NetWarden: Mitigating Network Covert Channels while Preserving Performance

Jiarong Xing Qiao Kang Ang Chen

Rice University

Abstract

Network covert channels are an advanced threat to the secu-
rity of distributed systems. Existing defenses all come at the
cost of performance, so they present significant barriers to
a practical deployment in high-speed networks. We propose
NetWarden, a novel defense whose key design goal is to pre-
serve TCP performance while mitigating covert channels. The
use of programmable data planes makes it possible for Net-
Warden to adapt defenses that were only demonstrated before
as proof of concept, and apply them at linespeed. Moreover,
NetWarden uses a set of performance boosting techniques
to temporarily increase the performance of connections that
have been affected by covert channel mitigation, with the ul-
timate goal of neutralizing the overall performance impact.
NetWarden also uses a fastpath/slowpath architecture to com-
bine the generality of software and the efficiency of hardware
for effective defense. Our evaluation shows that NetWarden
works smoothly with complex applications and workloads,
and that it can mitigate covert timing and storage channels
with little performance disturbance.

1 Introduction

Network covert channels are an advanced class of security
threats to distributed systems. Using covert channels, an at-
tacker can exfiltrate secret information from compromised
machines without raising suspicion from firewalls, which
typically only inspect packet payload. Covert timing chan-
nels [20, 21, 32, 46, 49, 61, 67] modulate packet timing to
leak data, e.g., by using large and small inter-packet delays
(IPDs) to encode ones or zeros in a secret message [21].
Covert storage channels [11,24,33,37,41,51, 59], on the
other hand, embed data inside packet headers, e.g., in the TCP
sequence number [24] or ACK [50,51] fields. Covert channels
have been demonstrated to be viable “in the wild” over long
distances [21, 50], and major computer security standards—
including the U.S. TCSEC [26], the European ITSEC [4], and
the International standard Common Criteria [3]—explicitly
require protection against covert channels.

Over the years, researchers have developed a variety
of solutions to detect and mitigate network covert chan-
nels [17,21,24,31,52,57]. For instance, in order to detect
timing channels, existing detectors rely on statistical prop-
erties of known-good traffic IPDs to detect anomalous IPD
modulation in a given traffic trace [21,31]. In order to detect
storage channels, existing detectors analyze packet header

fields that could be used to encode data (e.g., TCP sequence
number [24]) and look for anomalies. Upon detection, a range
of mitigation techniques can then be applied, including buffer-
ing or delaying packets to disrupt the IPD patterns (for timing
channels) [17,31], or setting certain header fields to controlled
values (for storage channels) [24,52].

It is perhaps unsurprising that no detector—whether for
timing or storage channels—can achieve 100% accuracy. This
is because the timing and header values of network traffic
can be highly non-deterministic, as they depend on subtle
interactions between the hosts and the network. For instance,
a timing channel detector may raise a false alarm if IPDs
suddenly increase, but this may have been caused merely by
congestion. As further examples, the TCP protocol, which
carries 99%-+ traffic in modern datacenters [13], leaves many
header values underspecified—e.g., the advertised receive
window size may change dynamically based on the receiver’s
available buffer size, and the ACK number would reflect the
amount of bytes that have been successfully received. A covert
channel could easily hide itself in the permitted behaviors of
TCP by “repurposing” these headers [50].

To compensate for detection inaccuracy, we could be more
aggressive in mitigation—e.g., applying a blanket defense to
all connections that might contain a channel. The obvious
consequence here is performance degradation. Since most
connections may be benign, an aggressive defense may un-
duly penalize legitimate flows. For instance, in order to miti-
gate covert timing channels, we could buffer or delay packets
in a flow to disrupt their IPD patterns. However, this would
increase latency and degrade TCP throughput. In order to miti-
gate covert storage channels, we could reset suspicious header
fields to conservative values (e.g., reducing the receive win-
dow size), but this again would adversely affect the network
transfer performance. Overall, we are faced with a concrete
instance of the more general phenomenon that security comes
at the cost of performance. Unfortunately, performance is a
non-negotiable requirement in modern networks.

QOur contribution. The key contribution of this paper is
the design of a novel defense called NetWarden. It is a sys-
tem that can support a range of covert channel defenses in a
performance-preserving manner using a combination of three
key techniques. First, NetWarden leverages programmable
data planes in emerging switch hardware as a practical ba-
sis for covert channel defense. Programmable data planes
can perform per-packet operations over header fields, which
enables NetWarden to inspect and modify headers for stor-
age channel mitigation without stalling the traffic. They can

also support sophisticated data structures directly in switch
hardware, which provides a building block for NetWarden to
precisely monitor each connection and discover problematic
protocol behaviors (e.g., abnormal IPDs, incorrect ACKSs).
Leveraging these features, NetWarden adapts a range of de-
fenses that only exist as “proof of concept” today, and applies
them to linespeed traffic with nanoseconds of extra delay.

Second, NetWarden also uses a set of performance boost-
ing techniques to counteract the performance penalty due
to covert channel defense. These techniques are inspired
by results showing that the TCP congestion control mech-
anism can be manipulated to artificially inflate the sending
rate [39]; NetWarden uses similar techniques for a very dif-
ferent goal. Concretely, NetWarden uses ACK boosting and
receive window boosting to increase the sending rate of a con-
nection. ACK boosting creates the illusion of a fast network,
and receive window boosting creates the illusion of a high-
performance receiver, ramping up the sending rate of the data
source. NetWarden also temporarily caches excess packets
locally; should any packets be dropped on their way to the
receiver, NetWarden can still serve the data to the receiver as a
proxy. NetWarden then uses these techniques in combination
with defenses that usually lead to performance degradation,
so that they neutralize each other’s effects.

The third novelty in NetWarden comes from its fastpath/s-
lowpath architecture. Programmable data planes have re-
stricted programming models, so they cannot easily support
all operations needed for covert channel defense. In the Net-
Warden architecture, the hardware fastpath supports a few
key operations that need to run at linespeed, and the software
slowpath supports more expressive, general-purpose opera-
tions that can only be invoked sparingly. Generally speaking,
per-packet operations over constant-size states are pushed
down to the fastpath for efficiency, and batch operations over
growing states are hoisted up to the slowpath for generality.
Having opposite tradeoffs, these two components complement
each other in NetWarden to achieve an effective defense.

We have implemented a hardware prototype of NetWarden
in P4 [9], performed a comprehensive set of evaluation us-
ing realistic traffic traces and applications, and released the
source code in an online repository [7]. We have found that
NetWarden can detect a range of network covert channels
at full linespeed, mitigate them with negligible performance
disturbance, and work smoothly with complex applications.

2 Overview

In this section, we introduce more background on network
covert channels, discuss existing defenses and their limita-
tions, and describe the key design techniques in NetWarden.

2.1 Network covert channels

Covert timing channels. Covert timing channels [21,31,45,
49] can exfiltrate secret data by modulating the IPDs of net-

work traffic, e.g., by using large (small) IPDs to encode ones
(zeros). Existing work has shown that these channels are prac-
tical even over a long distance.

Detection. Since the modulated traffic trace would have
different IPD distributions from these of normal traffic, tim-
ing channel detectors look for statistical deviations between
a given IPD distribution and a known-good distribution as
obtained from training data [21,21,31,57]. For instance, sup-
posing that the known-good IPD data exhibits a normal dis-
tribution, a covert channel that uses small and large IPDs
would distort that into a bimodal distribution. A detector
can therefore detect signs of covert timing channels by look-
ing for anomalous IPD distributions, e.g., by performing a
Kolmogorov-Smirnov test [S7] over IPD data. In practice,
however, this is only viable in an offline manner—streaming
high-speed traffic through these statistical detectors in real
time would cause enormous overhead.

Mitigation. In principle, mitigating timing channels is easy.
As discussed, we could buffer or inject random delays to net-
work traffic to disrupt the IPD modulation [17]. However, this
is only practical if detectors can precisely pinpoint flows for
delay randomization. Otherwise, false positives in statistical
detectors would cause normal flows to be penalized.

Covert storage channels. The simplest storage channels
(Type-I) can encode data in optional or unused TCP/IP header
fields, such as ToS, Urgent Pointer, and IPID fields [27]. More
advanced channels (Type-1I) encode data in header fields
that are essential for protocol correctness, such as the TCP
initial sequence number [24]. A particularly tricky class of
channels (Type-III) can hide themselves in the inherent non-
determinism of network traffic, e.g., embedding data into the
receive window size or ACK fields [50].

Detection. A common strategy for detection is to inspect
all header fields, and look for the existence of header fields
that are rarely used or contain suspicious values. However, the
need to inspect (and potentially modify) all packet headers
already makes most software-based detectors impractical.

Mitigation. Temporarily shelving performance concerns,
Type-I channels can be mitigated by setting optional header
fields to controlled values. Type-II channels can also be mit-
igated using a similar strategy, but the defense needs to be
stateful and apply the same actions to all packets in the flow
to maintain correctness (e.g., adding a fixed offset to all TCP
sequence numbers [24]). Type-III channels are the hardest,
as they exploit the non-determinism in network traffic. To
the best of our knowledge, no effective defenses exist today.
NetWarden is the first defense against these channels, and
it relies on visibility into the network traffic to resolve the
non-determinism as much as possible.

2.2 Requirements for a practical defense

To summarize the above, existing defenses suffer from sev-
eral limitations: the overhead that comes with inspecting all

Challenge Technique(s) Section(s)
Real-time header inspection/modification Linespeed per-packet operations on programmable data planes 3.1
Resolving ambiguity when detecting advanced storage channels | Per-connection TCP state tracking 3.1
Boosting connection performance ACK boosting + receive window boosting 32
Preserving performance despite mitigation The principle of maximized transparency 3.3+3.4
Addressing the restrictions of the hardware programming model | Fastpath/slowpath defense architecture 4.1
Computing IPD in real time Leveraging hardware timestamps + linespeed per-packet operations 4.2
Handling growing IPD state IPD intervalization + sketching + software backstore 4.2+4.3
Minimizing fastpath/slowpath interaction Fastpath IPD pre-checks + exact IPD monitoring for selected flows 4.2
Supporting sophisticated statistical tests Fastpath characterizes IPDs, slowpath performs tests 4.2+4.3

Table 1: Key challenges and techniques in the design of NetWarden.

packet headers and/or timestamps in software, the inability to
develop perfect detectors, and the performance penalty due
to mitigation. Below, we dive deeper on these limitations to
distill two key requirements for a practical defense.

Detection: inefficiency. Detecting covert channels requires
per-packet operations, such as examining packet header fields
and computing packet IPDs. At first glance, these opera-
tions do not seem very complicated to perform. However,
the sheer volume and velocity of traffic in modern networks
(e.g., 100Gbps per port, Tbps in aggregate) make even such
operations infeasible unless we have specialized hardware
support. Existing detectors built in general-purpose software
are only demonstrated as proof of concept, working mostly
in offline mode over low-speed or small samples of network
traffic [20,21,32,49].

Platforms that can handle high-speed traffic do exist—the
switch hardware is customized to process traffic at linespeed
with minimal overheads. However, traditional switches can
only perform simple operations such as IP-based packet for-
warding. Covert channel defense requires more sophisticated
operations, such as inspecting/modifying headers and com-
puting/testing IPDs, which go much beyond the capability of
traditional switch hardware.

