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Abstract

Bring Your Own Device (BYOD) has become the new norm
for enterprise networks, but BYOD security remains a top con-
cern. Context-aware security, which enforces access control
based on dynamic runtime context, is a promising approach.
Recent work has developed SDN solutions to collect device
contexts and enforce access control at a central controller.
However, the central controller could become a bottleneck
and attack target. Processing context signals at the remote
controller is also too slow for real-time decision change.

We present a new paradigm, programmable in-network
security (Poise), which is enabled by the emergence of pro-
grammable switches. At the heart of Poise is a novel security
primitive, which can be programmed to support a wide range
of context-aware policies in hardware. Users of Poise specify
concise policies, and Poise compiles them into different con-
figurations of the primitive in P4. Compared with traditional
SDN defenses, Poise is resilient to control plane saturation
attacks, and it dramatically increases defense agility.

1 Introduction

BYOD refers to the practice where enterprise employees
could use privately owned tablets, phones, and laptops at
work [32]. This practice has become the new norm in many or-
ganizations [7, 13, 14, 17, 23, 29], and its market is projected
to grow and exceed $73 billion by 2021 [17].

One of the top concerns, however, is BYOD security. As
BYOD devices are generally less well-managed than their
enterprise counterparts, they are easier targets to compro-
mise [6, 8, 47, 101]. This is further exacerbated by the fact
that such devices are used to access sensitive enterprise re-
sources as well as untrustworthy services in the wild [4, 22].
At its core, BYOD security represents a concrete instance
of a fundamental challenge, sometimes known as the “end
node problem” [11, 12]. The “end nodes” are not subject
to the same level of centralized control, management, and
protection as the enterprise infrastructure. We can easily up-
date the access control lists on the gateway router, or patch
newly discovered vulnerabilities on a server, but ensuring that
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the individual end points are properly patched is much more
difficult. As such, insecure end devices tend to become the
weakest link in the security chain [25].

One promising approach to BYOD security is to use
context-aware policies, which enforce access control based
on devices’ runtime contexts [58]. For instance, a policy may
deny access from devices whose TLS libraries have not been
updated [98], or grant access to devices that are physically
located in the enterprise boundary [88], or allow the use of
a sensitive service only if administrators are online [56, 87].
In each of these scenarios, the policy makes security deci-
sions based on additional “threat signals”, such as the device
location, library version, or even the status of other devices
in the network. Context-aware policies are in a class of their
own—they are much more dynamic, as contexts can change
frequently (e.g., GPS location), and they require global visi-
bility of the entire network (e.g., administrators online).

Supporting context-aware policies in enterprise networks
presents interesting research challenges. Some traditional sys-
tems operate at the server side [89, 94], which enables easier
management and update of security policies; others operate at
the client side [91], making it easier to access device context.
A common limitation, however, is that the individual nodes—
clients or servers—only have local visibility. Such a “tunnel
vision” hinders the ability to make synchronized security deci-
sions network-wide [86]. Latest proposals address this using
OpenFlow-based SDN, where a software controller collects
context signals from all devices and enforces network-wide
access control [58]. However, the central controller is vulner-
able to control plane saturation attacks [82], and processing
threat signals in a remote software controller incurs delay and
decreases agility.

Our contribution. We present a novel design called Poise,
or programmable in-network security, whose goal is to ad-
dress the limitations of OpenFlow-based SDN defense. Poise
has a new security primitive that runs in switch hardware, and
it can change defense decisions at hardware speeds. Clients
embed context signals in network traffic, and Poise parses
these signals and enforces security policies without involv-
ing a remote software controller. This primitive is also re-
programmable in a declarative language to support a wide
range of context-aware policies. These declarative policies are



compiled by Poise into different configurations of the security
primitive as P4 programs. Compared with traditional SDN
defenses [58, 75, 82], this new paradigm results in defenses
that are highly efficient, agile, and resilient to control plane
saturation attacks [82].

