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Abstract: Many important robotics problems are partially observable where a
single visual or force-feedback measurement is insufficient to reconstruct the state.
Standard approaches involve learning a policy over beliefs or observation-action
histories. However, both of these have drawbacks; it is expensive to track the
belief online, and it is hard to learn policies directly over histories. We propose a
method for policy learning under partial observability called the Belief-Grounded
Network (BGN) in which an auxiliary belief-reconstruction loss incentivizes a
neural network to concisely summarize its input history. Since the resulting policy
is a function of the history rather than the belief, it can be executed easily at
runtime. We compare BGN against several baselines on classic benchmark tasks
as well as three novel robotic force-feedback tasks. BGN outperforms all other
tested methods and its learned policies work well when transferred onto a physical
robot.
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1 Introduction

Touch is an important sensory modality in robotics because it is often more precise than vision and
is not subject to occlusions. However, because a sequence of touch observations is typically needed
to make sense of the environment, using touch requires solving a challenging Partially Observable
Markov Decision Process (POMDP). Offline POMDP planning methods often use a belief over
states instead, which is known to be a sufficient statistic for the observation history (e.g., [1, 2, 3, 4]).
Unfortunately, explicitly tracking beliefs online can be computationally expensive; while we may
be willing to track beliefs during training, we do not want to do it online. If we could instead learn
a policy over histories of observations and actions, we would obviate the need for belief tracking at
runtime. In fact, this is exactly what Deep Recurrent Q-Network (DRQN) [5] does. The Q-function
is expressed as a function of the observation history rather than the belief, but it often learns slowly
because it is difficult to extract high-quality features from the history using only the reinforcement
learning loss. Ideally, we would leverage the ability to track beliefs at training time in order to learn
a history-based policy faster.

This paper proposes an approach to achieve exactly this. We introduce a new model called the Belief-
Grounded Network (BGN) where we add a belief-reconstruction loss to a deep reinforcement learn-
ing agent during simulated training. Thus, the neural network is incentivized to generate features
that summarize the history, and the agent autonomously learns to balance information gathering with
task-specific objectives in an end-to-end manner. After training, the policy can be deployed without
belief access since only the history is needed for the network’s forward pass. We test BGN in four
classic POMDPs and three novel force-feedback manipulation tasks, where it outperforms a number
of strong baselines. Not only does BGN outperform Asymmetric Actor-Critic [6], but it even out-
performs an agent that learns directly from the true belief representation. We demonstrate1 that the

*Equal contribution.
† Equal advising.
1Code and videos are available at https://sites.google.com/view/bgn-pomdp/home
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policies learned in simulation by BGN work well when transferred to a physical robot without any
adjustments.

2 Background
When an agent cannot fully ascertain the underlying state of its environment, the problem can be
modeled as a POMDP [7]. Formally, a POMDP can be specified by the tuple (S,A, T ,R,Ω,O).
At time t, the environment exists in some state st ∈ S that can be manipulated by the agent’s
chosen action at ∈ A. The resultant state st+1 ∈ S is sampled with probability T (st, at, st+1) and
the agent receives a reward rt = R(st, at, st+1). This process repeats until the episode ends. The
goal of the agent is to take actions according to a policy π that maximize its expected discounted
return [8] defined as Eπ[

∑∞
t=0 γ

trt] for some discount factor γ ∈ [0, 1].

It is not possible for the agent to directly observe the state in a POMDP. Instead, the agent receives an
observation ot ∈ Ω which is indirectly related to st+1 via the observation functionO(st+1, at, ot) =
P (ot | st+1, at). In general, this implies that the agent must take the entire history of observations
and actions ht = ((a0, o0), (a1, o1), . . . , (at−1, ot−1)) into account to make optimal decisions.

Because the set of possible histories grows exponentially with time, exact history-to-action map-
pings are typically intractable. A history summary ĥt can be substituted, but this may preclude
optimal behavior. The alternative is to maintain a belief b ∈ ∆(S) over possible states, where b(s)
denotes the probability that the environment’s true state is s ∈ S . The belief is a sufficient statistic
of the complete history, allowing for the construction of optimal policies [7]. It is straightforward to
compute the next belief bt+1 from the current belief bt:

bt+1(st+1)←
O(st+1, at, ot)

∑
s∈S T (s, at, st+1)bt(s)

P (ot | at, bt)
(1)

The Markov property of the belief suggests that it should facilitate better policies than would an in-
complete history summary. In Section 3, we introduce a general method for obtaining these training
benefits in simulation while avoiding the belief update in Equation (1) during execution.

