, · · · , ŷT } to be
the choices of ROBD (Algorithm 1) with
λ1 = λ, λ2 = 0 when each hitting cost
ft is revealed before picking ŷt. The goal
of Optimistic ROBD (Algorithm 2) is to approximate the accurate sequence. In order to track the
accurate sequence, the first step is to recover it up to time step t − 1 at time step t. To do this,
after we observe the previous minimizer vt−1, we can compute the accurate choice of ROBD as
if both ht−1 and vt−1 are observed before picking yt−1. Therefore, Algorithm 2 can compute the
accurate subsequence {ŷ1, · · · , ŷt−1} at time step t. Picking yt based on the accurate sequence
{ŷ1, · · · , ŷt−1} instead of the noisy sequence {y1, · · · , yt−1} ensures that the actions do not drift too
far from the accurate sequence.

The second key idea is to be optimistic by assuming the adversary will give it v ∈ Ωt that minimizes
the cost it will experience. Specifically, before vt is revealed, the algorithm assumes it is the point in
Ωt which minimizes the weighted sum ht(y − v) + λc(y, ŷt−1:t−p) if ROBD is implemented with
parameter λ to pick y. This ensures that additional cost is never taken unnecessarily, which could be
exploited by the adversary. Note that miny ht(y − v) + λc(y) is strongly convex with respect to v
(proof in Appendix E), so it is tractable even if Ωt is unbounded.

Our main result in this paper (Theorem 2) bounds the competitive ratio of Optimistic ROBD.
Theorem 2 (Main result). Suppose the hitting cost functions are both m−strongly convex and
l−strongly smooth and the switching cost is given by c(yt:t−p) = 1

2 ‖yt −
∑p
i=1 Ciyt−i‖

2

2, where
Ci ∈ Rd×d and

∑p
i=1 ‖Ci‖2 = α. For arbitrary η > 0, the cost of Optimistic ROBD with parameter

λ > 0, is upper bounded by K1cost(OPT ) +K2, where:

K1 = (1 + η) max
{ 1

λ
,

λ+m

(1− α2)λ+m

}
,K2 = λ

( l

1 + η − λ
+

4α2

η
− m

λ+m

) T∑
t=1

‖vt − ṽt‖2

2
.

The proof of Theorem 2 is given in Appendix E. This proof is nontrivial and relies on the two key
ideas we mentioned before. Although Theorem 2 does not apply to the case λ = 0, we discuss
it separately in Appendix F. Also, note that we can choose η to balance K1 and K2 and obtain a
competitive ratio, in particular the smallest η such that:

λ
( l

1 + η − λ
+

4α2

η
− m

λ+m

)
≤ 0.
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Therefore, we have η = O(l + α2) and K2 ≤ 0. So the competitive ratio is upper bounded by:

O
(

(l + α2) max
{ 1

λ
,

λ+m

(1− α2)λ+m

})
.

However, the reason we present Theorem 2 in terms of K1 and K2 is that, when the diameter of Ωt is
small, we can pick a small η so that the ratio coefficient K1 will be close to the competitive ratio of
ROBD when vt is known before picking yt. This “beyond-the-worst-case” analysis is useful in many
applications and we discuss it more in Section 4.3.

4 Application to competitive online control

Goel and Wierman [23] show a connection between SOCO and online control in the setting where
disturbance is perfectly known at time step t and the control actuation matrix B is invertible, which
leads to the only constant-competitive control policy as far as we know. Since the new proposed OCO
with structured memory generalizes SOCO, one may expect its connects to more general dynamical
systems. In this section, we present a nontrivial reduction from Input-Disturbed Squared Regulators
(IDSRs) to OCO with structured memory, leading to the first constant-competitive policy in online
control with adversarial disturbance.

4.1 Control setting

Input-disturbed systems. We focus on sys-
tems in controllable canonical form defined by:

xt+1 = Axt +B(ut + wt), (1)

where xt ∈ Rn is the state, ut ∈ Rd is the
control, and wt ∈ Rd is a potentially adversarial
disturbance to the system. We further assume
that (A,B) is in controllable canonical form
(see the right equation), where each ∗ represents
a (possibly) non-zero entry, and the rows of B
with 1 are the same rows of A with ∗ [36]. It is well-known that any controllable system can be
linearly transformed to the canonical form. This system is more restrictive than the general form
in linear systems. We call these Input-Disturbed systems, since the disturbance wt is in the control
input/action space. There are many corresponding real-world applications that are well-described by
Input-Disturbed systems, e.g., external/disturbance force in robotics [38, 39, 18].