As a very basic requirement, we need an efficient detector
that can operate over linespeed traffic without stalling it.

Detection: inaccuracy. A detector’s accuracy in terms of
false positive and negative rates is equally important. As we
discussed, statistical detectors inevitably have some level of in-
accuracy due to the inherent ambiguity and non-determinism
of network traffic. Training data might be too small or too
specific, or network conditions may have changed over time.
One could always re-train the detectors with higher-quality or
more data to improve the accuracy, but developing a perfect
statistical detector is always difficult.

Alternatively, we could avoid the need for statistical tests
by eliminating non-determinism. Suppose we could tightly
control a system’s expected behaviors (e.g., buffer size, ker-
nel state, execution timing), then we can precisely detect
with high (or perhaps even perfect!) accuracy when some-
thing goes wrong. Indeed, such software can be built using
system-enforced determinism [16,22,68], which in turn yields
very high accuracy in covert channel detection [22] and mit-
igation [68]. However, systems like these require intrusive
changes to, or complete rewrites of, the OS kernel or the

VMM, rendering a practical deployment quite challenging.

Mitigation: performance penalty. The inaccuracy of detec-
tors does not interact well with the fact that mitigation tech-
niques tend to cause performance penalty, e.g., injecting extra
packet delays. If we could detect with perfect accuracy that
a connection contains a covert channel, then we can aggres-
sively mitigate the channel despite performance penalty, or
perhaps even shut down the connection altogether. However,
with unreliable detectors, this runs into the risk of causing
performance drops of legitimate flows. Unfortunately, when
faced with making tradeoffs between security and perfor-
mance, the balance tends to tip towards the latter. While
this practice could (and should) change over time, having
to choose between security and performance certainly hinders
practical defenses even further.

We thus arrive at our second requirement: to achieve a prac-
tical defense, we either need a perfect detector, or we tolerate
detection inaccuracy by designing mitigation techniques that
preserve performance.

2.3 Key techniques of NetWarden

NetWarden satisfies the above requirements by designing /ine-
speed covert channel detectors and performance-preserving
mitigation techniques. Table 1 summarizes the new tech-
niques in our design; we elaborate more below.

Technique #1: Use programmable data planes. NetWarden
achieves linespeed detection by leveraging programmable
data planes, which are available in recent switch and NIC
models (e.g., Intel FlexPipe [5], Broadcom Trident 4 [2],
Netronome Agilio [6], and Barefoot Tofino [1]). These hard-
ware provide new features that were originally designed for
better networking, but interestingly, we observe that the same
features match the requirements of covert channel defense
surprisingly well.

Programmable data planes can perform per-packet header
operations at linespeed. The packet processing pipeline in re-
cent switches can be programmed using high-level languages
(e.g., P4 [9]) to specify custom match/action behaviors and
perform header inspections/modifications. This can be used
as a building block for defending against covert storage chan-
nels. Moreover, they have a fine-grained timestamping facility.
This was originally designed for achieving higher network
visibility for diagnosis, but it also provides useful support for
timing channel detection. Finally, they support sophisticated

Covert timing channels

o 1 1 _0_ 1
innii

/

\ N N

o

SrcPort DstPort || Tcp
ACK =01101 |[/header
Innocent payload

EJ/TOR switch

Figure 1: NetWarden can be deployed in a ToR switch to
protect a rack of servers hosting sensitive data.

Covert storage channels

data structures that can sustain linespeed reads and writes
using stateful registers. NetWarden can use this feature for
precise connection monitoring, which further enables targeted
covert channel mitigation.

Technique #2: Performance boosting. Moreover, NetWar-
den specifically designs for a key goal: preserving perfor-
mance. In addition to customizing existing (and performance-
degrading) defenses for programmable data planes, we also
design a set of performance-boosting defenses. Using them
in combination, NetWarden can neutralize the overall perfor-
mance impact of covert channel mitigation. Some of these
defenses, however, go beyond the capability of the switch
hardware, and require a certain level of general-purpose soft-
ware support, leading to our third technique.

Technique #3: Fastpath/slowpath defense. Programmable
data planes have a rather restricted programming model, so
they cannot support all operations that we need for covert
channel defense. For instance, they can provide packet times-
tamps and perform simple IPD range checks, but statistical
tests over IPD distribution are not implementable in hardware.
Therefore, another design principle of NetWarden is to offload
key primitives to the data plane as a fastpath defense, and then
perform the rest of the processing in software slowpath. The
slowpath could either reside in the local switch control plane,
which has general-purpose CPUs and abundant RAM, or in a
co-located server directly connected to the switch [43]. Either
way, the defense is achieved by a division of labor between
the fastpath and the slowpath.

2.4 Scenarios, assumptions, and non-goals

Combining these techniques, NetWarden can be easily de-
ployed on a Top-of-Rack (ToR) switch to protect a rack of
machines (Figure 1), whether in a cloud datacenter or an en-
terprise network, as their settings are similar in many aspects
(e.g., servers organized in racks, served by ToR switches).
It is not necessary that all servers or VMs in a NetWarden-
enabled rack must use its service—since covert channels are
used to exfiltrate secret data, we expect that the protected ma-
chines/VMs are typically sensitive file servers. An operator
could easily configure NetWarden to inspect only a subset of
the traffic (e.g., to/from the sensitive file servers) and directly
forward the rest using regular routing tables.

Assumptions and threat model. Similar as existing work,
we assume that NetWarden has access to known-good IPD
data collected by the administrator to perform statistical tests.
This is a reasonable assumption, because the protected servers
are controlled by the network administrator, and the hosted
services are typically configured by the administrator. Our
threat model is that any layer of the server/VM stack can be
compromised by an attacker, who wants to exfiltrate data to an
external accomplice via network covert channels. Attackers
leaking data explicitly via packet payload are outside our
model. We also assume that the NetWarden device is trusted.

Non-goals. We note that the primary contribution of NetWar-
den is a general system that can support a wide range of exist-
ing and new defenses while preserving network performance.
As such, improving existing techniques for mitigating spe-
cific channels, or designing detection algorithms with higher
accuracy, are not our main focus.

3 Performance-Preserving Defenses

In this section, we first describe how NetWarden can support
a set of basic defenses that do not consider performance impli-
cations. We then characterize how some of them may degrade
performance, and design performance-boosting techniques to
neutralize the overall impact.

3.1 Programmable data plane defenses

We describe a basic set of defenses that NetWarden can sup-
port in the data plane, and explain the hardware features they
rely on. Most of the defenses below are simply adapted from
existing work, with the exception of Type-III storage channel
defenses—they are made possible because NetWarden can
precisely monitor every single packet in every connection.

Type-I storage channel defenses. The simplest of storage
channels embed covert data into optional or unused fields,
such as the TCP reserved bits, optional TCP flags (e.g., URG,
NS, ECE), IPID, and TTL. Existing work has developed de-
terministic and stateless defenses, which can be naturally sup-
ported by NetWarden’s ability to perform linespeed header
inspection and modification. For instance, we can set these
fields to values configured by the network operator—e.g.,
clearing reserved bits, substituting the IPID with a random
number, and setting TTL to 64. For optional TCP flags that
are rarely in use, we can simply clear these bits. To apply
these defenses, the operator needs to ensure that the config-
ured values do not break needed functionality (e.g., the TTL
should be large enough to avoid premature packet drops).

Type-1I storage channel defenses. More advanced storage
channels overload header fields that are essential to protocol
correctness, e.g., the TCP sequence number and non-optional
TCP flags (e.g., SYN/ACK/RST/FIN). Statically setting these
fields to fixed values would break TCP semantics; instead,

we need stateful defenses against these channels. For TCP se-
quence numbers, we could replace the initial sequence number
with another number, record the offset in a table, and consis-
tently apply the same offset to all subsequent packets. For
TCP flags, the defense needs to ensure that SYN packets only
appear during connection establishment, and RST/FIN pack-
ets during teardown. NetWarden can support Type-II defenses
due to its ability to modify headers efficiently and the support
for stateful tables that can sustain linespeed reads/writes.

Type-III storage channel defenses (new). These channels
hide themselves in the inherent non-determinism of protocol
behaviors, so they require more sophisticated defenses. For
instance, the partial ACK channel [50] can encode data in the
offset between the ACK number n and the highest sequence
number N seen, i.e., leaking a secret 8 = N — n. The receive
window size channel embeds secret data into the advertised
receive window field in the TCP header; since this value de-
pends on the available buffer size, it may naturally change
over the course of a connection. Defenses against these chan-
nels need to explicitly handle the non-determinism. Here,
programmable data planes play a critical role—NetWarden
can track the state of every connection on a per-packet basis
to resolve the ambiguity as much as possible. This leads to
several new defenses that are unique to NetWarden.

Concretely, NetWarden remembers for each connection the
highest sequence number seen, and detects whether a given
ACK packet acknowledges the full or a partial sequence space.
It then performs ACK aggregation to drop partial ACKs and
wait for the full ACK to arrive (when the host has processed
all received bytes). If the full ACK does not arrive after a
timeout period, NetWarden generates an ACK that acknowl-
edges the highest/full sequence number of the previous batch
of packets. This would mitigate the partial ACK channel with
a tunable amount of extra delay that can be configured by
NetWarden. To mitigate the receive window size channel, Net-
Warden performs receive window sanitization to remove the
least significant bits of rwnd, reducing the number of bits that
can be repurposed by a tunable amount, e.g., rwnd&=0x££00.
Here, ACK aggregation might incur extra delay, and receive
window sanitization might potentially limit the sending win-
dow growth (if the connection happens to be bottlenecked
by the receive window size). Nevertheless, we can config-
ure the amount of delay or window reduction to minimize
performance penalty; when needed, we can always boost the
performance of the affected connections.

Timing channel defenses. Covert timing channel detec-
tors [21,21,31,57] work by measuring the statistical deviation
between a given trace and a known-good trace in terms of
their IPD distributions, e.g., using a Kolmogorov-Smirnov
test [57]. Upon detection, the defense could add random delay
or buffer packets to destroy the IPD modulation. NetWarden
can compute IPDs for all connections in hardware, so the
software only needs to perform statistical tests and IPD mod-

ulation. This is already more efficient than existing detectors
that perform both in software; in Section 4, we will further
optimize this to avoid sending all IPD data to software.

3.2 Performance boosters

The above defenses always make conservative decisions, so
they are always safe. However, some of them could cause per-
formance degradation (discussed later in Section 3.3). Before
delving into the details of the performance analysis, we first
design a set of defenses that can boost performance—they are
essentially “positive twins” of the defenses above. The per-
formance boosters work by manipulating the TCP congestion
control mechanism to present false illusions to the sender and
receiver, somewhat analogous to “performance-enhancing”
proxies [18]. Since TCP tightly couples congestion control
with reliability mechanisms, we need to ensure that these
defenses do not break the reliability of the transfer.

ACK boosting. This technique aims to counteract the effect
of extra delays due to covert channel defense. The primary
source of extra delays is the timing channel defense that dis-
rupts IPD patterns by buffering packets. (ACK aggregation
only results in small amounts of delay, because TCP usually
acknowledges every other packet.) This technique prefetches
data from the sender by generating ACK packets from Net-
Warden on behalf of the actual receiver. This defense can be
further parameterized by o, € [0,RTT], which is the interval
between the time NetWarden sees a data packet and the time
it generates an ACK. The lower-bound 0 comes from the fact
that NetWarden cannot proactively acknowledge a packet be-
fore it is sent; the upper-bound RTT comes from the fact that,
the actual client ACK arrives an RTT later, so applying ACK
boosting after an RTT would not be useful. This technique
hides the latency for a) the data packet to propagate to the
receiver, b) the receiver to process the data and generate the
real ACK, and c) for the ACK to propagate back to the sender.
In effect, it creates the illusion of a shorter RTT as perceived
by the sender, thus ramping up the sending rate faster.