The key enabler for Poise is the emerging programmable
data planes developed by the latest networking technol-
ogy. New switches, such as Intel FlexPipe [16], Cavium
XPliant [9], and Barefoot Tofino [3], can be programmed
in P4 [19] to support user-defined network protocols, cus-
tom header processing, and sophisticated state in hard-
ware. P4-programmable networks represent a major step be-
yond OpenFlow-based SDN. OpenFlow switches have fixed-
function hardware, and they can only support programmable
forwarding by occasionally invoking remote software con-
trollers. P4 switches, on the other hand, offer hardware-based
programmability, which can be applied to every single packet
without performance slowdown. The novelty of Poise lies
in leveraging these new hardware features for context-aware
security—we encode context signals with user-defined proto-
cols, compute access control decisions using programmable
packet processing, and support stateful, network-wide policies
by designing hardware data structures.

After motivating our problem further in §2, we present:

e The concept of programmable in-network security (§3);
e A language and compiler for context-aware policies (§4);
e A novel in-network security primitive (§5);

e The Poise orchestration service and device module (§6);
e Discussions and limitations of Poise (§7);

e Prototype and evaluation of Poise that demonstrate its
practicality, as well as its higher resilience to control
plane saturation attacks and increased defense agility
compared with OpenFlow-based SDN defense (§8);

‘We then describe related work in §9, and conclude in §10.

2 Background and Motivation

Context-aware security (CAS) stands in stark contrast to con-
ventional security mechanisms—existing mechanisms can
only support static policies, but CAS uses dynamic policies
based on runtime contexts. For instance, NAC (network ac-
cess control) mechanisms such as IEEE 802.1x [33] and
Cisco Port/VLAN/IOS ACLs [10, 26] statically configure
access control policies, whether for a device, an IP prefix, or
a VLAN ID. Role- or attribute-based access control mech-
anisms [52, 53, 76] also perform access control based on
statically-defined roles or attributes.

CAS, on the other hand, uses the runtime contexts of a re-
quest as threat signals (e.g., location/time of access, status of
the network); whenever the signals change, the security deci-
sions would adapt accordingly. The theoretical underpinnings
of CAS have been studied more than a decade back [41], but

it recently found an array of new applications in securing IoT
and mobile devices [39, 51, 58, 60, 91]. These devices, just
like the BYOD clients in our scenario, suffer from the “end
node problem” [11, 12]. CAS has proven to be effective for
such scenarios, because it can enable a more precise protec-
tion based on threat signals collected from the end nodes.

2.1 Design space

The concept of CAS by itself does not necessitate a client-,
server-, or network-based design; rather, these design points
have different tradeoffs. First off, purely server-side solutions
are often ineffective, as we desire to collect context signals
from client devices at runtime. Therefore, typical CAS sys-
tems [58, 91] need to install a context collection module at the
clients. In terms of policy enforcement, one could co-locate
enforcement with context collection, resulting in a purely
client-based solution [91]. The main drawbacks, however,
are that a) individual devices only have local views, making
network-wide decisions hard to come by, and that b) policy
management is much harder, as policies are distributed to each
device; this might raise additional concerns if some policies
are themselves sensitive data. Another option is to enforce
the policies inside the network. The network has a global
view for holistic protection, and it enables centralized policy
management and update. Poise adopts this design option.

2.2 Traditional networks are not enough

However, traditional network devices (i.e., switches and mid-
dleboxes) are not up to the task, because they are built with
fixed-function hardware that is customized for specific pur-
poses. For instance, traditional switch hardware is optimized
for a fixed set of protocols (e.g., TCP/IP), but it does not un-
derstand context information, such as GPS location, time of
access, or library versions. Similarly, hardware middleboxes
also come with fixed functions, e.g., firewalls or deep packet
inspection (DPI); function updates are typically constrained
by the speed of hardware upgrades, which is much slower than
the need for defense adaptation. As a result, traditional in-
network security mechanisms merely provide fixed-function
security, such as static access control lists, firewalls, and traf-
fic filters. There is a fundamental gap between the dynamic
nature of CAS and the static nature of the network devices.