Squared regulator costs. We consider the following cost model for the controller:

ct(xt, ut) =
qt
2
‖xt‖22 +

1

2
‖ut‖22 , (2)

where qt is a positive scalar. The sequence q0:T is picked by the adversary and revealed online. The
objective of the controller is to minimize the total control cost

∑T
t=0 ct(xt, ut). We call this cost

model the Squared Regulator model, which is a restriction of the classical quadratic cost model. This
class of costs is general enough to address a fundamental trade-off in optimal control: the trade-off
between the state cost and the control effort [27].

Disturbances. In the online control literature, a variety of assumptions have been made about the
noise wt. In most works, the assumption is that the exact noise wt is not known before ut is taken.
Many assume wt is drawn from a certain known distribution, e.g., Agarwal et al. [5]. Others assume
wt is chosen adversarially subject to ‖wt‖2 being upper bounded by a constant W , e.g., Agarwal
et al. [4]. In a closely related paper, Goel and Wierman [23] connect SOCO with online control under
the assumption that wt can be observed before picking the control action ut. In contrast, in this paper
we assume that the exact wt is not observable before the agent picks ut. Instead, we assume a convex
estimation set Wt (not necessarily bounded) that contains all possible wt is revealed to the online
agent to help the agent decide ut. Our assumption is a generalization of Goel and Wierman [23],
where Wt is a one-point set, and Agarwal et al. [4], where Wt is a ball of radius W centered at 0.
Our setting can also naturally model time-Lipschitz noise, where wt is chosen adversarially subject
to ‖wt − wt−1‖2 ≤ ε, by picking Wt as a sphere of radius ε centered at wt−1, which has many
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real-applications such as smooth disturbances in robotics [38, 39]. Moreover, note that our setting
is naturally adaptive because of the estimation set Wt (e.g., controller may choose more aggressive
action if Wt is small), which is different from the classicH∞ control setting [41].

Competitive ratio. Our goal is to develop policies with constant (small) competitive ratios. This is
a departure from the bulk of the literature [5, 4, 20, 19], which focuses on designing policies that
have low regret compared to the optimal linear controller. We show the optimal linear controller
can have cost arbitrarily larger than the offline optimal, via an analytic example (Appendix B). We
again denote the offline optimal cost, with full knowledge of the sequence w0:T , as cost(OPT ) =

minu0:T

∑T
t=0 ct(xt, ut). For an online algorithm ALG, let cost(ALG) be its cost on the same

disturbance sequence w0:T . The competitive ratio is then the worst-case ratio of cost(ALG) and
cost(OPT ) over any disturbance sequence, i.e. supw0:T

cost(ALG)/cost(OPT ). We show in
Section 4.2 an exact correspondence between this cost(OPT ) and the one defined in Section 2.2, so
that the competitive ratio guarantees directly translate.

To the best of our knowledge, the only prior work that studies competitive algorithms for online control
is Goel and Wierman [23], which considers a very restricted system with invertible B and known
wt at step t. A related line of online optimization research studies dynamic regret, or competitive
difference, defined as the difference between online algorithm cost and the offline optimal [31, 29].
For example, Li et al. [31] bound the dynamic regret of online control with time-varying convex costs
with no noise. However, results for the dynamic regret depend on the path-length or variation budget,
not just system properties. Bounding the competitive ratio is typically more challenging.

4.2 A reduction to OCO with structured memory

Algorithm 3: Reduction to OCO with memory
Input: Transition matrix A and control matrix B
Solver: OCO with structured memory algorithm ALG
for t = 0 to T − 1 do

Observe: xt, Wt, and qt:t+p−1

if t > 0 then
wt−1 ← ψ (xt −Axt−1 −But−1)
ζt−1 ← wt−1 +

∑p
i=1 Ciζt−1−i

vt−1 ← −ζt−1

Define ht(y) = 1
2

∑d
i=1

(∑pi
j=1 qt+j

)(
y(i)
)2

Define Ωt = {−w −
∑p

i=1 Ciζt−i | w ∈Wt}
Feed vt−1, ht,Ωt into ALG
Obtain ALG’s output yt
ut ← yt −

∑p
i=1 Ciyt−i

Output: ut

Output: uT = 0

We now present a reduction from IDSR, intro-
duced in Section 4.1, to OCO with structured
memory. This reduction allows us to inherit
the competitive ratio bounds on Optimistic
ROBD for this class of online control prob-
lems. Before presenting the reduction, we
first introduce some important notations. The
indices of non-zero rows in matrix B in (1)
are denoted as {k1, · · · , kd} := I. We define
operator ψ : Rn → Rd as:

ψ(x) =
(
x(k1), · · · , x(kd)

)ᵀ
,

which extracts the dimensions in I. More-
over, let pi = ki − ki−1 for 1 ≤ i ≤ n,
where k0 = 0. The controllability index
of the canonical-form (A,B) is defined as
p = max{p1, · · · , pd}. We assume that the initial state is zero, i.e., x0 = 0. In the reduction,
we also need to use matrices Ci ∈ Rd×d, i = 1, · · · , p, which regroup the columns of A(I, :). We
define Ci for i = 1, · · · , p formally by constructing each of its columns. For j = 1, · · · , d, if i ≤ pj ,
the j th column of Ci is the (kj + 1− i) th column of A(I, :); otherwise, the j th column of Ci is 0.
Formally, for i ∈ {1, · · · , p}, j ∈ {1, · · · , d}, we have:

Ci(:, j) =

{
A(I, kj + 1− i) if i ≤ pj
0 otherwise.