Receive window boosting. This technique counteracts re-
ceive window sanitization, by enlarging the receive win-
dow size field of a packet to create the illusion of a high-
performance receiver. A simple heuristic, for instance, is to
ensure a similar amount of boosting as the window reduction.

Buffering + proxying. The above two techniques may trig-
ger extra packets. Therefore, NetWarden needs to buffer these
packets temporarily in case the receiver does not have suffi-
cient buffer size to process them, or if these packets would be
lost in transmission; NetWarden serves them to the receiver
from its buffer when needed. The buffered data will be gradu-
ally removed when the actual ACKs from the receiver arrive
at NetWarden. For ACK boosting, the actual ACKs do not
need to be forwarded to the sender, since from the sender’s
perspective, the corresponding data packets have already been
successfully received.

3.3 Performance implications

Next, we explain the performance implications of these de-
fenses and how we can use them in combination to preserve
performance. At a high level, TCP performance depends on
three factors: a) the amount of available data at the source,
b) the receiver’s ability to ingest incoming data, and c) the
network condition. The TCP sender transmits data in rounds,
dumping one window of packets per round-trip time (RTT).
The sending window size swnd is determined by the minimum
of congestion window size cwnd, which reflects the network
condition, and the receive window size rwnd, which reflects
the receiver’s ability to process new data. The rwnd value can
be directly retrieved from the TCP packet header, as adver-
tised by the receiver. The cwnd value, on the other hand, is
computed by the sender for each RTT based on its congestion
control algorithm. A wide variety of TCP variants exist, and
at the heart of their difference is the congestion signals they
rely on, and their algorithms for adjusting the window size.

e Loss-based congestion control. Classic TCP variants,
such as Reno [14], New Reno [28], and CUBIC [58], respond
to packet loss as signals of congestion. A much simplified
view of New Reno, for instance, is that it initially sets cwnd
to be a small constant (e.g., 10 MSS), and then doubles the
window size for each RTT, resulting in exponentially larger
bursts of packets. After cwnd reaches a certain threshold, the
growth rate would change from exponential to linear, e.g., by
one MSS per RTT. Such window growth would be disrupted
if there is packet loss. Loss is detected when the sender has
received three duplicate ACK packets, or when no ACK pack-
ets have arrived for an extended period of time (i.e., an RTO,
or retransmission timeout). Upon duplicate ACKs, the sender
cuts back its cwnd (e.g., roughly in half). Upon RTO, which
indicates more severe congestion, it cuts back the cwnd more
aggressively (e.g., resetting it to one MSS). In both cases,
TCP retransmits the unacknowledged packets until the arrival
of new ACKs drives it back to its normal course.

Takeaway #1: Preserving sending dynamics. Suppose that
the source has infinite amount of data to send, and that no
packet loss happens, then we can statically determine the TCP
sending dynamics—a series W= wgy, w1, - , We, Where w; is
the cwnd size for the i-th RTT as measured by the number
of MSS-sized packets. It is worth noting that only when the
source runs out of data or packets get dropped would the
sending dynamics change. In particular, the RTT values does
not impact the series w. Therefore, as long as our defenses do
not cause packet drops, as perceived by the sender in the form
of triple duplicate ACKs and RTOs, then we can preserve
the sending dynamics and the number of RTTs it takes to
transfer a file. If a file has NxMSS bytes, then the number
of rounds for the transfer to complete is the smallest k for
which Y¥_,w; > N holds. Consider a timing channel defense,
where we buffer each burst of packets by a fixed delay A to
destroy IPD modulation. From the sender’s perspective, it

would only perceive a path with an increased latency, i.e.,
RTT™ = RTT + A, but the dynamics would stay the same.

Takeaway #2: Preserving throughput. However, there is
still a performance penalty due to the “increased” RTT. Al-
though TCP takes the same number of rounds to transfer
the same amount of data, the absolute value of an RTT has
increased due to the mitigation. Assuming this inflates the
RTT by A, then overall it would increase the flow completion
time by k x A, because the throughput for the i-th burst has
decreased from 7% to ﬁ- Therefore, if a defense wants
to preserve the throughput of TCP, then it could either a) en-
sure that (or create the illusion of) A = 0, or b) change the
sending dynamics of TCP by increasing the burst sizes, with

wi Witwg

the eventual goal of ensuring p7'r = pr7x Where wg, is the

amount of size increase for the i-th burst.

Applying this takeaway to the defenses, if a defense does
not affect the RTT (e.g., Type-I/II defenses), then they already
preserve TCP throughput. If a defense increases RTT, then
we can either ramp up the sending window by generating
boosted ACKSs to enlarge each burst size; or, equivalently, we
can ensure that the sender perceives the same RTT before
the defense, e.g., by injecting ACKs exactly one RTT after a
burst is sent. In this way, although the actual receiving time of
packets is still delayed by A, the delays per batch are masked
by the parallelized sending. Without mitigation, the sender
sends out the last batch of packets at k x RT' T, and they arrive
at the receiver at (k+ 1)xRT T'; with mitigation, the sender
still sends out the last batch at k x RTT, but they arrive at
the receiver at (k+ 1)XRT T + A. In other words, the overall
increase of transfer time is only A for the entire transfer.

e Delay-based congestion control. Some TCP variants such
as TCP Vegas [19] and FAST [40] adjust their cwnd based
on delay increase rather than loss, so that they can detect the
onset of congestion early before loss occurs. TCP Vegas, for
instance, keeps track of the lowest RTT seen in a connection,
and continues to measure the RTT experienced by a batch of
packets. It can then compute whether the current sending rate
cwnd/RTT is too high or too low, and decrease or increase the
window accordingly. In other words, if a defense results in
a sudden RTT increase, then TCP Vegas would take this as
a congestion signal, and start to reduce its sending window,
resulting in a different (slower) sending dynamics.

Takeaway #3: Preserving latency. For these TCP variants,
we need to ensure that they do not perceive the extra delay
due to covert channel mitigation. One solution for this is
to use a stable RTT, e.g., as measured in the beginning of
the connection, for all boosted ACKs. This achieves stable
performance, but does not account for potential performance
changes during the connection. A more advanced method is
to measure the RTT continuously, and use the latest measure-
ment results to drive the generation of pre-ACKs, adjusting
to RTT changes in real time.

3.4 Principle of maximized transparency

Our final principle for applying these defenses is to make
NetWarden as transparent to the end hosts as possible. Con-
cretely, NetWarden always tracks the RTT of a connection,
and it periodically relays the most recent RTT value to the
sender by generating pre-ACKs at that time. This principle
of “maximized transparency” allows us to apply defenses
without requiring exact knowledge about the TCP variants in
use. By faithfully relaying RTT and loss signals to the sender,
NetWarden also minimizes the amount of “discrepancy” be-
tween the perceived network condition at the sender and the
actual network condition. In other words, NetWarden does
not blindly create the illusion of stable RTTs or low loss, but
rather adjusts to the network condition in real time.

4 The NetWarden System

Next, we describe the fastpath/slowpath architecture of Net-
Warden, and how the two components work with each other
for covert channel mitigation.

4.1 Design principles

The main research question in architecting NetWarden is to
identify the right “division of labor” between the fastpath and
the slowpath, and to carve out a proper boundary between
the two to minimize crosstalk. Overall, our architecture is
centered around three guiding principles.

e Principle #1: Per-packet operations are pushed down to
the fastpath for acceleration, and batch operations are lifted
up to the slowpath for generality.

The data plane hardware is highly-optimized for packet pro-
cessing. Therefore, operations that need to be performed over
every single packet should be offloaded to the fastpath for high
efficiency. Operations invoked over batches of packets, on the
other hand, usually involve loops or other sophisticated pro-
cessing; these go beyond the programming model of the data
plane. Fortunately, batch operations are usually performed at
lower frequency and are not in the critical path for processing,
making them a better fit for the software slowpath.

e Principle #2: Data structures accessed per-packet are im-
plemented in the fastpath. Data structures with constant state
are preferred when possible, and data structures whose state
could grow over time would require backstore support.

The slowpath DRAM cannot sustain per-packet memory
accesses at linespeed. Programmable data plane hardware, on
the other hand, is customized for linespeed memory accesses.
Moreover, it is preferable to use data structures whose state
is small and does not grow over time. If state could grow
in a per-packet manner, the data structure would need to be
co-designed with slowpath support, using an abstraction that
we call “backstores” (Section 4.3). When needed, fastpath
state can be evicted to and fetched back from the slowpath.

e Principle #3: The frequency and volume of communication
between the fastpath and the slowpath should be minimized.
The interconnect between the fastpath and the slowpath has
bandwidth and latency bottlenecks, whether it is a PCle bus
that connects the switch control and data planes, or an Ether-
net/RDMA [43] cable that connects the switch to an external
server. Therefore, we should design the fastpath/slowpath
interface to minimize crosstalk as much as possible.

Individually, both the fastpath and the slowpath have no-
table limitations, but when taken together, they complement
each other. NetWarden combines their respective advantages
to achieve an effective defense. Applying these principles to
covert channel mitigation results in the following division
of labor: The fastpath performs a) connection monitoring, b)
IPD characterization and pre-checks, and c) storage channel
defense. The slowpath performs a) statistical IPD tests, b) tim-
ing channel defense, and c) performance boosting. Figures 2
illustrates these components; we discuss more below.

4.2 The fastpath defense

o A key primitive for detecting covert channels is a hardware
data structure that monitors every TCP connection.
Connection monitoring. The monitoring table is organized
as a key/value store, where the key is a TCP connection’s flow
ID (i.e., source/destination IPs and ports), and the value is
an index to a set of register arrays. Using this index, we can
further write into or read from stateful registers that record
the TCP state for each direction of this connection, such as
a) the highest sequence number seen, b) the timestamp of the
last outgoing packet, c) receive window size penalty, and d)
an RTT estimate. NetWarden uses a packet’s flow ID to index
this table, and updates a)-c); for each burst, it computes the
timestamp difference between the outgoing and the returning
packets to maintain d) an RTT estimate. For new connections,
NetWarden sends the SYN packets to the control plane for
entry installation. The size of this connection table is pre-
defined at compilation stage to accommodate the maximum
number of connections the operator wants to support; its state
does not grow at runtime.

e NetWarden has several components for detecting covert
timing channels.

IPD computation. Computing IPDs requires per-packet op-
erations, therefore it needs to occur on the fastpath (principle
#1). NetWarden leverages the fine-grained timestamp facility
in the switch, which provides nanosecond granularity times-
tamps when packets enter the processing pipeline. Retrieving
timestamps is akin to accessing registers, which can be per-
formed at linespeed.