2.3 How about OpenFlow-based SDN?

Software-defined networking (SDN) [67] can partially ad-
dress this by the use of a software controller for control plane
programmability. Although the OpenFlow switch hardware
remains fixed in function, switches can send PacketIn mes-
sages to the central controller for programmable decisions.
This paradigm underlies many recent developments in net-
work security [58, 75, 77, 80, 81, 82]. In particular, a recent
work PBS [58] supports context-aware security by running
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Figure 1: P4 switches are programmable in hardware. Packets
first go through a programmable parser, which supports user-
defined protocols. Packet headers are then streamed through
a number of hardware stages, each of which contains stateful
registers, arithmetic logic units (ALUs), and match/action
tables. Packets can be recirculated to go through the stages
multiple times to trigger different programmable elements.

the policy enforcement module as an “SDN app” in a central-
ized controller. This app can collect context signals from all
devices and enforce access control in a global manner.

However, in traditional SDN, programmability comes at
a great cost, as it resides in a centralized software controller.
First, PacketIn messages incur a round-trip time delay be-
tween the switch and the remote controller, whereas packets
in the data plane are processed at hardware speeds. As such,
we can only programmatically process a small set of packets—
typically one packet per flow (e.g., the first packet). Second,
traditional SDNs are vulnerable to control plane saturation at-
tacks [82], where an adversary can cause high-volume traffic
to be sent to the software controller. A recent work OFX [84]
has further highlighted that, for security applications that re-
quire dynamic, fine-grained decisions, centralized SDN con-
trollers would pose a severe bottleneck. The key goal of Poise
is to address the limitations of traditional SDN defenses by
enforcing CAS in switch hardware.

2.4 Opportunity: Programmable data planes

Data plane programmability represents the latest step in the
networking technology. In contrast to OpenFlow-based SDN,
P4-programmable networks provide new features that can be
reconfigured in hardware (Figure 1). The key novelty of Poise
is to leverage them for in-network policy enforcement.

1. Customized header support for CAS. P4 switches can
recognize customized protocols and headers beyond TCP/IP
via the use of a programmable parser, without the need for
hardware upgrades. Our observation is that this allows us
to programmatically define context signals as special header
fields, and embed them in network traffic. P4 switches can
directly parse context signals from client traffic.

2. Security decision changes at hardware speeds. Each
hardware stage is integrated with ALUs (Arithmetic Logic
Units) that can perform computation over header fields at line-
speed. The implication for security is that, without involving
a remote software controller, switches can evaluate context
values (e.g., GPS locations) and make security decisions (e.g.,
location-based access control) directly in hardware.

3. Cross-packet state for network-wide security. Last but

not least, the hardware stages also have persistent memory
in read/write registers, and they can process packets based
on persistent state. We observe that this enables the network
to make coordinated security decisions in a network-wide
manner—decisions for one client could depend on past net-
work behaviors, or activities from other parts of the network.

These hardware features are programmable in P4 [19, 43].
Switch programs can be compiled and installed from the
switch control plane (Figure 1), which typically runs a cus-
tomized version of Linux and has general-purpose CPUs. The
P4 compiler maps a switch program to the available hardware
resources [64]. Programs that successfully compile on a target
are guaranteed to run at linespeed, due to the pipelined nature
of the hardware. Programs that exceed available hardware
resources would be rejected by the P4 compiler.

2.5 Trust model

Poise shares the same trust model as existing CAS solu-
tions [58, 91]—the context collection module at the clients
and policy enforcement module at the switch are both trusted.
As a network-based design, Poise also trusts the network
infrastructure (switches and access points). The context col-
lection module can be installed as a pre-positioned Android
kernel module with OEM support; this is common in Enter-
prise Mobility Management solutions [5, 27, 31, 91]. It only
collects and propagates context signals when devices are con-
nected to the enterprise network; standard BYOD frameworks
such as Android for Work [2] or Samsung Knox [24] can sup-
port this. Users can install unmodified Android apps. CAS
specifically protects against malicious apps, and following
existing work [58, 91], we assume that malicious apps cannot
compromise the kernel or obtain root privileges. It is possible
to further relax these assumptions by directly establishing
the root of trust in hardware [28, 30, 74]. In the case where
untrusted devices may connect to the network, Poise needs to
perform authentication on context signals before using them
for decision making, e.g., by adding support for cryptography
in P4 switches. We discuss this in more detail in §7.