Based on coefficients q0:T , we define:

qmin = min
0≤t≤T−1,1≤i≤d

pi∑
j=1

qt+j , qmax = max
0≤t≤T−1,1≤i≤d

pi∑
j=1

qt+j ,

where we assume qt = 0 for all t > T .
Theorem 3. Consider IDSR where the cost function and dynamics are specified by (2) and (1). We
assume the coefficients qt:t+p−1 are observable at step t. Any instance of IDSR in controllable
canonical form can be reduced to an instance of OCO with structured memory by Algorithm 3.
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A proof and an example of Theorem 3 are given in Appendix G. Notably, cost(OPT ) and cost(ALG)
remain unchanged in the reduction described by Algorithm 3. In fact, Algorithm 3, when instantiated
with Optimistic ROBD, provides an efficient algorithm for online control. It only requires O(p)
memory to compute the recursive sequences. As stated in Algorithm 3 the recursive computation of
yt and ζt may have numerical issues. However this can be addressed in a straightforward manner
when the algorithm is instantiated with Optimistic ROBD (see Appendix H).

4.3 Competitive policy

The reduction in Section 4.2 immediately translates the competitive ratio guarantees in Section 3 into
competitive policies. As Theorem 2 suggests, we can tune η in Optimistic ROBD based on the quality
of prediction. As a result, we present two forms of upper bounds for Algorithm 3 in Corollaries 1 and
2. Notably, Corollary 1 gives a tighter bound where good estimations are available, while Corollary 2
gives a bound that does not depend on the quality of the estimations.

In the first case, we assume that a good estimation of wt is available before picking ut. Specifically,
we assume the diameter of set Wt is upper bounded by εt at time step t, where εt is a small positive
constant. We derive Corollary 1 by setting η = 1 + λ in Theorem 2.

Corollary 1. In IDSR, assume that coefficients qt:t+p−1 are observable at time step t. Let α =∑q
i=1 ‖Ci‖2, where Ci, i = 1, · · · , p are defined as in Section 4.2. When the diameter of Wt is upper

bounded by εt at time step t, the total cost incurred by Algorithm 3 (using Optimistic ROBD with
parameter λ) in the online control problem is upper bounded by K1cost(OPT ) +K2, where:

K1 = (2 + λ) ·max
{ 1

λ
,

λ+ qmin

(1− α2)λ+ qmin

}
,K2 = λ

(qmax

2
+

4α2

1 + λ
− qmin

λ+ qmin

)
·
T−1∑
t=0

1

2
ε2t .

The residue term K2 in Corollary 1 becomes negligible when the total estimation error
∑T−1
t=0 ε2t is

small, leading to a pure competitive ratio guarantee. Further, if we ignore K2, the coefficient K1 is
only constant factor worse than the ratio we obtain when exact prediction of wt is available.

However, the bound in Corollary 1 can be significantly worse than the case where exact prediction is
available when the diameter of Wt is large or unbounded. Hence we introduce a second corollary
that does not use any information about wt when picking ut. Specifically, we assume the diameter of
set Wt cannot be bounded, so the upper bound given in Corollary 1 is meaningless. By picking the
parameter η such that λ

(
l

1+η−λ + 4α2

η −
m

λ+m

)
≤ 0 in Theorem 2, we obtain the following result.

Corollary 2. In IDSR, assume that coefficients qt:t+p−1 are observable at time step t. Let α =∑q
i=1 ‖Ci‖2, whereCi, i = 1, · · · , p are defined as in Section 4.2. The competitive ratio of Algorithm

3, using Optimistic ROBD with λ, is upper bounded by:

O
(

(qmax + 4α2) max
{ 1

λ
,

λ+ qmin

(1− α2)λ+ qmin

})
.

Compared with Corollary 1, Corollary 2 gives an upper bound that is independent of the size of Wt.
It is also a pure constant competitive ratio, without any additive term. However, the ratio is worse
than the case where exact prediction of wt is available, especially when qmax or α is large.