2.1 Advantage Actor-Critic (A2C)

Advantage Actor-Critic (A2C) [9] is a synchronous version of A3C [10]. Multiple agents alternate
between sampling short sequences of experience and updating a shared parametric function, with
each agent operating in a distinct environment instance to help decorrelate the training experience.
The parameters can be factored into two subsets θ and φ according to their functionalities; the actor
samples an action at with probability determined by the policy π(at | st; θ), while the critic esti-
mates the discounted return V (st;φ) expected by executing π from state st. Using backpropagation
[11], the parameters are jointly optimized by reducing a three-term loss averaged over each timestep
t of the trajectory. The loss gradient is defined as the following:2

∇Lt = ∇θL(actor)
t +∇φL(critic)

t +∇θL(entropy)
t (2)

Here, L(actor)
t increases the log-likelihood of actions that are better than expected; L(critic)

t improves
the critic by reducing the squared error between its prediction and the return estimate Rt computed
from the current experience sequence; and L(entropy)

t discourages premature convergence to a deter-
ministic policy. Mathematically, these losses are defined in the following manner:

L(actor)
t = − log π(at | st; θ)(Rt − V (st;φ)) L(critic)

t = βc(Rt − V (st;φ))2

L(entropy)
t = −βeH(π(· | st; θ))

The coefficients βc, βe > 0 control the relative magnitudes of these terms, and H represents the
information entropy. Because the state st is generally obfuscated in our problem setting, we note
that these losses can be trivially adapted to accept a history summary ĥt or the belief bt in place of
st. We will do this frequently throughout our work.

3 Belief-Grounded Networks (BGNs)
The belief perfectly summarizes the observation-action history in the sense that no additional in-
formation is needed to behave optimally in a POMDP. We therefore expect that a policy based on

2When multiple agents are present, their respective gradients are simply summed together at each timestep.
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the belief would perform better than one that substitutes some alternative (incomplete) summary.
Nevertheless, there are practical concerns that preclude the use of beliefs in robot applications. The
first is that tracking the belief is cumbersome for online execution. Policies that rely on the belief
must constantly invoke Equation (1) just to select actions, which is expensive. The second concern
is that the belief is an unstructured representation in the sense that it is unclear how to induce a
deep learning model to reasonably generalize to novel beliefs. In practice, it may actually prove
easier to learn from partial observations when they can be encoded using appropriate neural network
structures—for example, images with convolutional layers.

These challenges lead us to seek a general technique that can benefit from beliefs while training, but
does not need beliefs for action selection. Our proposed solution is to train an agent to reconstruct
the belief from incomplete observations in conjunction with the standard reinforcement learning
problem. We call our method the Belief-Grounded Network (BGN) because the learned model is
guided by ground-truth beliefs in simulation. Let f(ĥ) denote the features extracted from an arbi-
trary history summary ĥ by a nonlinear parametric model f . Deep reinforcement learning agents
typically use a linear combination of these features to parameterize a stochastic policy. By mini-
mizing a loss measure L with respect to the parameters of f , an agent can improve its performance
at a given control task. We propose an augmented loss L+ that simultaneously trains the agent to
summarize its input history:

L+ = L+H(b, b̂) (3)
The additional term H(b, b̂) denotes the cross entropy of a reconstructed belief b̂ relative to the true
belief b. The former is predicted from the features f(ĥ) and the latter is provided to the agent by the
simulator. Thus, Equation (3) has an appealing mathematical significance. Because the entropy of
the true belief H(b) is constant with respect to the parameters of f , minimizing the cross entropy is
equivalent to minimizing the Kullback-Leibler divergence DKL(b ‖ b̂) = −H(b) +H(b, b̂). Hence,
this auxiliary task generates a maximum-likelihood estimate for the true belief b conditioned on a
particular history summary h. If this estimate is accurate, then the features f(ĥ) should also be a
sufficient statistic for the history [7]. We expect this learned representation to be better than directly
using the belief b because the former can be arbitrarily adapted for the task at hand.