3 Programmable In-Network Security

We call this new paradigm programmable in-network security.

Scenario. Consider the enterprise network shown in Figure 2,
which hosts several types of private data, such as employee
records and sales records, and also provides connectivity to
the Internet. The operator wants to enforce dynamic access
control of sensitive enterprise data in the presence of BYOD
clients. For instance, the policy might specify that a) sales
records should only be accessed by devices belonging to
the sales department; b) during regular work hours; c) from
devices that are properly patched to address some recently
discovered vulnerability; and, d) a device can only access the
sales records if the sales manager is online. Poise is designed
for context-aware security policies such as these.
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Figure 2: Poise compiles high-level policies into a) switch
programs, and b) device configurations. The clients send peri-
odic context packets to the network, and Poise enforces the
policy in the switches.

The Poise system. At the heart of Poise is a novel switch
primitive that can enforce CAS policies in hardware. The de-
sign of this primitive also tackles a practical challenge. Since
P4 programs specify low-level packet processing behaviors,
they are akin to “assembly-level” programs, and one often
needs to hand-optimize P4 programs to reduce resource usage.
Therefore, we allow network operators to specify CAS poli-
cies in a declarative language that is much higher-level than
P4. Our compiler can then generate optimized P4 programs
automatically, which are different versions of the security
primitive. The Poise compiler also generates configurations
for the context collection module at the clients. It collects con-
text signals based on the configuration, and sends out periodic
context packets to the network. Policy changes can be easily
supported by a recompilation. Client configurations need not
be affected by policy updates, unless the new policies require
new types of context signals to be collected.

Next, we first describe the Poise language and compiler,
then the switch primitive, and finally, the client module and
how these components work together.

4 The Poise Language and Compiler

The policy language in Poise is inspired by the Frenetic family
of SDN programming languages [38, 54, 68, 69, 79], but we
adapt them a) from an OpenFlow setting to P4, which supports
richer header operations and state, and b) from a network man-
agement setting to security, by supporting security contexts.
Specifically, we have designed the Poise language based on
Pyretic NetCore [69], where network policies are written as a
series of match/action statements. In terms of the semantics
of the language, a policy represents a function that maps an in-
coming packet to zero (i.e., drop), one (i.e., unicast), or more
(i.e., multicast) outgoing packets. A policy could be as simple
as drop, which drops all packets, although practically, the pol-
icy would make a decision based on the context a packet car-
ries, such as if match (dip==66.220.144.0) then drop,
which blacklists a block of destination IP addresses, or if
match (0800<=time<=1800) then drop, which denies ac-
cess depending on the time of day. Figure 3 summarizes the

Primitive Actions

A = drop | fwd(port) | flood | log

Expressions

E == v|elt+ey|er—eperxer | M

Constant Lists

L == nil|vlL

Predicates

P == match(ejoep) | match(hoe) |
match(h in l) | P&P | (P|P) | IP

Monitors

M = count(P)

Policies

C == A|if Pthen Celse C| (C|C)

Figure 3: The language syntax for Poise policies. Context
fields are represented as h. Expressions are represented as e,
or v (constants). The o operator indicates comparisons.

language syntax, and the highlighted portions show the differ-
ences from NetCore, which we explain more below.