Contrasting no-regret and constant-competitive guarantees. The predominant benchmark used
in previous work on online control via learning is static regret relative to the best linear controller
in hindsight, i.e., ut = −K∗xt [19, 2, 4, 5, 20, 21, 1]. For example, Agarwal et al. [5] achieve
logarithmic regret under stochastic noise and strongly convex loss, and Agarwal et al. [4] achieve
O(
√
T ) regret under adversarial noise and convex loss. However, the cost of the optimal linear

controller may be far from the true offline optimal cost. Goel and Hassibi [22] recently show that
there is a linear regret between the optimal offline linear policy and the true offline optimal policy in
online LQR control. Thus, achieving small regret may still mean having a significantly larger cost
than optimal. We illustrate this difference and our algorithm’s performance by a 1-d analytic example
(Appendix B), and also numerical experiments in higher dimensions (Section 4.4). In particular,
we see that the optimal linear controller can be significantly more costly than the offline optimal
controller and that Optimistic ROBD can significantly outperform the optimal linear controller.
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Figure 1: Numerical results of Optimistic ROBD in 1-d and 2-d systems, with different λ. LC means
the best linear controller in hindsight and OPT means the global optimal controller in hindsight. LC
is numerically searched in stable linear controller space. We consider two different types of wt: wt is
i.i.d. random/random walk, and also two different settings: wt is known/unknown at step t.

4.4 Numerical results

In this section we use simple numerical examples to illustrate the contrast between the best linear
controller in hindsight and the optimal offline controller. We also test our algorithm, Optimistic
ROBO, and then numerically illustrate that Optimistic ROBD can obtain near-optimal cost and
outperform the offline optimal linear controller.

In the first example we consider a simple 1-d system, where the object function is
∑200

t=0 8|xt|2+ |ut|2
and the dynamics is xt+1 = 2xt + ut + wt. For the sequence {wt}Tt=0, we consider two cases, in
the first case {wt}Tt=0 is generated by wt ∼ U(−1, 1) i.i.d., and in the second case the sequence
is generated by wt+1 = wt + ψt where ψt ∼ U(−0.2, 0.2) i.i.d.. The first case corresponds to
unpredictable disturbances, where the estimation set Wt = (−1, 1), and the second to smooth
disturbances (i.e., a random walk), where Wt = wt−1 + (−0.2, 0.2). For both types of {wt}Tt=0, we
test Optimistic ROBD algorithms in two settings: wt is known/unknown at step t. In the first setting,
wt is directly given to the algorithm, and in the latter setting, only Wt is given at time step t.

The results are shown in Figure 1 (a-b). We see that if wt is known at step t, Optimistic ROBD is
much better than the best linear controller in hindsight, and almost matches the true optimal when wt

is smooth. In fact, when wt is smooth, Optimistic ROBD is much better than the best linear controller
even if it does not know wt at step t. Even in the case when wt ∼ U(−1, 1), and so is extremely
unpredictable, Optimistic ROBD’s performance still matches the best linear controller, which uses
perfect hindsight.

Our second example considers a 2-d system with the following objective and dynamics:

min
ut

200∑
t=0

8‖xt‖22 + ‖ut‖22, s.t. xt+1 =

[
0 1
−1 2

]
xt +

[
0
1

]
ut +

[
0
1

]
wt,

where (A,B) is the canonical form of double integrator dynamics. For this 2-d system, similarly, we
test the performance of Optimistic ROBD with two types of wt.

The results are shown in Figure 1 (c-d) and reinforce the same observations we observed in the 1-d
system. In particular, we see that the optimal linear controller can be significantly more costly than
the offline optimal controller and that Optimistic ROBD can outperform the optimal linear controller,
sometimes by a significant margin.

5 Concluding remarks

We conclude with several open problems and potential future research directions. Our results show
the existence of constant-competitive algorithms in a novel class of online optimization with memory,
which generalizes SOCO. We also show the existence of constant-competitive control policies in
Input-Disturbed Squared Regulators (IDSRs), which is more general than prior work [23]. Following
on our work, it will be interesting to understand the breadth of the class of online optimization
problems that admit constant-competitive algorithms, and the breath of the class of online control
problems where constant-competitive policies exist. Obtaining results (positive or negative) is an
important and challenging future direction.

9



Broader Impact

Online convex optimization with switching cost (SOCO) has been widely used in commercial and
industrial applications such as data centers, power systems, and vehicle charging. By proposing
a generalization of SOCO together with new algorithms with competitive ratio guarantees in this
setting, this paper opens a new set of applications for online optimization. Additionally, the results
provide new fundamental insights about the connection between online optimization and control.
However, like many other theoretical contributions, this paper’s results are limited to its assumptions,
e.g., strongly convex cost functions.

We see no ethical concerns related to the results in this paper.
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