Let us exemplify the BGN by combining it with A2C. Assuming that the actor and critic do not share
parameters, we require two BGNs for the separate feature extractors: fθ(ĥ) and fφ(ĥ), respectively.
This architecture is depicted in Figure 1. Black components represent a standard dual-network A2C
agent, while blue components indicate the additional network heads for reconstructing the belief.
“FC” stands for a fully-connected network (i.e., a linear combination). We assume that observations
and actions are discrete, and therefore use softmax activation functions for the policy distribution
(“Distr.”) and the reconstructed beliefs b(a)t and b(c)t . In continuous environments, the softmax can
be substituted for other families of distributions. Training proceeds as described in Section 2.1, but
the gradient is reformulated by combining Equations (2) and (3):

∇L+
t = ∇Lt +∇θH(bt, b̂

(a)
t ) +∇φH(bt, b̂

(c)
t ) (4)

The BGN can be used in conjunction with a variety of learning algorithms. While our later ex-
periments will focus on A2C, the BGN could be other combined with other actor-critic methods
like DDPG [12] and PPO [13] or value-based methods like DQN [14] and DRQN [5]. In all cases,
the resulting policies operate solely with histories, making them appropriate for robot applications
where tracking the belief is undesirable or infeasible.

4 Related Work
Using privileged information during simulation to efficiently generate policies for real-world, par-
tially observable environments is a recent trend in robotics. Other works have principally focused
on exploiting underlying state information to aid with representation learning, particularly in visuo-
motor control tasks like image-based manipulation [6, 15] and urban driving [16]. While this may
help the agent in these limited cases, it is easy to see how this approach would fail when the state
representation is less interpretable. This is precisely the case for Atari 2600 games, where augment-
ing the visual input of DQN with the fully observable RAM state has been shown to be ineffective
[17]. In contrast, the belief’s consistent probabilistic meaning across all possible POMDPs makes
our information-theoretic loss agnostic to the precise interpretation of the underlying state.

A number of works have explored the use of auxiliary tasks to enhance learning, but ours is the
first to use beliefs for this purpose. Other approaches have aimed to incentivize exploration in
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Figure 1: A schematic of our Belief-Grounded Network (BGN) combined with A2C. The belief is
reconstructed from the neural networks’ features to aid learning under partial observability.

sparse-reward environments [18] or develop better feature representations for more sample-efficient
learning [19, 20, 21, 22]. The BGN falls into the latter category. We also note that our auxiliary task
is analogous to the theory of predictive state representations (e.g., [23, 24, 25]), but we reconstruct
the belief instead of rewards and observations. The advantage of our method is that the belief is
a sufficient statistic for the history, whereas a sequence of reward-observation pairs is generally
not. Nevertheless, all of these other methods are orthogonal to BGN and could be combined for
potentially better performance in difficult POMDP environments.

Finally, we highlight some recent works that apply the POMDP framework to similar manipulation
problems. Unlike our end-to-end learning approach, these methods utilize expensive, hard-coded
techniques to facilitate solutions: e.g., POMDP solvers [26, 27], belief tracking during execution
[28], Bayesian updates [29], or traditional controllers [30]. In contrast, by specifying only an aug-
mented loss during training, the BGN is granted the flexibility to generate a representation that is
best suited to the task at hand.

5 Experiments
Training a deep reinforcement learning agent with BGN should help it learn faster under partial
observability by encouraging extracted features to summarize the observation-action history. To test
this, we compare the BGN against various related methods when combined with an A2C agent (see
Appendix A for hyperparameters).

We adopt a shorthand notation for agent names in the form Ax-Cy, where x and y represent the
respective inputs for the Actor and the Critic. The possible input types are history summary, belief,
and state. For example, Ah-Ch denotes a standard A2C agent that uses history summaries.3 By this
convention, we refer to our new method from Section 3 as Ah-Ch + BGN.