Since every packet would produce additional IPD data, this
creates challenges for state maintenance. Directly apply prin-
ciple #2 above would result in a solution that sends all IPD
data to the software slowpath. However, this would create
very high communication overheads between the fastpath and

Slowpath (control plane)

Connection Installation Statistical tests

|

Data packets

Conn. state

IPDs

State update Update KS-test result

Connection table State variables

Packet buffers

lllej’ Caching data packets for

storage channel defense

Exact IPDs for KS-test

I

Caching data packets for
timing channel defense

Count-min sketches

Key (4-tuple) Rwnd Seq Time Precheck

Decision

M1 M2 M3 cma

10.0.0.2:22:1.2.3.4:80 32400 | 23412367 | 6435876 Alert

Mal.

= 273 6555 182 381

10.0.1.3:80:152.2.0.9:87 24600 | 91820234 | 6436112 Pass

Benign

137 6000 9182 37

10.0.0.4:22:150.12.0.1:53 16400 3817443 6431002 Pass

Benign

32 2048 3817 2

wlo|mN |k
wlNn|r|o

10.0.0.4:21:150.12.0.2:52 8000 | 452319034 | 6440987 Pass

Benign

822 1000 4523 42

t

Update IPD precheck result

Storage channel defenses

Fastpath (data plane)

Figure 2: The architecture of the NetWarden system.

the slowpath. NetWarden instead designs four optimization
techniques to reduce state growth as much as possible, and
only invokes the slowpath to monitor connections that might
contain covert timing channels. Specifically, a) IPD interval-
ization prevents state from accumulating per packet, b) IPD
sketching further reduces the state using approximation, c)
IPD pre-checks perform simple range checks in hardware, and
d) we only send exact IPD data to the slowpath if a connection
is labeled by the pre-checks as suspicious.

IPD intervalization. This technique trades off some IPD ac-
curacy to prevent per-packet state growth. Concretely, we can
keep the distribution of the IPDs instead of the exact IPD
values. This can be achieved by, for instance, maintaining k
counters for a fixed numbers of IPD intervals [0,1,), [f2,13),
-+, [tx,0), and incrementing the counter for a particular in-
terval for each computed IPD. These intervals are constant in
state and do not grow over time, which is already a step for-
ward. However, keeping a set of counters for each connection
still requires a significant amount of memory resources.

IPD sketching. We further avoid the need of keeping per-
connection intervals using sketching, which trades off per-
connection granularity for space savings using count-min
sketches (CMSketches) [23]. At a high level, a CMSketch
consists of an array of counters that can be shared by all
connections. Instead of using k counters for each connec-
tion, we could use k CMSketches for all connections. If
an IPD falls into [¢#;,#;11), we increment the counter for the
corresponding connection in the i-th sketch. To increment
the counter for a connection, the CMSketch first computes
h CRC hash values of the connection/flow ID, obtaining
i1 = CRC(conn),- - ,ip = CRCp,(conn). It then uses i1-i, as
indexes into the counter array c|-|, and increments the re-
spective counters cli],--- ,c[iz]. To retrieve a counter for a
connection, we similarly compute 4 indexes using the same
CRC functions, and use the minimum value as the estimate:
min{c[i1], - ,c[in]}. Though simple, CMSketches provide

strong accuracy guarantees [23]. CRC hash functions and
counters are supported by the switch hardware, as they are
needed by functions like load balancing. NetWarden leverages
these features to perform IPD sketching entirely in hardware.
IPD pre-checks. NetWarden also performs simple range
checks on the IPD distribution as a first-pass detection. Pe-
riodically (e.g., for every i-th packet in a connection), Net-
Warden queries the IPD distributions from the CMSketches
and compares them with the known-good distribution. These
pre-checks only involve arithmetic comparisons, which are
supported by the switch hardware. If a connection exhibits
a notably abnormal deviation from the expected distribution,
NetWarden would label the connection as suspicious and per-
form the next step for exact IPD monitoring.

Selective exact IPD monitoring. Connections that exceed
the pre-check thresholds are subjected to tighter scrutiny. Net-
Warden performs software-based statistical tests for these
connections in the slowpath using exact IPD data. NetWarden
skips the IPD intervalization and sketching steps for suspi-
cious connections, and directly inserts them into a separate
table instead. For all connections in this table, NetWarden
sends all computed IPDs without any approximation in order
to achieve full fidelity.

e Performance-degrading defenses against storage channels
can be fully supported on the fastpath.
Performance-degrading defenses. These defenses modify
headers of outgoing packets and set them to controlled values.
These operations are needed per packet and they involve con-
stant (Type-II/III) or no (Type-I) state. Per principles #1 and
#2, such defenses are hosted on the fastpath.

4.3 The slowpath defense

e Statistical IPD tests and timing channel mitigation only
need to be performed occasionally over batches of packets,
so NetWarden hosts them in the software slowpath.

Statistical IPD tests. This component works together with
IPD pre-checks on the fastpath. It receives exact IPDs from
connections identified by the pre-checks as potentially ma-
licious, and performs full-blown statistical tests for timing
channel detection. NetWarden can easily support existing
detectors (e.g., KS test [57]) or new detectors that may be
developed in the future. These statistical detectors measure
the distance between a given IPD distribution and the known-
good distribution, and raise alarms if the distance exceeds
a pre-defined threshold. Upon detection, NetWarden would
apply mitigation techniques to the detected connections.

Timing channel mitigation. This component buffers packets
in suspicious connections identified by the statistical tests to
disrupt the timing modulation. NetWarden temporarily holds
a burst of packets in a cache and sends them out back-to-back
when a timer fires. The buffering time can be configured by
the network administrator.

e All performance boosters require slowpath support, be-
cause they may cause extra data packets to be transmitted.
This in turn requires temporary buffering and proxying.

Backstores. The key abstraction NetWarden provides in the
slowpath is backstores. A backstore provides support for the
defense by mapping a connection to its relevant state and
pointing to functions that need to be applied on this state.
NetWarden has three backstores: two for boosting the per-
formance of connections that have gone through timing and
storage channel mitigation, respectively, and a third for statis-
tical IPD tests. The fastpath and the slowpath communicate
with each other through these backstores by sending network
packets (for packet buffers) and by a hardware mechanism
in the switch called “digests” (for IPD data; see Section 5.1).
The fastpath could send data to the respective backstore by
tagging the packets using the backstore ID (e.g., IPD data
for statistical tests). The slowpath could also inject packets
from the backstore back to the fastpath (e.g., pre-ACKs for
boosting performance).

The first backstore keeps a periodic timer for the connec-
tion, whose value is set to the connection’s estimated RTT; it
also keeps a list of buffered packets. NetWarden uses these
timers to trigger pre-ACKs for maintaining the TCP send-
ing rate. The extra packets that are triggered by the boost-
ing would be appended to the packet buffers. The second
backstore buffers packets for receive window boosting. Here,
enlarging the window size can be performed entirely by the
fastpath. However, this may trigger extra packets that the re-
ceiver is not yet ready to process. NetWarden appends these
packets to the buffer in case they will not be successfully
received. The third backstore is for statistical tests, whose
purpose we have already explained above. NetWarden sup-
ports this using the same backstore abstraction, which maps
connections to IPD data, and includes function pointers to
statistical tests as well as timing channel mitigation.

4.4 Self defense

Principle #3 allows us to systematically understand the condi-
tions under which the fastpath and the slowpath may commu-
nicate. This further enables us to identify traffic patterns that
would create expensive processing in software, and monitor
these patterns to guard against potential attacks. Specifically,
two of NetWarden’s backstores buffer packets for mitigating
timing and storage channels, and the third backstore keeps
IPD data for statistical tests. Apart from these backstores,
NetWarden also invokes the software for inserting new con-
nections to the monitor table (Section 4.2). This leads to three
potential attack vectors we should protect against.

Bufferbloat attacks. An adversary could intentionally cause
a large amount of packet buffering to launch a memory-based
denial-of-service attack to NetWarden. When boosting per-
formance (whether for timing or storage channel defense),
NetWarden needs to buffer the extra packets temporarily. An
attacker can pretend to never receive the data packets, e.g., by
always using old acknowledgment numbers to cause perpet-
ual buffering. To mitigate this, NetWarden monitors its cache
usage to detect signs of attacks. If a connection buffers data
in the backstore excessively without making progress in the
transfer (e.g., packets are never or very slowly acknowledged),
NetWarden can simply shut down the connection using RST
packets.

Excessive IPDs. In the common case, NetWarden maintains
timestamps in sketches; but exact IPDs are exported to the
slowpath if a connection has suspicious patterns. An adver-
sary may also intentionally modulate packets to cause many
timestamps to be sent to the slowpath, resulting in excessive
communications. This would overwhelm the communication
channel between the fastpath and the slowpath, interfering
with the installation of new connections that needs to go
through the same channel. To defend against this, NetWarden
monitors the amount of suspicious connections and ensures
that they are always under a pre-defined threshold; abnormally
large counts would trigger alarms to the network operator and
NetWarden would shut down all subsequent connections la-
beled as suspicious.

Connection table flooding. Aside from the backstores, the
only other operation that would trigger software processing
is new connection insertion. Upon seeing a new connection,
NetWarden sends the new connection information to the con-
trol plane using “digests”, so that the corresponding entry
will be populated in the connection table. An adversary may
maliciously generate many new connections to overwhelm
the control plane and to occupy entries in this connection
table. This is akin to a SYN flooding attack, against which
well-established defenses exist [10]. In addition to relying
on these defenses, NetWarden also rate limits the number
of connections that an IP address can establish, and clears
connections that have not been active for a long time.

5 Evaluation

Our evaluation of NetWarden is designed to answer four key
research questions: a) how much overhead does NetWarden
introduce? b) how effective is NetWarden in detecting and
mitigating covert channels? c) how well can NetWarden pre-
serve network performance when mitigating channels? and d)
how well can NetWarden support real-world applications?

5.1 Prototype implementation

We have built our NetWarden prototype using ~5500 lines of
code. The fastpath contains 2500 lines of code in P4, and the
slowpath contains 3000 lines of code in C and Python. Our
prototype can defend against six types of network covert chan-
nels: a) a Type-I storage channel that embeds data into the
IPID field, b) a Type-II storage channel that embeds data into
the TCP sequence number, c) three Type-III storage channels,
including the receiver window size channel, and two vari-
ants of partial ACK channels (one acknowledging sequence
numbers contained in received packets, and another acknowl-
edging any offsets in a packet), and d) covert timing channels.
The fastpath of our prototype runs in a hardware switch.
Our switch has a hardware mechanism called “digests”, which
can compress per-flow data (e.g., IPDs) and send new connec-
tions to the switch control plane for installation. Therefore, we
have implemented the IPD statistical checks and the logic for
installing new connections directly in the switch control plane.
The packet buffer, on the other hand, needs to receive and
re-inject entire packets; in order to provision more bandwidth
for packet buffering, we run this component in a server that is
connected to the switch via a 25Gbps Ethernet cable.! This
component buffers and proxies packets for covert channel
defense, and it is the overall bottleneck of the system.