4.1 Key language constructs

Security contexts. Poise encodes context fields in cus-
tomized headers, such as time or dev. When a policy refers
to multiple context fields, Poise structures the context headers
in the order in which they appear in the policy program.
Context operations. Poise also supports sophisticated oper-
ations over context headers, as indicated in the expressions
and predicates in Figure 3. An expression could be a constant,
an arithmetic operation over header fields, or a complex ex-
pression over subexpressions. Security decisions are made
based on predicates over expressions, where the o operator
indicates comparisons such as >, <, and so on. Contexts can
also be tested against constant lists, which are pre-defined
in the policy to encode membership relations. For instance,
one could define a list of devices with administrative roles
as def adminlst = ["devl", "dev2"]. Then, the policy
could refer to the lists as part of the decision-making process,
suchas if match(!dev in adminlst) then fwd (mbox),
which forwards traffic from non-admin devices to a middle-
box for traffic scrubbing. We note that the original NetCore
does not support the use of contexts or sophisticated context
operations; rather, Poise adds such extensions based on the
extra processing power in P4 for security support.

Stateful monitors. Unlike NetCore, Poise supports stateful
policies which make security decisions based on network-
wide state. This is done via monitor expressions, which moni-
tor activities of interest in persistent state. A monitor expres-
sion is written as count (pred), which counts the number
of packets that satisfy the predicate pred in the current time
window; for instance, count (match (is_admin)) counts the
number of packets generated from a device with an adminis-
trative role. The counters are periodically reset to zero when
a new time window begins. These monitors enable program-
mers to write network-wide policies. This is different from



stateless NetCore policies, where monitors passively collect
traffic statistics, but do not affect forwarding decisions.
Actions. The decision of a Poise policy is represented by its
action field. Currently, Poise supports four types of actions.
The drop decision denies access. The fwd decision allows ac-
cess, and can be further parameterized by an outgoing switch
port, so that it can actuate further processing—e.g., sending
packets through an DPI device that can be reached via a par-
ticular port. The f1ood decision broadcasts a packet. The 1og
decision sends a packet to a logger that detects potentially
suspicious activity; this is achieved by aliasing the fwd deci-
sion and specifying a special port for the local switch CPU.
Packets sent for logging will be pumped to the control plane
of the switch, which runs a logging component. This can be
easily generalized to enable remote logging, e.g., by wrapping
the packet inside another IP header, where the destination IP
represents a network activity logger.

Composing policies. Similar as NetCore, Poise can compose
multiple policies P1|P2]|...|Pn and compile them into a
single switch program. This is useful, e.g., when Pi and Pj
check different context signals and the enterprise wants to
apply them in combination. The Poise compiler rejects the
composition of conflicting policies at compilation time.

4.2 Example policies

The Poise language is expressive enough to capture a wide
range of existing and new policies, and it is much more con-
cise than low-level languages such as P4. Next, we describe
seven practical BYOD policies, where the first two are adapted
from existing work [58] and the rest are new policies sup-
ported by Poise. Variables dev, time, lat, lon, and usr are
customized header fields.

PI1: Block certain services in work hours [58]: A com-
mon BYOD policy is to block access from certain devices to
entertainment websites during work hours:

def businesslst = ["devl", "dev2"]
if match(dip==66.220.144.0 &
dev in businesslst &

(time>=0800) & (time<=1800))
then drop

P2: Direct traffic from guest devices through a middle-
box [58]: Another useful policy is to distinguish traffic from
authorized devices and guest devices, and direct guest traffic
through a middlebox for traffic scrubbing:

def authlst = ["devl", "dev2"]
if match(dev in authlst)

then fwd(server)
else fwd(mbox)

New policies. There are also useful policies in Poise that
cannot be easily supported in traditional networks; they are
implementable in Poise due to the use of programmable data
planes, which can perform arithmetic operations over context
headers, and maintain network-wide state to make coordi-
nated security decisions. We give an example of each below.