The other baselines are as follows. Ah-Cs: Asymmetric Actor-Critic [6] where the critic uses
ground-truth states provided by the simulator, while the actor uses observation-action histories with a
recurrent network. Ah-Cb: An asymmetric agent similar to Ah-Cs, but the critic uses beliefs instead
of states. Theoretically, this should reduce bias in the case where two different observation-action
histories arrive at the same state. Ab-Cb: Both the actor and the critic accept the belief as input;
because the policy depends on the belief, this cannot be executed on a robot easily. SARSOP: One
of the leading offline POMDP planning methods that uses beliefs [1]. This offers an approximate
idea of the best attainable performance for each environment. Random: An untrained agent that
selects actions from a uniform distribution over A.

5.1 Classic POMDPs

We begin by testing our method in four classic POMDPs that are challenging due to their stochas-
ticity and partial observability. We provide brief descriptions of each environment below, with
additional details in Appendix C.1.
Hallway and Hallway-2 An agent must reach a fixed goal cell starting from a random location in
a gridworld, where the observation and transition models are extremely noisy [32]. States consist of
the agent’s position and orientation, and the goal location. Observations indicate the presence of a
wall in each of the four directions.

3We generate history summaries with Gated Recurrent Units [31]; see Appendix B for architectures.
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Figure 2: Training performance for each classic POMDP domain.

RockSample[4,4] and RockSample[5,5] RockSample[n, k] simulates a rover exploring an n× n
gridworld with k rocks at predefined locations [3]. The rover starts at a fixed location and must
find good rocks to get rewards. The state includes its current coordinate and k binary features that
indicate which rocks are good. The agent can check the quality of a rock at its current location or
from a distance using a sensor that returns a noisy binary observation.

Results We plot the mean learning curves (100-episode moving average) of all methods over 10
random seeds with standard deviations shaded in Figure 2. Readers can refer to Appendix D for the
raw and normalized returns of the final policies. Across all domains, we observe that the methods
bifurcate into two groups according to their performances. In the better-performing group, Ah-
Ch + BGN and Ab-Cb perform similarly in each environment, matching SARSOP’s performance
in the Hallway domains and coming close to it in the RockSample domains. In the other group,
the performance order is inconsistent; while Ah-Cb’s use of the belief helps it outperform Ah-Cs
in Hallway and Hallway-2, it appears to not have a significant effect in the RockSample domains.
Additionally, despite not having access to any privileged information, Ah-Ch is able to match Ah-Cb
and Ah-Cs on three of the four environments. This suggests that asymmetric architectures may have
limited benefits under extreme levels of partial observability.

5.2 Force-Feedback Robotic Domains

We implement three novel force-feedback robotic tasks in simulation (MuJoCo [33]) and on a phys-
ical robot (Figure 3). The fingers of the robot have controllable compliance: they can be compliant
or stiff as specified by the agent action command. In compliant mode, the fingers glide over the
objects while in stiff mode they can grasp or push. These tasks are classified as Mixed Observability
MDPs (MOMDPs) [34] (see Appendix E) because the agent can observe the coordinate and angle
of its finger perfectly but it does not observe the positions of the objects. All reward functions are
sparse; agents receive a reward of +1 only upon successful task completion and 0 otherwise. We
discretize the state and observation spaces to compute beliefs efficiently. We briefly described each
task below with additional details provided in Appendix C.2.

TopPlate (Figure 3, left). The agent must locate and grasp the top plate from a stack of height
k ∼ U([1, 10]) where the height of the stack is initially unknown to the agent. It locates the top
plate using only finger position observations when the finger is in compliant mode. The agent’s
finger is positioned such that it touches the plates as it moves up and down in compliant mode.
When ready, the agent can execute a command to grasp the plate that is adjacent to it. The episode
terminates when a grasp action is performed.

5



Figure 3: Our three force-feedback robotic domains. The agent controls a finger with an adjustable
stiffness to first localize and then manipulate an object of interest.

Figure 4: The average success rates of all methods in three robotic tasks.

TwoBumps-1D (Figure 3, middle). Two movable bumps rest on a table, with the robot’s finger
moving along a horizontal line above them. The initial position of the robotic finger as well as the
two objects are randomized uniformly such that the left-right order between the bumps is unchanged.
The agent’s goal is to push the rightmost bump to the right without disturbing the left bump. There
are four action combinations: move left or right, each with a compliant or stiff finger. This task
is challenging because the agent does not know initially which bump is rightmost—it must touch
both bumps to determine this. Because the agent’s motion is constrained one-dimensionally, it is not
possible to miss the bumps. The robot must relax the stiffness of its finger when passing by a bump
to avoid pushing the wrong one. The episode ends as soon as either bump moves.