5.2 Experimental setup

We have conducted a series of experiments by deploying Net-
Warden to a Wedge 100BF-32X Tofino switch, which has
32x 100Gbps ports and can be programmed in P4. It is con-
figured as a Top-of-Rack switch in our cluster, and one of
these switch ports is connected via a 100Gbps-to-25Gbps
breakout cable to the slowpath server. The server that hosts
sensitive data is also directly connected to the NetWarden
switch, and it communicates with remote clients over emu-
lated wide-area network links with realistic latency, jitter, and
loss rates. All machines in our experiments have a six-core
Intel Xeon E5-2643 CPU, 16 GB RAM, 1 TB hard disk, and

'A recent work [43] shows that a more efficient approach would be to
connect the P4 switch to the server using RDMA, which can achieve 1-2us la-
tency and 34Gbps throughput over a 40Gbps NIC. Our current prototype uses
libpcap to capture Ethernet packets and is bottlenecked by this library; as a
result, it can only achieve a fraction of the full bandwidth (25Gbps) the NIC
can support. As future work, this cited work could be a drop-in replacement
for our slowpath/fastpath communication as performance optimizations.

10

500
400
>
2 300
15}
T 200
-
100

100

50

Per-port throughput

0
Fwd IPID SEQ PA1 PA2 RwndTiming
Defense

(b) Throughput (Gbps)

0
Fwd IPID SEQ PA1 PA2 RwndTiming
Defense

(a) Latency (nanoseconds)

Figure 3: NetWarden incurs extra latency on the order of
nanoseconds, and it achieves linespeed throughput.

they are installed with an Ubuntu 18.04 OS with the default
TCP version (CUBIC). The attacker has full control over the
sensitive server, and can modulate any outgoing packets to
leak secret data. The attacker’s goal is to exfiltrate a 2048-bit
RSA key via covert channels.

Workloads. For a comprehensive evaluation, we have used
three sets of workloads in our experiments. In Sections 5.3—
5.4, we perform a set of microbenchmarks and overhead
evaluations using synthetic traces as a “stress test” of Net-
Warden. In Sections 5.5-5.7, we adopt the widely used
DCTCP workloads [13], which represent the traffic charac-
teristics of a production-scale data center. The same work-
loads have been used in many previous projects for evalua-
tion [12,29, 34,36, 38,48,55,64]. In Section 5.8, we further
evaluate NetWarden using a set of real-world applications,
including Apache web server, Node.js, and FTP, to understand
how well NetWarden can support complex systems.

5.3 Microbenchmarks

We start by performing a set of microbenchmarks using syn-
thetic traces that are designed as a “stress test”. This subsec-
tion focuses on measuring the performance of the fastpath,
and the next subsection measures the fastpath/slowpath com-
munication and the slowpath overheads.

Maximum number of connections. The first metric we have
used is the maximum number of connections that NetWarden
can support. Unlike software programs, where increasing the
program size merely results in a somewhat slower program,
P4 programs are mapped to the hardware by the compiler
in an “all-or-nothing” flavor. The P4 compiler ensures that
only programs that fit within the resource constraints would
compile to the switch, and that such programs are guaranteed
to run at linespeed. On the other hand, programs that exceed
the maximum amount of available resources would be re-
jected at compilation time. Therefore, the maximum number
of connections a P4 program can support is determined at
compilation time rather than runtime. To measure this, we
gradually increased the number of connections in NetWar-
den’s connection table, which resulted in larger and larger
program sizes, until the P4 compiler rejected the program due
to insufficient switch resources. We found that the compiler
successfully compiles and maps NetWarden to the switch up
to 200 k connections. This is larger than the maximum num-

Timing channe| ==

Rwnd channe| =

Avg. number of CPU cores

1 1.5 2 25 3 3.5 4
Covert traffic volume (Gbps)

4.5

Figure 4: The compute overhead of NetWarden slowpath.

ber of active connections in typical ToR switches in Facebook
frontend clusters (10k-100Kk) [54].

Latency. We then measured the extra latency of NetWarden,
using a baseline system (“Fwd”) that runs an “empty” P4
program that simply forwards packets without any other pro-
cessing. Figure 3a shows the results. As we can see, Type-
I/II storage channels incur the least amount of overhead, be-
cause their defenses simply perform header modifications or
table lookups. Type-III storage channels have higher over-
head, because they require keeping a larger amount of state
for each connection and updating these states per packet.”
Timing channels have the highest overheads because they
have more complex logic for IPD computation, sketching,
and pre-checks. Nevertheless, compared to the baseline pro-
gram, NetWarden defenses lead to an extra delay from 3-101
nanoseconds. Since the RTT of a typical network path is on
the order of milliseconds, this extra delay is negligible.

Throughput. Despite the slight latency increase, the
pipelined nature of the switch hardware can hide latency per
packet by parallelizing the processing. As Figure 3b shows,
the throughput of NetWarden is stable at about 99.98Gbps
per port across scenarios; the maximum bandwidth per port
is 100Gbps.? These results are expected, because the P4 com-
piler guarantees that all programs that successfully compile
would run at linespeed.

These microbenchmarks demonstrate that NetWarden can
indeed process linespeed traffic with negligible overheads.
This property alone already sets NetWarden apart from all
existing covert channel defenses that run in software.

5.4 Fastpath/slowpath overheads

Next, we evaluate the overhead of the fastpath/slowpath in-
teraction in the presence of different types of covert traffic,
as well as the compute and memory overheads of the slow-
path for packet caching and performance boosting. As dis-
cussed, the IPD statistical tests and new entry installation are
performed in the switch control plane, and these operations

2PA1 (partial ACK channel variant 1) acknowledges arbitrary offsets in a
packet; PA2 acknowledges exact packet boundaries, so it is more stealthy.

3This stress testing was performed using a hardware traffic generator in
the switch, as software packet generators cannot saturate the switch linespeed.

11

Timing channe|

Rwnd channe|

Cache size (MB)

1 1.5 2 2.5 3 3.5 4
Covert traffic volume (Gbps)

4.5

Figure 5: The memory overhead of NetWarden slowpath.

happen very occasionally; the packet buffering and proxy-
ing defense resides in the slowpath on the server, which we
have confirmed to be the scalability bottleneck. Therefore, the
following measurements stress test this packet buffer.

We gradually increased the amount of malicious traffic to
trigger more and more processing in the packet buffer un-
til it cannot keep up (i.e., incurs packet loss), and measured
the maximum bandwidth for covert traffic. Since Type-I/II
defenses are performed entirely in the fastpath, they do not
incur any overheads at the slowpath. Also, we found that the
new defenses we proposed in NetWarden against the partial
ACK channels (PA1 and PA2) only lead to very small delay
increase and do not need ACK boosting or slowpath involve-
ment. Therefore, below, we show the results for the covert
timing channel and the receive window size storage channel.
The fastpath/slowpath communication. This experiment
measures the maximum amount of covert traffic the packet
buffer can process. We started by testing whether the bot-
tleneck comes from the slowpath processing speed, or the
fastpath/slowpath communication. Our results show that the
communication, not the slowpath logic itself, is the bottleneck.
Whereas the Ethernet connection has a 25Gbps throughput,
the 1ibpcap packet capture utility was only able to sustain
4.5Gbps traffic without causing packet loss, both for the covert
timing and storage channels. The maximum number of new
flows per second NetWarden can sustain is 1200, which is
larger than the medium flow arrival rate (500 new flows per
second) reported by Facebook for popular services [60]. As
mentioned, existing work [43] has shown that using an RDMA
connection could achieve much higher bandwidth between
the P4 switch and the server (34Gbps over 40Gbps NIC). This
is an interesting optimization that we leave to future work.
Slowpath overheads. We then measured the compute and
memory overheads of the slowpath due to covert channel
defense. Figure 4 shows the amount of CPU overheads at dif-
ferent volumes of covert traffic. As we can see, even with the
maximum volume, NetWarden only uses roughly 3.5 out of
24 available CPU cores. This is good news, because it shows
that the slowpath logic itself is not compute intensive. There-
fore, if we adopt a higher-performance RDMA connection,
NetWarden still has enough CPU resources to scale the slow-
path throughput much further. Similarly, Figure 5 shows how
the size of the packet cache used by NetWarden grows with

100

90

S
2 s 8f
] g No defense —&—
§ 2 70r Naive ——
E’ Baseline(KS test) —=— g 60 - NetWarden
NetWarden — 53
Random guess e o I
50 4 r———
. 40 oy
0 0.5 1 5 10 20 50 100 200 400 800
False positive IPD modulation magnitude (us)
(a) ROC curves (b) Decoding success rates

Figure 6: NetWarden can detect and mitigate covert timing
channels effectively. Its detection performance is similar as
the KS test. When there is no defense, the channel decod-
ing rate can achieve almost 100% when the IPD modulation
is heavy (>400us). When either the baseline defense (KS
test+mitigation) or NetWarden is deployed, the decoding rate
drops to ~50% (a random guess) for all levels of modulation.

covert traffic volume. In the worst-case scenario, the cache
size is only 2.4MB, which is only a fraction of the available
memory of the slowpath.

5.5 Mitigating covert channels

Next, we evaluate the effectiveness of NetWarden in detect-
ing and mitigating covert channels using the DCTCP trace.
Similar as [22], we assume the external accomplice is very
close to the compromised machine; this gives the attacker
advantage in achieving robust decoding.

Timing channel detection. We measured the effectiveness
of NetWarden’s timing channel detector by launching a set
of flows using the DCTCP workload, where half of the flows
are benign and the other half are modulated by the attacker to
leak data. The amount of modulation ranges from 1us-100us.
The baseline detector would send all IPDs to the slowpath,
which then performs the statistical tests. NetWarden, on the
other hand, first performs pre-checks and only invokes the
slowpath for suspicious flows. In both cases, we have adopted
KS test as the statistical detector, as it has been shown to be
effective by existing work [21]. We obtained a ROC (Receiver
Operating Characteristics) curve for each detector by tuning
its detection threshold and measuring its false positive and
true positive rates at different operating points. As we can see
from Figure 6a, NetWarden and the baseline detector have
similar effectiveness in detecting timing channels.

Timing channel mitigation. We then measured the effective-
ness of NetWarden in mitigating timing channels. We have
tested scenarios where the IPD modulation ranges from 5-
800us. Heavy modulations will make the channel decoding
rate higher, but they are also easier to detect. Light modula-
tions are just the opposite. As shown in Figure 6b, without
any mitigation (“no defense”), the attacker is able to leak data
successfully when the modulated IPDs are larger than 20 us,

12

as the remote receiver can decode the covert message with
high success rates (>80%). When the modulation is larger
than 400us, the decoding rate is almost always 100%. With
either the performance-degrading defense (“Naive”) or Net-
Warden, we can destroy the channels and render the decoding
close to random guesses (decoding rate: ~50%).

Covert storage channels. Next, we measured the effective-
ness of NetWarden in defending against storage channels. Our
baseline systems are a) “no defense”, which represents the
scenario where there is no NetWarden defense, and b) naive
defense, where we set header fields to conservative values.
We found that, without any defense, the attacker can easily
leak secret data via header fields within a few packets. The
channel rates are 16 bits per packet for the IPID channel, 32
bits per flow for the TCP sequence number channel, 11 bits
per packet for the partial ACK channel, and 16 bits per packet
for the receive window size channel. We found that both Net-
Warden and naive defenses have detected the covert channels,
and that they have eliminated the IPID, TCP sequence num-
ber, and partial ACK channels; for the receive window size
channel, both the naive defense and NetWarden have reduced
the channel rate to 2 bits per packet.