P3: Distance-based access control: This policy grants ac-
cess to a service only if the user is within a certain distance
from a physical location (e.g., the server room); this requires
performing arithmetic operations over GPS coordinates em-
bedded in the packet header:

if ((lat-x)*(lat-x)+(lon-y)*(lon-y) < D)
then fwd(server)
else drop

P4: Allow access only if admin is online: Poise can support
coordinated, network-wide policies by monitoring security
events of interest and making decisions based on the result.
For instance, a policy might grant access to a service only if
the admin is online:

def adminlst = ["Bob", "Alice"]
¢ = count (match(usr in adminlst))
if match(c>0) then fwd(server)

Advanced policies. Inspired by the literature of “continuous
authentication” [37, 49, 50, 92], we propose a set of advanced
policies that use device context to detect subtle but important
indicators of potential attacks. Due to space constraints, we
only describe the high-level policies, but not the programs. P5:
Block requests without explicit user interaction, which denies
access to a sensitive service if all apps are running in the back-
ground and there is no user interaction with the touchscreen
to trigger the request; such requests are likely generated by
malware. P6: Scrub traffic if Uls are overlapping, which for-
wards traffic through a middlebox if the context information
shows that app Uls are overlapping—a potential sign for Ul
hijacking [55]. P7: Conduct deep packet inspection if cam-
era/recorder is on, which detects if sensitive information is
being leaked through an active camera/recorder app [36].

4.3 Compilation

Next, we discuss how the Poise compiler processes the key
language constructs and generates P4 implementations.

Compiling security contexts. The Poise compiler generates
P4 headers for each context. Context packets have special IP
protocol numbers (143 for TCP, 144 for UDP), and they have
no payload. Context headers follow the TCP/UDP headers
(e.g., EthlIPITCPICtxt). Poise switches recognize the context
headers by the IP protocol number, whereas legacy switches
forward these packets based on destination IPs. User traffic
is not modified by Poise in any way. (See Figure 13 in Ap-
pendix.) As a concrete example, Figure 4(a) shows the P4
headers for the gps signals: latitude and longitude.

Compiling context operations. The Poise compiler distin-
guishes between five classes of context operations: arithmetic
operations, bitwise operations, comparisons, context matches,
and membership tests. The first three classes are simpler to
handle, as they can be directly translated into their P4 coun-
terparts; the latter two require the compiler to generate ad-
ditional code components in P4. First off, all context fields
are compiled into header definitions and references to these



header gps_t {
bit<32> lat;
bit<32> lon;

} //ctxt def.

control Ingress {
//switch ingress def.
apply {
bit<32> d;
d=lat”2+lon"2;

//part of control Ingress.

table admin {
key = {dev: exact}
actions = {allow, deny}
const entries = {

//part of control Ingress
register<32> monitor;
register<32> ts;

if (admin.isvalid()) {

if (d < thresh)

“Bob”: allow

//update monitor result

struct headers { fwd (1) ”Alice”: allow monitor++;
ethernet_t ether; else } //other users denied } else if (NOW-ts > timeo){
ipvd_t ipv4; drop } //timeout
tcp_t tcp; } //context operations | .. monitor=0;
gps_t gps; apply (admin) }
} //ctxt stack def.  } ts = NOW;

(a) Security context (b) Context operations

(c) Constant lists + membership tests

(d) Network-wide monitors

Figure 4: The Poise compiler processes the key language constructs and generates P4 implementations. The P4 snippets shown
are simplified for clarity of presentation. For instance, in (b), the instantiation of the thresh register is not shown; in (d), the
timestamp of a packet is obtained via the ingress_global_timestamp field instead of a variable called NOW.

headers, as discussed above. Then, for arithmetic, bitwise, or
comparison operations over header fields, such as lat*lat,
sensors&0x01, or time<10, our compiler forms expressions
using the corresponding P4 operations over the headers. For
arithmetic operations, the current P4 specification supports ad-
dition, subtraction, and multiplication, which are all supported
by the Poise compiler. Notably missing from the list are di-
vision and modulo operations, which tend to be expensive to
implement in switch hardware (although sometimes they can
be approximated by bit shifts if the divisor is a power of two).
If a Poise program involves operations unimplementable in
P4, our compiler would reject the policy during compilation.