TwoBumps-2D (Figure 3, right). Two bumps of different sizes are randomly positioned on a 4× 4
grid. The robotic finger is constrained to move in a plane above the bumps. The finger can be moved
in any of the four directions or perform a grasp. The agent must make contact with each bump at
least once and then grasp the larger bump to complete this task successfully, inferring the bumps’
relative sizes from the angular displacement of the finger. The episode ends after a grasp is executed.

Results We plot the success rates (100-episode moving average) of the methods averaged over
10 random seeds with standard deviations shaded in Figure 4. We did not test SARSOP for these
domains because the best attainable performance is trivially 1 by definition. Ah-Ch + BGN is the
only agent that can achieve a perfect success rate in all tasks. Ab-Cb does significantly worse in a
surprising contrast to its classic POMDP performance; we provide an analysis for this later in Sec-
tion 5.4. Nevertheless, Ab-Cb still performs better than Ah-Cs, Ah-Cb, and Ah-Ch which all have
roughly the same bad performance. These methods appear to be unable to learn meaningful control
policies for these tasks, especially in TopPlate and TwoBumps-2D, and their learning progress is
highly unstable compared to Ah-Ch + BGN and Ab-Cb.

5.3 Robot Evaluation

We transfer the trained Ah-Ch + BGN policies from the previous section to a real robot. We use
a 2-DoF gripper [35] mounted on a UR5e robot arm (Figure 3), where an impedance controller
modulates the compliance of the finger. Without any fine tuning, all policies have a 100% success
rate on the three tasks. We describe the behavior of each policy below.

TopPlate (Figure 5, left). There are two cases. 1© The number of plates k satisfies k < 10, the
finger (yellow circle) goes upward until no plate is felt then it moves down one step to grasp the top
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Figure 5: Policies learned by Ah-Ch + BGN in the robotic force-feedback tasks.

plate. 2© When k = 10, the agent discovers a shortcut: it grasps the tenth plate immediately after
detecting it, indicating that it has learned to count past contact events.
TwoBumps-1D (Figure 5, middle). The compliant finger (yellow circle) unconditionally moves
right at the beginning of the episode. There are three possible cases. 1© The finger encounters the
first bump, becomes rigid after passing it, and then pushes the second bump to accomplish the goal.
2© Similar to the first case but the finger reaches the extremity of its motion range before finding the

second bump. The agent realizes that the first bump must therefore be the target bump. It relaxes and
backtracks to the left until it passes the bump again, stiffens, and then returns right to accomplish
the goal. 3© The finger does not initially encounter any bump. It remains compliant and backtracks
to the left until it passes a bump, stiffens, and then returns right to accomplish the goal.
TwoBumps-2D (Figure 5, right). The soft finger (yellow circle) explores the gridworld efficiently
by following a non-intersecting path (green arrows) until it locates both the small and large bumps
(white and black circles, respectively). When the agent encounters the second bump, there are two
cases. 1© The bump is the large one and the agent grasps it immediately (e.g., t = 5). 2© The bump
is the small one; the agent traverses the shortest path back to the larger bump and grasps it (e.g.,
t = 17).

5.4 Why Do BGNs Work Well?

Ah-Ch + BGN performs significantly better than the other methods in the force-feedback robot en-
vironments. This disparity cannot be explained by its use of beliefs alone, since both Ah-Cb and
Ab-Cb also utilize beliefs. We identify some the probable mechanisms for this in this section. To
first test how accurately BGN can reconstruct the belief, we compare visualizations of the predicted
belief from the trained Ah-Ch + BGN agent against the ground-truth belief in TwoBumps-1D (Fig-
ure 6). We see that BGN is able to accurately reproduce the shape of the belief over the two bumps’
positions, with only slight variations in magnitude due to approximation errors. This high-fidelity
belief reconstruction indicates that the agent has learned a reasonable representation that can over-
come the environment’s partial observability. Given that Ah-Ch + BGN performs significantly better
than Ah-Ch, accurate belief prediction appears to be a major factor in determining performance.