5.6 Performance preservation

Next, we evaluate NetWarden’s ability to preserve network
performance while mitigating covert channels using the
DCTCEP trace. We have used the Linux tc tool to emulate
realistic wide-area network links with jitter and loss rates,
so that we can evaluate the ability of NetWarden to handle
network “noise”. In our experiments, we have tested different
combinations of these parameters. Most of the results pre-
sented below are obtained under an average RTT of 10ms,
path jitter of 1ms, and and loss rate of 0.1%, unless explicitly
stated otherwise. This setup closely mirrors the Service Level
Agreement of a major ISP [8].

Our main metrics are the sending rates and the flow com-
pletion times (FCT) of the TCP flows under a) the “no de-
fense” baseline, b) the performance-degrading countermea-
sures in NetWarden (NetWarden-Naive), and ¢) full NetWar-
den with performance boosting (NetWarden-Full). An im-
portant note is that, a fruly naive defense that corresponds
to the state of the art would be to perform the same defense
techniques in software. These defenses would incur very high
overheads just by processing the packets. The defenses la-
beled as “NetWarden-naive” are already much more powerful
than the actual software solutions—NetWarden enables them
to run in programmable data planes with very low latency.

Covert timing channels. We start by evaluating covert tim-
ing channels. Figure 7a shows the sending rates over time
for a long network transfer; we have enlarged the size of this
flow in order to present the sending rate over a longer period
of time. As we can see, if NetWarden only applies the naive

20 T T T T T 1
2 08 T
ko) L i -0 [T
S5 e _
) _ —— _ £ 06 b
§ 10 k STy —— A~ SeAa-. | o
=) L 4
gw | o 04
T s5H No defense g No defense e
5 NetWarden-Full —- =+ 02f NetWarden-Full — —=-=- 7
@ - NetWarden-Naive — — = NetWarden-Naive =— — -
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 2 4 6 8 10121416 18 20 22 24
Time (seconds) FCT (seconds)
(a) Covert timing channel (sending rate) (b) Covert timing channel (FCT)
1 —_——— === 20 T T T T T
[—
0.8 b g
- Qo - . .
_ g5
£ 06 1 =
|.D|_ © 10 1
o 04 | R g
No defense — T s 4
0.2 NetWarden-Full =-=- 1 & No defense
NetWarden-Naive — —~- @ NetWarden —- -
1 1 1 1 1 1 1 1 1 1 1 1 1 O 1 1 1 1
2 4 6 8 10121416 18 20 22 24 26 0 10 20 30 40 50 60

FCT (seconds)

(d) Receive window channel (FCT)

Time (seconds)

(e) Partial ACK channel (sending rate)

@

<3

= 15 =~ \— B
2

S 0 mm—~ar—mra~n— =]
2

"g 5 No defense g
o) NetWarden-Full = - =

@» NetWarden-Naive — — -

0 1 1 1 1 1
0 10 20 30 40 50 60

Time (seconds)

(c) Receive window channel (sending rate)

1
08 R
L o6 .
5
S oaf .
02 No defense 1
NetWarden —-—-
O 1 1 1 1 1 1 1l

2 4 6 8 10
FCT (seconds)

(f) Partial ACK channel (FCT)

12 14 16

Figure 7: The performance-boosting defenses in NetWarden can preserve the performance of network transfers while mitigating
network covert channels. The naive defenses in NetWarden—although they are already much more advanced than the state-of-
the-art defenses—still may cause significant performance degradation because they always take conservative countermeasures.
NetWarden enables new defenses against the partial ACK channels due to its precise monitoring capability, and these defenses
can preserve performance. The FCT (flow completion time) results are obtained using the DCTCP workloads; the sending rate
results are obtained by enlarging the size of a representative flow to show the stable sending rate.

defense that simply disrupts timing modulation of covert traf-
fic, this would cause a significant (25%) degradation in the
average sending rate compared to the “no defense” baseline.
In contrast, the performance-boosting techniques in NetWar-
den can achieve a very similar sending rate throughout the
duration of this flow, because it carefully masks the perceived
RTT increase using ACK boosting.

Figure 7b further shows the CDF of the flow completion
times for all tested flows in DCTCP. In aggregate, only apply-
ing the naive strategies in NetWarden would negatively distort
the performance characteristics of network transfers. The av-
erage FCT across all flows has increased by 9.8% compared
to the “no defense” baseline. In the worse-case scenario, the
FCT increase could be as much as 47.7%. The full version of
NetWarden, on the other hand, causes a 0.06% deviation from
the baseline and a worst-case degradation of 1.8%. These
aggregate FCT results are consistent with what we observed
for individual flows.

Covert storage channels. We then tested the Type-III covert
storage channels.* Figure 7c shows the sending rate of a long
flow under the defense against the receive window size chan-
nel. Using only the naive defense, NetWarden always needs
to set the window size to a smaller value, so it incurs a 40%
drop in terms of sending rate as compared to the baseline. The
full NetWarden, on the other hand, can counteract the penalty

“Defenses against Type-I/IT storage channels do not affect performance.

13

by enlarging the window size of certain packets to preserve
performance; its sending rate at stable state is almost always
the same as the baseline. Figure 7e shows the same exper-
iment under the partial ACK channel defense.’ NetWarden
enables the ACK aggregation defense to run at very small
extra latency, so the resulting defenses already achieves a
similar performance as the “no defense” baseline.

Figures 7d and 7f show the CDFs of flow completion times
for all DCTCP flows. The naive defense in NetWarden against
the receive window size channel increases the average FCT by
28.4%, whereas the full version of NetWarden only increases
the average FCT by 0.4%. For the partial ACK defense, Net-
Warden only increases the FCT by 0.5%.

5.7 TCP variants

The above experiments use the default TCP version in Linux:
CUBIC. Next, we test NetWarden with three more TCP vari-
ants to understand how well NetWarden can support other
variants. We have configured the OS to run TCP Vegas, New
Reno, and Westwood for long transfers, and these variants
mainly differ in their congestion control signals and algo-
rithms. Figures 8a, 8b, and 8c present the sending rates for
each variant under timing channel defense.

TCP Vegas reacts to delay variation, so we have tested

SPA1 and PA2 have similar results, and we show results for the latter.

20 T T T T T

20 T T T T T 20 T T T T T —_
— — %
[[%) Qo
Q. Q.
R e R L A R L] { 2 s p———om - -
= \- vho < =
AR TR i 2 —_—\ -
8 ot ___ T S R Y A bt b dateluial - SR L) T WA VAN I VAaE
2 2 2 I -
T 5 No defense —_— S 54 No defense —_— T 5| No defense —
5] y NetWarden-Full == 5] NetWarden-Full = =" s NetWarden-Full ~ —-—-
* NetWarden-Naive — — - ® NetWarden-Naive — — - NetWarden-Naive — —-
0 1 1 1 1 1 0 1 1 1 1 0 1 1 1
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60

Time (seconds)

(a) Vegas (20ms, Sms, 0%)

Time (seconds)

(b) New Reno (10ms, 1ms, 0.1%)

Time (seconds)

(c) Westwood (15ms, 3ms, 0.1%)

Figure 8: NetWarden preserves the sending rates of the native transfers for TCP Vegas, New Reno, and Westwood. We have used
different (RTT, jitter, loss) configurations to test a range of network conditions.

it with high jitter (5ms, 25% of RTT). As we can see from
Figures 8a, the “no defense” baseline fluctuates with time
because of this significant jitter. NetWarden exhibits similar
fluctuations and deviates from the baseline only by 3.3% in
terms of the average sending rate. Note that the fluctuations do
not perfectly align with the baseline—this is expected because
the jitter is random. The naive defense, on the other hand, has
a very different sending pattern. It has a 31.4% performance
penalty; moreover, interestingly, the extra delay due to the
defense has reduced the relative jitter, so its sending rate is
quite stable and oblivious to the changing network conditions.

New Reno adjusts its sending rate based on packet loss,
and we have tested it with a loss rate of 0.1%. As shown in
Figure 8b, the high-level takeaways are similar as those in
CUBIC. NetWarden experiences a 0.3% performance degra-
dation, but the naive defense has a penalty of 27.3%.

Westwood, on the other hand, adjusts its congestion win-
dow using the estimated bandwidth (obtained by RTT mea-
surements) upon packet loss, so both delay and loss play a role.
We have tested it using 3ms jitter and 0.1% packet loss rate.
Figure 8c shows that NetWarden performs similarly as the
“no defense” baseline, with 1.8% performance degradation.
The sending rate of naive defense, on the other hand, fluctu-
ates over time. We found that this is because the extra delay
incurred by the defense has caused occasional full sending
windows, leading to a 31.9% performance degradation.

In summary, NetWarden can consistently preserve the per-
formance of the transfer under each tested TCP variant. In
contrast, the naive defense cannot adjust to network condi-
tions, and it always leads to performance penalty.

5.8 Complex applications

In the next set of experiments, we evaluate how well NetWar-
den can support complex, real-world applications, including
unmodified versions of Apache HTTP server, Node.js, and
FTP. Our most complex application, the Apache HTTP server,
consists of 1.49 million lines of code. For our experiments,
we have created workloads based on the distributions reported
in Facebook [60] and HP [15]. We have performed uploads
and downloads for more than 1000 times overall, and in all

14

cases, these applications successfully processed the requests
through NetWarden, showing that NetWarden can support
complex applications smoothly with realistic workloads.

Figure 9 shows the FCT results, as well as the sending rates
for several long transfers (with enlarged file sizes for each
workload to show the stable rates). Different from the DCTCP
trace, these application workloads [15,60] have smaller object
sizes and some file transfers are too short to leak the secret
data (or trigger defenses). For the transfers that did trigger the
covert channel defense, the naive defense in NetWarden has
caused average FCT degradations of 12.2% (Apache), 12.3%
(Node.js), and 7.8% (FTP); the worst-case degradations are
36.2% (Apache), 16.9% (Node.js), and 30.4% (FTP). In com-
parison, the full version of NetWarden has only caused aver-
age FCT degradations of 0.1% (Apache), 0.1% (Node.js), and
0.3% (FTP), and worst-case degradations of 2.8% (Apache),
2.7% (Node.js), and 3.0% (FTP).

For the partial ACK channel, the new defenses in NetWar-
den can also mitigate the channel while achieving a similar
level of performance (FCT deviation: 0.1%-0.6%). An inter-
esting finding for the receive window size channel is that,
these applications are highly-optimized to process incom-
ing requests as fast as possible; under the request loads our
testbed was able to generate, the receive buffer size did not
become a bottleneck for these applications. Therefore, we can
see that NetWarden-Naive already achieves a similar level
of performance as the “no defense” baseline (FCT deviation:
0.2%-1.7%). As before, it is worth noting that a truly naive
defense that reflects the state of the art would need to intercept
and process all packets in software.

For the covert timing channel, we have similarly obtained
ROC curves for NetWarden and the baseline KS test; and
we have measured the decoding success rates under different
levels of timing modulation. Figure 10a shows that NetWar-
den performs similarly as the baseline KS test on the tested
applications. Figures 10b-10d further present, per application,
the effectiveness of the mitigation. In all cases, NetWarden
can disrupt the timing modulation and reduce the channel
decoding nearly to a random guess.