As an example, Figure 4(b) shows simplified P4 snippets
that our compiler generates for computing the distance be-
tween a pair of GPS coordinates to a pre-defined center (as-
sumed to be (0, 0)). Our compiler also generates conditional
statements based on the policy, e.g., if-else branches to
test if the distance exceeds a threshold. Context operations
are performed within an apply block at control Ingress,
which means the switch ingress pipeline.

Context matches, on the other hand, are compiled into
match/action tables in P4. A match can be an exact match,
which requires matching a context field against a list of keys
bit by bit. It could be a range match, which compares a con-
text field against a range of values in TCAM (Ternary Content
Addressable Memory). By default, Poise uses 4-byte headers
for exact matches, and 2-byte headers for range matches. Con-
text matches can also be performed against a user-specified
constant list that defines membership, e.g., a set of devices
owned by the sales department. For a list with k items [aj,
az, -+, akl,our compiler will construct a match/action table
with k entries, where each entry corresponds to an item in
the list. The actions associated with the entries depend on the
mode of access defined in the policy program.

For instance, consider the P4 snippet in Figure 4(c), which
shows a match/action table generated from a constant list of
two entries: Bob and Alice. The table implements an exact
match on the device ID field. If the context match is suc-
cessful, then the device will be granted access; unsuccessful
matches indicate that the context fails the membership test,

and these requests will be denied access.

Compiling stateful monitors. The Poise compiler generates
a read/write register for each stateful monitor in the policy, as
well as code components for detecting monitored events and
updating the monitor values. Such monitors are implemented
as a number of registers in P4, which are supported in switch
SRAM. Updates to the registers are linespeed, so they can
be performed on a per-packet basis. Specifically, for each
incoming packet, the generated code checks whether this cor-
responds to an event of interest, using either a context match,
or a match over a membership list. If this event should be
monitored, the code additionally updates the monitor register
and records the event timestamp. If a long time has elapsed
after the previous event took place, then this register is cleared
to indicate that the monitored event is absent. As discussed
before, monitors enable network-wide policies that make co-
ordinated security decisions—a policy can test if a monitored
event is detected, and make decisions accordingly.

Concretely, the snippet in Figure 4(d) shows an example.
It instantiates a 32-bit register to hold the monitor value, and
updates the register when the admin context is active in a
packet. The code associates a timestamp to this monitor, and
resets the monitor upon timeout.

Compiling actions. An action will be taken on each packet
to represent the final decision made on its context. In P4, de-
cisions are represented by attaching special metadata fields to
a packet, which will be recognized and processed by a traffic
manager, which schedules packets to be sent on the correct
outgoing port(s) or dropped. Logging a packet is achieved by
setting the outgoing port to be the switch CPU.

Compiler optimizations. Programmable data planes have
three types of notable constraints. Stages: There is a fixed
number of hardware stages, and a packet can only match
against one single context table per stage. Tables: A single
stage can only hold a fixed number of tables. Memory.: Each
stage has a limited amount of memory.

The Poise compiler performs two types of optimizations,
which are particularly useful when Poise needs to compose
many policies together. (a) If multiple policies check against
the same context signal, our compiler will perform table dedu-



plication to eliminate redundant context tables and save mem-
ory. (b) If a policy performs more context checks than the
number of available stages, Poise will collapse the policy by
recirculating context packets to traverse the stages multiple
times, triggering different tables at each recirculation. This
addresses the switch constraint that a packet can only trigger
a single table per stage. Our optimization creates the illusion
of a larger number of stages with the cost of slightly increased
latency for recirculated packets. We refer interested readers
to Appendix A.2 for more details.

Summary. So far, we have described the basic compilation
algorithm as if each packet is tagged with context information.
This makes it easy for a switch to access a packet’s context
without keeping state, but it results in high traffic overhead.
Next, we will relax this assumption by the design of a stateful,
efficient, programmable in-network security primitive.

5 The In-Network Security Primitive

Poise has a security primitive that runs in a programmable
switch, which is dynamic, efficient, and programmable.