Because Ab-Cb also has full access to beliefs during training, it is surprising that it cannot match the
performance of Ah-Ch + BGN. This is particularly unexpected because Ab-Cb and Ah-Ch + BGN
performed similarly in the classic POMDPs (Section 5.1). A major distinction between these two
cases is their relative difference in reward sparsity. Whereas the classic POMDPs tend to penalize the
agent for incorrect actions and guide it towards a good policy, the robot tasks admit positive rewards
only upon a successfully completed trial. Ab-Cb ceases to learn in the absence of rewards—despite
having access to the belief—since it has no alternative learning signal. On the other hand, Ah-Ch +
BGN can continue to learn without rewards by reducing the belief-reconstruction loss and improving
its feature representation. When a reinforcement event finally does occur, Ah-Ch + BGN can utilize
these better features to learn more effectively.

If it is true that learning policies directly from beliefs is difficult, then we would expect that adding
BGN to Ab-Cb would improve performance. We repeated the robot experiments with this new
method combination, Ab-Cb + BGN, where it is able to recover roughly half of the performance

7



Figure 6: Ah-Ch + BGN predicted beliefs (top row) compared with the ground-truth beliefs (bot-
tom row) at various times during execution in TwoBumps-1D. The left bump (red), the right bump
(green), and the agent (yellow) move diagonally along the permissible locations (white).

Figure 7: BGN can also improve the performance of an Ab-Cb agent.

difference between Ab-Cb and Ah-Ch + BGN (Figure 7). Still, it is surprising that Ab-Cb + BGN is
unable to match the performance of Ah-Ch + BGN. We hypothesize that the structure of the belief—
a large categorical distribution over states—is not necessarily conducive to learning despite being a
sufficient statistic for the history. On the other hand, Ah-Ch + BGN has the advantage of flexibility;
its recurrent neural network can integrate many observations over time and generate a representation
that is favorable to the task at hand. Nevertheless, this final experiment demonstrates that BGN can
assist learning regardless of the policy input.

6 Conclusion
We introduced Belief-Grounded Networks (BGNs), an end-to-end method for injecting belief infor-
mation into deep reinforcement learning agents to accelerate their learning under partial observabil-
ity. By reconstructing the belief during simulated training, the agent learns to overcome uncertainty
in its environment. Most notably, the BGN does not require beliefs during execution, making the
trained policies amenable to physical systems. When transferred to a real-world robot, these poli-
cies masterfully completed all of our proposed manipulation tasks without any fine tuning or other
adjustments.

Our work focused on discrete-state environments, but future work could easily extend our method
to continuous-state tasks. For example, the belief update could be approximated by various meth-
ods. One possibility would assume that the belief has some simplifying parametric form, such as a
Gaussian mixture model, and then apply an approximate belief update over these parameters. An
alternative would utilize Monte Carlo techniques, such as a particle filter, to maintain an estimate
of the belief without requiring a closed-form distribution. We anticipate there to be many choices
of approximations that work well in practice, provided that they can reconstruct the belief with rea-
sonable accuracy. This flexibility of the BGN is one of its most noteworthy advantages, since the
information-theoretic loss is well-defined for any conceivable belief distribution regardless of its
precise functional form.
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A Training Details

Hyperparameters for all agents are listed in Table 1. We estimate returnsRt using variable-length λ-
returns that bootstrap from the end of the current trajectory (e.g., see [36]). This makes the advantage
estimate At = Rt − V (st;φ) equivalent to Generalized Advantage Estimation (GAE) [37]. During
training, the entropy loss coefficient βe is held constant in all domains except RockSample, where
we found it necessary to decay βe exponentially to obtain good performance.

Hyperparameter Symbol Value

Number of actors 16
Sample length T 5
λ-return/GAE parameter λ 0.95
Critic loss coefficient βc 0.5

Entropy loss coefficient βe

{
2× 0.1

t/3000000 RockSample
0.01 all other domains

RMSProp learning rate 7× 10−4

RMSProp decay parameter 0.99
RMSProp denominator constant 0.95
Clipped gradient norm magnitude 0.5

Table 1: A2C hyperparameter values used across all experiments. RMSProp is the first-order
optimization method proposed in [38]. During optimization, the L2-norm of each gradient is re-
scaled such that it never exceeds the clipped gradient norm magnitude [39].
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B Agents

Tables 2 and 3 summarize the neural network architectures used for the classic POMDPs and force-
feedback robots, respectively. Input concatenation is represented by brackets. FC(h) and GRU(h)
denote fully connected layers and Gated Recurrent Units [31], respectively, with h hidden units. A
large brace indicates a branch in the architecture for the belief-reconstruction loss; this is used only
by BGN agents. The output-size is |A| for actors and 1 for critics. The belief-size is the dimension
of the belief. The parenthetical term “(+ softmax)” indicates that a softmax activation function is
used by actors, but a linear activation function is used by critics.