20 1 - 20

2 0 bt]z

£ 15 - : £ 15 .
= = =

> o ———— v o m * o6} i P

s 10 9 w ® 10 1
o Q 04 1 o

c (@] . <

T 5} No defense — 4 No defense —_— T 5 No defense — 1
© NetWarden-Full ~ —-—- 0.2 NetWarden-Full ~ —-—-) NetWarden-Full ==+

@ 0 ‘ NetWarden-Naive ——- 0 ‘ _ NetWarden-Naive ——- @? 0 ‘ NetWarden-Naive ——-

0 10 20 30 40 50 60 0.1 0.2 0.3 0.4 0.5 0.6 0 10 20 30 40 50 60

Time (seconds)

(a) Timing channel (sending rate; Apache)

FCT (seconds)

(b) Timing channel (FCT; Apache)

Time (seconds)

(c) Receive window (sending rate; Apache)

1 20 1

0.8 /g 0.8
o g 15 E T
* 06 H B o ® 06 H g
w S 10 i m
8 o4 1 E g 04 1

No defense — T s i
02 NetWarden-Full ~ —-—- 5 No defense 0.2 No defense
o) NetWardgn-Naivq - €D o)) Neth‘\rden T o)) Ne‘tWarden‘ -
0.1 0.2 0.3 0.4 0.5 0 10 20 30 40 50 60 0.1 0.2 0.3 0.4 0.5
FCT (seconds) Time (seconds) FCT (seconds)
(d) Receive window (FCT; Apache) (e) Partial ACK (sending rate; Apache) (f) Partial ACK (FCT; Apache)

20 1 20
2 08— 1 2
g5 1 - g5 1
° iV O N S & 06 1 Py
® 10 R u ® 10 R
2 o 04 1 2
T s No defense —_— 4 No defense —_— T s No defense —_— 4
I3 NetWarden-Full ~ —-—- 0.2 NetWarden-Full ==+ 1 3 NetWarden-Full ==+
@ 0 ‘ _NetWarden-Naive ——- 0 _ NetWarden-Naive ——- @» 0 ‘ NetWarden-Naive ——-

0 10 20 30 40 50 60 0.1 0.2 0.3 0.4 0.5 0.6 0 10 20 30 40 50 60

Time (seconds)

(g) Timing channel (sending rate; Node.js)

FCT (seconds)

(h) Timing channel (FCT; Node.js)

Time (seconds)

(i) Receive window (sending rate; Node.js)

1 20 1
2

0.8 [1 § 15 i 0.8 I b
& 06 1 Y & 06 1
5 s 1 8
o 0.4 1 E’ o 0.4 b

No defense — T s i
0.2 NetWarden-Full ~ —-=-] 5 No defense 0.2 No defense
o) NetWarden-Naive —— - € o) NetWarden —-—- o) NetWarden —-—-
0.1 0.2 0.3 0.4 0.5 0 10 20 30 40 50 60 0.1 0.2 0.3 0.4 0.5
FCT (seconds) Time (seconds) FCT (seconds)
(j) Receive window (FCT; Node.js) (k) Partial ACK (sending rate; Node.js) (1) Partial ACK (FCT; Node.js)

20 1 p—— 20
2 08 2
g s 1 7 g 5, .
© Rl A 2 Ttk ey L 06 B Py
T 10 g w s 10 f
o Q 04 R =
£ o £
T s No defense —_— 4 No defense —_— T s No defense —_— 4
53 NetWarden-Full ~ —-—- 0.2 NetWarden-Full ==+ 1 3 NetWarden-Full ==+
a 0 ‘ _Netwarden-Naive ——- 0 ‘ _ NetWarden-Naive ——- @ 0 ‘ _NetWarden-Naive ——-

0 10 20 30 40 50 60 05 1 156 2 25 3 35 0 10 20 30 40 50 60

Time (seconds)

(m) Timing channel (sending rate; FTP)

1 20 1
08 2 o8
8 I E 2 L i 8 E
- = ® -
& 061 1 ° & 06 1
5 = 1 &
o 0.4 1 g o 0.4 b
No defense —_— T s B
0.2 NetWarden-Full ~ —-=-] 5 No defense 0.2 No defense
o L) Nety\larden-‘Naive - @D 0)) NetW§rden s ol) NetW@rden .
0.5 1 15 2 25 3 0 10 20 30 40 50 60 0.5 1 15 2 25
FCT (seconds) Time (seconds) FCT (seconds)

(p) Receive window (FCT; FTP)

FCT (seconds)

(n) Timing channel (FCT; FTP)

(q) Partial ACK (sending rate; FTP)

Time (seconds)

(o) Receive window (sending rate; FTP)

(r) Partial ACK (FCT; FTP)

Figure 9: NetWarden can support complex applications and workloads (Apache web server, Node.js server, and FTP) smoothly
with minimal performance disturbance. The high-level takeaways are similar as those in the DCTCP trace.

15

100 100 100
90 920 1 20
2 - 5 8of 1% sof
5 © No defense —&— © No defense —8&— © No defense —&—
8 05} o 70} Naive —%— o 70 Naive —%— 4 o 70 Naive ——
o % NetWarden % NetWarden % NetWarden
2 KS test —8— <] L S L 18
L NetWarden —— § 60 . .,\\ § & § &
Random guess) . . e
g 50 ° v—a— 50— 50 ff—&— ey
L 40 P T S ST S 40 P T S ST S 40 P T S ST S
0 0.5 1 5 10 20 50 100 200 400 800 5 10 20 50 100 200 400 800 5 10 20 50 100 200 400 800

False positive

(a) ROC curves (All)

IPD modulation magnitude (us)

(b) Decoding rates (Apache)

(c) Decoding rates (Node.js)

IPD modulation magnitude (us) IPD modulation magnitude (us)

(d) Decoding rates (FTP)

Figure 10: NetWarden can detect and mitigate covert timing channels for real-world, complex applications.

5.9 Self defense

Last but not least, we evaluate how well NetWarden can iden-
tify and block malicious traffic that is intended as attacks to
the slowpath.

Bufferbloat attacks. In this attack, the adversary causes a
large amount of buffered packets (e.g., by never acknowledg-
ing their receipt) in the slowpath. In contrast, for normal con-
nections, the buffered packets would be removed by ACKs
roughly one RTT after. Therefore, NetWarden uses a self-
defense technique where it monitors the cache usage for each
connection, and proactively resets connections whose cache
size grows beyond a pre-defined threshold. Figure 11a shows
the slowpath memory usage under such an attack that started
five seconds after the connection was established. As we can
see, without self defense, the adversary can cause the cache
size to grow very quickly. The self defense in NetWarden can
recognize such abnormal patterns and reset this connection.

Excessive IPD attacks. In this attack, the adversary modu-
lates the packet timing to send a large amount of IPD data to
overwhelm the communication channel between the slowpath
and the fastpath. The self defense in NetWarden enforces up-
perbounds on the maximum number and rate of “covert timing
channel” connections; it raises an alarm if too many covert
channels are identified and shuts down the malicious flows.
Figure 11b shows how the attack affects normal user flows at
different attack strengths (as measured by the number of IPDs
per second). Without any defense, the excessive IPDs would
quickly overwhelm the slowpath/fastpath communication; as
a result, normal users cannot establish new connections, be-
cause they need to be sent to the control plane via digests for
entry installation (Section 4.2). A large percentage of them
are dropped when the attack strength is high. Using the self
defense technique, NetWarden can block these excessive IPDs
and protect normal user connection establishments.

Connection table flooding attacks. Here, an adversary can
launch a large number of connections to flood the connection
monitoring table, which can support a maximum of 200 k ac-
tive connections (Section 5.3). The self defense in NetWarden
enforces a rate limit for the maximum number of connections
that an IP address can establish. The NetWarden control plane
also periodically scans this connection table (using a switch

16

feature that identifies the ages of connection entries) and re-
moves inactive flows. Figure 11c shows that, without defense,
the available space in the connection monitoring table de-
creases quickly; eventually, the connection monitoring table
becomes fully occupied by the attacker’s flows, so that normal
users cannot establish new flows any more. The self defense
can effectively limit the amount of entries that a single user
can occupy.

6 Related Work

Normalizers. Normalizers aim to eliminate ambiguities in
protocol payloads, which can lead to attacks when they
are interpreted inconsistently by intrusion detection systems
and end hosts. Example attacks have been demonstrated
with inconsistent TTL values [35], retransmitted TCP seg-
ments [62, 65, 66], among others. The key approach is to
normalize traffic payload into a deterministic stream of bytes
that is interpreted consistently. However, even deterministic
payload streams can contain covert channels.

Network covert channels. Covert timing [20,21,32,46,49,
61,67] and storage [11,24,33,37,41,51,59] channels have
been a longstanding problem in the security community. Ex-
isting work has developed active wardens, which inspect net-
work traffic, identify covert (timing or storage) channels, and
modify the traffic to mitigate them [24,27,47]. However, most
existing wardens are only proof-of-concept systems that are
hard to deploy due to their inefficiency. To the best of our
knowledge, NetWarden is the first practical defense against
network covert channels. A different line of work [44,71] has
discovered the existence of covert channels due to the use of
OpenFlow-based SDN controllers. They have also considered
countermeasures against these covert channels. The scenario
and threat model of NetWarden are closer to those of active
wardens, which aim to detect and mitigate covert channels in
network traffic originating from compromised hosts.
Programmable data planes. Programmable data planes
have been used for a wide variety of networking tasks, such as
network measurement [56,70], monitoring [30,63], and appli-
cation offloading [25]. Only nascent work exists that leverages
programmable data planes for network security [42,53]. The
closest to our work is a workshop paper [69], but it does not
contain a full system design or evaluation.

200 T T T T T 100 200K B_LI., T T T T T T T
= w/o defense —&— —~]
2 150 [w/ defense 1 & sof wio defense —=— - = 160K [
> [w/ defense —— s
8 100} 4 g 60f i © 120K -
@ |5 8 8ok | —
£ o 40] = w/o defense
g sor b 2 20| i Z 40K | W/ defense ——

0 0 1 1 1 0 1 1 1 1 1 1 1
0 5 10 15 20 25 30 0 1K 10K 100K 500K M 0 10 20 30 40 50 60 70 80

Time (seconds)

(a) Bufferbloat attacks

Attack strength (IPDs/s)
(b) Excessive IPD attacks

Time (seconds)

(c) Connection table flooding attacks

Figure 11: The self defenses in NetWarden can successfully identify malicious traffic patterns and block them.

7 Conclusion

Network covert channels have been a longstanding threat to
systems that host sensitive data. Existing defenses only work
as proof-of-concept solutions, not only because they need to
process every single packet in software, but also because of
the performance drops due to channel mitigation. We have
presented NetWarden, a system that can defend against net-
work covert channels leveraging emerging switch hardware.
It is the first system that can mitigate network covert channels
in high-speed traffic while preserving performance. NetWar-
den achieves this by coupling defenses that degrade perfor-
mance with new defenses that boost performance, neutraliz-
ing its overall performance impact. Our evaluation shows that
NetWarden incurs low overheads, and that it can effectively
mitigate covert timing and storage channels with minimum
performance disturbance.

8 Acknowledgments

We thank the anonymous reviewers for their valuable feed-
back; we also thank Adam Morrison and Srinivas Narayana
for their insightful comments on earlier drafts of this pa-
per. This work was partially supported by NSF grants CNS-
1942219 and CNS-1801884.

References

[1] Barefoot Tofino. https://www.barefootnetworks.com/t
echnology/#tofino.

[2] Broadcom Trident 4 delivers disruptive economics
for enterprise data center and campus networks.
https://www.globenewswire.com/news-release/2
019/06/11/1866927/0/en/Broadcom-Trident-4-Deli
vers-Disruptive-Economics-for-Enterprise-Data-
Center-and-Campus—-Networks.html.

[3] Common Criteria for IT security evaluation (ISO/IEC
15408). https://csrc.nist.gov/glossary/term/Comm

on-Criteria-for-IT-Security-Evaluation.

[4] Information Technology Security Evaluation Criteria (IT-
SEC). http://www.iwar.org.uk/comsec/resources/sta

ndards/itsec.htm.

(3]

Intel FlexPipe. https://www.intel.com/content/www/us
/en/products/network-io/ethernet/switches.html.

17

[6] Netronome Agilio. https://www.netronome.com/produc
ts/agilio-cx/.

[7] The NetWarden code repository. https://github.com/jia

rong0907/NetWarden.

NTT service level agreement (SLA). https://www.us.ntt
.net/support/sla/network.cfm.

The P4 language repositories. https://github.com/p4lan
g.

(8]

[9]
[10] TCP SYN cookies. https://etherealmind.com/tcp-syn
-cookies—-ddos-defence/.

[11] C. Abad. IP checksum covert channels and selected hash colli-
sion. Technical report, iUniversity of California, Los Angeles,

2001.

M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan,
K. Chu, A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav,
and G. Varghese. Conga: Distributed congestion-aware load
balancing for datacenters. In Proc. SIGCOMM, 2014.

M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan. Data center TCP
(DCTCP). In Proc. SIGCOMM, 2010.

M. Allman, V. Paxson, and E. Blanton. TCP congestion control.
RFC 5681, 2009.

E. Anderson. Capture, conversion, and analysis of an intense
NFS workload. In Proc. FAST, 2009.

A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Efficient system-
enforced deterministic parallelism. In Proc. OSDI, 2010.

[12]

[13]

[14]
[15]
[16]

[17] A. Belozubova, A. Epishkina, and K. Kogos. Random delays

to limit timing covert channel. In Proc. EISIC, 2016.
J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby.

Performance enhancing proxies intended to mitigate link-
related degradations. RFC 3135, 2001.

L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP Vegas:
New techniques for congestion detection and avoidance. In
Proc. SIGCOMM, 1994.

S. Cabuk. Network covert channels: Design, analysis, detec-
tion, and elimination. PhD thesis, Purdue University, 2006.

S. Cabuk, C. E. Brodley, and C. Shields. IP covert timing
channels: Design and detection. In Proc. CCS, 2004.
A. Chen, W. B. Moore, H. Xiao, A. Haeberlen, M. Sherr,
C. Shields, and W. Zhou. Detecting covert timing channels
with time-deterministic replay. In Proc. OSDI, 2014.

(18]

[19]

[20]
(21]

[22]

[23] G. Cormode and S. Muthukrishnan. An improved data stream
summary: The count-min sketch and its applications. J. Algo-
rithms, 55(1):58-75, Apr. 2005.

D. M. Dakhane and P. R. Deshmukh. Active warden for TCP
sequence number base covert channel. In Proc. ICPC, 2015.

H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and R. Soulé.
NetPaxos: Consensus at network speed. In Proc. SOSR, 2015.

(24]

[25]

[26]

[27]

(28]

(29]

(30]
[31]

(32]

(33]

(34]

(35]

(36]

(371

(38]

(39]

[40]

(41]

[42]

[43]

[44]

[45]
[46]
[47]
(48]
[49]

[50]

Department of Defense. Trusted Computer System Evaluation
Criteria (TCSEC). (DoD 5200.28-STD), 1985.

G. Fisk, M. Fisk, C. Papadopoulos, and J. Neil. Eliminating
steganography in Internet traffic with active wardens. In Proc.
IH, 2002.

S. Floyd, T. R. Henderson, and A. V. Gurtov. The NewReno
modification to TCP’s fast recovery algorithm. RFC 3782,
2004.

Y. Geng, S. Liu, Z. Yin, A. Naik, B. Prabhakar, M. Rosenblum,
and A. Vahdat. Exploiting a natural network effect for scalable,
fine-grained clock synchronization. In Proc. NSDI, 2018.

M. Ghasemi, T. Benson, and J. Rexford. Dapper: Data plane
performance diagnosis of TCP. In Proc. SOSR, 2017.

S. Gianvecchio and H. Wang. Detecting covert timing channels:
An entropy-based approach. In Proc. CCS, 2007.

S. Gianvecchio, H. Wang, D. Wijesekera, and S. Jajodia. Model-
based covert timing channels: Automated modeling and eva-
sion. In Proc. RAID, 2008.

J. Giffin, R. Greenstadt, P. Litwack, and R. Tibbetts. Covert
messaging through TCP timestamps. In Proc. PET, 2002.

M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. M. Watson,
A. W. Moore, S. Hand, and J. Crowcroft. Queues don’t matter
when you can jump them! In Proc. NSDI, 2015.

M. Handley, C. Kreibich, and V. Paxson. Network intrusion de-
tection: Evasion, traffic normalization and end-to-end protocol
semantics. In Proc. USENIX Security, 2001.

K. He, E. Rozner, K. Agarwal, Y. Gu, W. Felter, J. Carter, and
A. Akella. AC/DC TCP: Virtual congestion control enforce-
ment for datacenter networks. In Proc. SIGCOMM, 2016.

A. Hintz. Covert channels in TCP and IP headers. Presentation
at DEFCON, 2002.

K.-F. Hsu, R. Beckett, A. Chen, J. Rexford, P. Tammana, and
D. Walker. Contra: A programmable system for performance-
aware routing. In Proc. NSDI, 2020.

S. Jero, E. Hoque, D. Choffnes, A. Mislove, and C. Nita-Rotaru.
Automated attack discovery in TCP congestion control using a
model-guided approach. In Proc. NDSS, 2018.

C. Jin, D. X. Wei, and S. Low. FAST TCP: Motivation, ar-
chitecture, algorithms, performance. IEEE/ACM Trans. on
Networking, 14:1246-1259, 2006.

E. Jones, O. Le Moigne, and J.-M. Robert. IP traceback so-

lutions based on time to live covert channel. In Proc. ICON,
2004.

Q. Kang, L. Xue, A. Morrison, Y. Tang, A. Chen, and X. Luo.
Programmable in-network security for context-aware BYOD
policies. In Proc. USENIX Security, 2020.

D. Kim, Y. Zhu, C. Kim, J. Lee, and S. Seshan. Generic external
memory for switch data planes. In Proc. HotNets, 2018.

R. Krosche, K. Thimmaraju, L. Schiff, and S. Schmid. I DPID
it my way!: A covert timing channel in software-defined net-
works. In Proc. Networking, 2018.

B. Lampson. A note on the confinement problem. Communi-
cations of the ACM, 16:613-615, 1973.

K. S. Lee, H. Wang, and H. Weatherspoon. PHY covert chan-
nels: Can you see the idles? In Proc. NSDI, 2014.

G. Lewandowski, N. B. Lucena, and S. J. Chapin. Analyzing
network-aware active wardens in IPv6. In Proc. IH, 2006.

Y. Li, R. Miao, C. Kim, and M. Yu. FlowRadar: A better
netflow for data centers. In Proc. NSDI, 2016.

X. Luo, E. W. W. Chan, and R. K. C. Chang. TCP covert
timing channels: Design and detection. In Proc. DSN, 2008.

X. Luo, E. W. W. Chan, and R. K. C. Chang. CLACK: A
network covert channel based on partial acknowledgment en-
coding. In Proc. ICC, 2009.

18

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]
[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

X. Luo, E. W. W. Chan, R. K. C. Chang, and W. Lee. A
combinatorial approach to network covert communications
with applications in web leaks. In Proc. DSN, 2011.

G. R. Malan, D. Watson, F. Jahanian, and P. Howell. Transport
and application protocol scrubbing. In Proc. INFOCOM, 2000.

R. Meier, P. Tsankov, V. Lenders, L. Vanbever, and M. Vechev.
NetHide: Secure and practical network topology obfuscation.
In Proc. USENIX Security, 2018.

R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu. SilkRoad:
Making stateful layer-4 load balancing fast and cheap using
switching ASICs. In Proc. SIGCOMM, 2017.

B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout. Homa: A
receiver-driven low-latency transport protocol using network
priorities. In Proc. SIGCOMM, 2018.

S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun,
M. Alizadeh, V. Jeyakumar, and C. Kim. Language-directed
hardware design for network performance monitoring. In Proc.
SIGCOMM, 2017.

P. Peng, P. Ning, and D. S. Reeves. On the secrecy of timing-
based active watermarking trace-back techniques. In Proc. SP,
2006.

I. Rhee, L. Xu, S. Ha, A. Zimmermann, L. Eggert, and R. Schef-
fenegger. CUBIC for fast long-distance networks. RFC 8312,
2018.

C. H. Rowland. Covert channels in the TCP/IP protocol suite.
First Monday, 2(5), 1997.

A.Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren. Inside
the social network’s (datacenter) network. In Proc. SIGCOMM,
2015.

G. Shah, A. Molina, M. Blaze, et al. Keyboards and covert
channels. In Proc. USENIX Security, 2006.

U. Shankar and V. Paxson. Active mapping: Resisting NIDS
evasion without altering traffic. In Proc. SP, 2003.

J. Sonchack, O. Michel, A. J. Aviv, E. Keller, and J. M. Smith.
Scaling hardware accelerated network monitoring to concur-
rent and dynamic queries with *flow. In Proc. ATC, 2018.

E. Vanini, R. Pan, M. Alizadeh, P. Taheri, and T. Edsall. Let it
flow: Resilient asymmetric load balancing with flowlet switch-
ing. In Proc. NSDI, 2017.

G. Varghese, J. A. Fingerhut, and F. Bonomi. Detecting evasion
attacks at high speeds without reassembly. In Proc. SIGCOMM,
2006.

M. Vutukuru, H. Balakrishnan, and V. Paxson. Efficient and
robust TCP stream normalization. In Proc. SP, 2008.

X. Wang and D. S. Reeves. Robust correlation of encrypted
attack traffic through stepping stones by manipulation of inter-
packet delays. In Proc. CCS, 2003.

W. Wu and B. Ford. Deterministically deterring timing attacks
in deterland. In Proc. TRIOS, 2015.

J. Xing, A. Morrison, and A. Chen. NetWarden: Mitigating
network covert channels without performance loss. In Proc.
HotCloud, 2019.

N. Yaseen, J. Sonchack, and V. Liu. Synchronized network
snapshots. In Proc. SIGCOMM, 2018.

M. Zhang, G. Li, L. Xu, J. Bi, G. Gu, and J. Bai. Control plane

reflection attacks in SDNs: New attacks and countermeasures.
In Proc. RAID, 2017.

	Introduction
	Overview
	Network covert channels
	Requirements for a practical defense
	Key techniques of NetWarden
	Scenarios, assumptions, and non-goals

	Performance-Preserving Defenses
	Programmable data plane defenses
	Performance boosters
	Performance implications
	Principle of maximized transparency

	The NetWarden System
	Design principles
	The fastpath defense
	The slowpath defense
	Self defense

	Evaluation
	Prototype implementation
	Experimental setup
	Microbenchmarks
	Fastpath/slowpath overheads
	Mitigating covert channels
	Performance preservation
	TCP variants
	Complex applications
	Self defense

	Related Work
	Conclusion
	Acknowledgments