In the classic POMDP domains, states, observations, and actions are represented as abstract indices.
We use Pytorch’s embedding layer (essentially, a one-hot encoding followed by FC layer) to convert
these indices to fixed-length vectors. We denote these layers as Embed(input, h) where h represents
the dimensionality of the output vector.

In the force-feedback robot domains, states and observations have physically meaningful interpreta-
tions. We therefore do not use embedding layers. Instead, we simply min-max normalize observa-
tions, actions, and states into the interval [0, 1].

Each agent’s architectural choices are uniquely determined by their input types:

• Ah-Ch: Recurrent actor and Recurrent critic. Both use observation-action pairs.
• Ab-Cb: Feedforward actor and Feedforward critic. Both use ground-truth beliefs.
• Ah-Cb: Recurrent actor and Feedforward critic. The actor uses observation-action pairs

while the critic uses ground-truth beliefs.
• Ah-Cs: Recurrent actor and Feedforward critic. The actor uses observation-action pairs

while the critic uses ground-truth states.

Layer Recurrent Feedforward

Input [Embed(Observation, 128),
Embed(Action, 128)] Belief or Embed(State, 128)

Hidden1 GRU(256) FC(256) + tanh

Hidden2 FC(256) + tanh FC(256) + tanh

Outputs
{

FC(output-size) (+ softmax)
FC(belief-size) + softmax

{
FC(output-size) (+ softmax)
FC(belief-size) + softmax

Table 2: Neural network architectures used for the classic POMDP experiments (Section 5.1).

Layer Recurrent Feedforward

Input [Observation, Action] State or Belief

Hidden1 GRU(256) FC(256) + tanh

Hidden2 FC(256) + tanh FC(256) + tanh

Outputs
{

FC(output-size) (+ softmax)
FC(belief-size) + softmax

{
FC(output-size) (+ softmax)
FC(belief-size) + softmax

Table 3: Neural network architectures used for the force-feedback robot experiments (Section 5.2).
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C Domain Details

C.1 Classic POMDP domains

Hallway and Hallway-2 The maps for Hallway and Hallway-2 are shown in Figure 8 with the
target cell denoted by ?. In Hallway, there are 3 landmarks that will be visible to the agent when
it faces south at three particular cells. In both domains, there are 5 actions available: {stay, move
forward, turn right, turn left, turn around}. The agent gets a reward of +1 when it reaches the target.

Figure 8: Maps for the classic POMDP domains.

RockSample[4,4] and RockSample[5,5] The rover starts at S and rocks are located in cells
marked by R as shown in Figure 8. The rover can select from k + 5 actions: {go north, go south,
go east, go west, sample, check0, . . ., checkk−1}. The sample action checks the value of the rock at
the rover’s current location. The action checki examines the quality of the rock at location i with a
probabilistic accuracy that decays exponentially as the distance d increases. The agent gets a reward
of +10 if it samples a good rock, and then the rock becomes bad. Sampling a bad rock will give a
penalty of −10, while moving to the exit area yields a reward of +10. Other moves do not provide
any reward.
.POMDP files We obtain the .POMDP files that define Hallway domains from https://cs.
brown.edu/research/ai/pomdp/examples/index.html. For details regarding the file format,
we refer readers to http://www.pomdp.org/code/pomdp-file-spec.html. We use the script
in https://github.com/trey0/zmdp to generate the files for RockSample domains. These files
initially define the domains as continuing tasks, so we add an reset keyword to convert them
into episodic tasks following the format in the gym-pomdp package at https://github.com/
abaisero/gym-pomdps. This package also converts the domains into a Gym-compatible [40] in-
terface.
Parameters Table 4 contains the parameters of these domains: the sizes of the state, action, and
observation spaces; the discount values; and maximum episode lengths. During training, we termi-
nate any episode that reaches the maximum episode length.

C.2 Force-feedback robot domains

Table 5 contains the parameters of the force-feedback robot domains: set sizes, the discount values,
and maximum episode lengths. These domains are classified as MOMDPs (see Appendix E). During
training, we terminate any episode that reaches the maximum episode length.

Domain |S| |A| |Ω| γ Max episode length

Hallway 57 5 21 0.95 100
Hallway-2 89 5 17 0.95 100

RockSample[4,4] 257 9 2 0.95 100
RockSample[5,5] 807 10 2 0.95 100

Table 4: Classic POMDP domains properties.

Robot domain |X | |Y| |A| |Ω| γ Max episode length

TopPlate 21 8 3 21 0.99 50
TwoBumps-1D 45 225 4 25 0.99 100
TwoBumps-2D 48 256 5 48 0.99 100

Table 5: Force-feedback robot domains properties.
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D Raw and Normalized Returns

The average raw returns over 10 random seeds are shown in Table 6. The error indicated is one
standard deviation around the mean. We use the code at https://github.com/AdaCompNUS/
sarsop to compute the performance of SARSOP, averaged over 1000 episodes.

Table 7 contains the normalized returns computed from the raw returns above with 1 for SARSOP
and 0 for the random agent: Normalized Return = (Raw Return - Random) / (SARSOP - Random).

Domain Ah-Ch Ah-Ch+BGN Ah-Cs Ab-Cb Ah-Cb SARSOP Random

Hallway 0.50±0.02 0.54±0.01 0.46±0.08 0.53±0.04 0.48±0.03 0.53±0.05 0.05±0.15
Hallway-2 0.1±0.02 0.35±0.01 0.26±0.02 0.36±0.01 0.29±0.02 0.35±0.04 0.03±0.11
RockSample[4,4] 7.79±1.12 14.14±0.21 6.73±0.15 13.94±0.33 6.1±2.04 17.75±0.12 -62.0±38.2
RockSample[5,5] 6.23±0.35 14.71±0.5 6.52±0.09 15.22±0.52 6.53±0.08 19.2±0.07 -61.0±36.12

Table 6: Raw returns of all agents in the classic POMDP domains, averaged over 10 runs.

Domain Ah-Ch Ah-Ch+BGN Ah-Cs Ab-Cb Ah-Cb

Hallway 0.94 ± 0.04 1.02 ± 0.02 0.85 ± 0.17 1.0 ± 0.08 0.90 ± 0.06
Hallway-2 0.22 ± 0.06 1.0 ± 0.03 0.72 ± 0.06 1.03 ± 0.03 0.81 ± 0.06
RockSample[4,4] 0.88 ± 0.01 0.95 ± 0.00 0.86 ± 0.01 0.95 ± 0.00 0.85 ± 0.03
RockSample[5,5] 0.84 ±0.00 0.94 ± 0.00 0.84 ± 0.00 0.95 ± 0.00 0.84 ± 0.00

Table 7: Normalized returns of agents with 1.0 for SARSOP and 0.0 for the random agent, averaged
over 10 runs.

E Mixed Observability Markov Decision Process (MOMDP)

The MOMDP is a generalization of the POMDP where each state s = (x, y) is decomposed into
fully and partially observable components x and y, respectively. Thus, the state space is fac-
tored as S = X × Y with the corresponding transition models TX (x, y, a, x′) = P (x′ | x, y, a)
and TY(x, y, a, x′, y′) = P (y′ | x, y, a, x′). The observation model becomes O(x′, y′, a, o) =
P (o | x′, y′, a). The MOMDP is therefore fully specified by the tuple (X ,Y,A, TX , TY ,R,Ω,O).
Upon taking an action a ∈ A and observing a new state s′ = (x′, y′) and a new observation o ∈ Ω,
the belief b = (x, bY) is updated according to the following rule:

b′Y(y′)←
O(x′, y′, a, o)

∑
y∈Y TX (x, y, a, x′)TY(x, y, a, x′, y′)bY(y)

P (o | a, b)

Hence, the new belief is given by b′ = (x′, b′Y). The principal advantage of the MOMDP framework
is that this update becomes significantly more efficient than Equation (1) when |Y| � |S|.
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