Goal: A dynamic and efficient security primitive. The in-
network primitive should ideally allow the level of protection
to be adjusted between per-packet and per-flow granularities,
by supporting a tunable frequency of context packets for each
connection. At one end of the spectrum, per-flow granularity
of protection degenerates into a static security mechanism that
does not support context changes within a connection. Thus
the protection is very coarse-grained, especially for long-lived
connections that persist for an extended period of time (e.g.,
push-based mobile services, such as email [93]). At the other
end, per-packet granularity is extremely fine-grained, but it
may incur unnecessary resource waste unless context changes
from packet to packet. As a concrete example, if there are
20 context fields across policies, then each client needs to
send 20 x 4/500 = 16% extra traffic, assuming typical 500-
byte packets and 4-byte context fields. The Poise primitive
supports a property that we call subflow-level security, which
achieves a tunable tradeoff between security granularity and
overhead when enforcing context-aware security.

Property: Subflow-level security. We state this property
more formally below. Consider a sequence of packets in the
same flow ¢;, p;;,-- -, pi,,Cit1, Where ¢ represents a context
packet and p a data packet. Subflow-level security requires
that decisions made on the context packet c¢; should be applied
to subsequent data packets p;;,i; € [i1,ik], but fresh decisions
should be made for data packets that follow c¢; 1. The deci-
sion granularity can be tuned by f, the frequency of context
packets. This results in an overhead of s- f, where s is the size
of context packets. For instance, assuming 80-byte context
packets and a frequency of one context packet per ten seconds,
the overhead would be as low as 8 bytes per second.

Challenges. Designing a primitive that supports subflow-
level security, however, requires tackling three key challenges.

FullConn Decision
Key (3-tuple) Val Idx Decision
10.0.0.2:22:TCP 1 0 1 (Allow)
10.0.0.9:80:UDP 2 % 1 0 (Drop)
10.0.0.7:ff:TCP 0 2 1 (Allow)
10.0.0.6:80:UDP 3 —” 3 2 (DPI)

D Cache

M/A tables Hash 3-tuple Decision
OxFE32 | 10.0.0.1:80:TCP |0 (Drop)
Ox88EA | 10.0.0.2:22:TCP |1 (Allow)
D 0xBC42 | 10.0.0.7:52:UDP |1 (Allow)
Registers = 4A52 | 10.0.0.9:A7:UDP |2 (DPI)

Figure 5: The key/value store with example entries.

(a) Keeping per-flow state requires a prohibitive amount of
memory, but modern switches only have O(10MB) SRAM.
Poise addresses this by approximating per-flow state using a
on-chip key/value store. (b) Buffering control plane updates is
necessary for handling new flows. Although context changes
can be entirely handled by the data plane, new flows require
installing match/action entries from the switch CPU, which
takes time. Before updates are fully populated, Poise uses
another hardware data structure akin to a cache to make con-
servative decisions for buffered flows. (¢) Mitigating DoS
attacks that could arise due to the interaction between data
and control planes. This defends against malicious clients that
craft special context packets to degrade the performance of
selected clients, or even the entire network. In the next three
subsections, we detail each of these techniques.

5.1 Approximating per-flow state

The key problem in the first challenge stems from the fact
that the switch needs to process data packets without contexts
attached to them. Therefore, when a switch processes a con-
text packet, it needs to remember the decision and apply it to
subsequent data packets in the same connection, until the next
context packet refreshes the decision. A naive design would
require keeping per-flow state on the switch, which leads to
high memory overhead.

To address this, Poise approximates per-flow state using a
key/value store consisting of two data structures, FullConn
and Decision, as shown in Figure 5. The FullConn schema
is [sip, sport, proto]—idx. The match key is the
source IP/port and protocol for the client, and the value is an
index to a register array R. The indexed register R [idx] holds
the decision made on the latest context packet within this
connection, and it can be refreshed entirely in the data plane.
Insertions to this key/value store require control plane involve-
ment, but they are relatively infrequent and only needed for
new connections. Since the match key does not include the
destination IP/port, this introduces some inaccuracy when
a client reuses a source port across connections. Therefore,
for short-lived connections, data packets may see slightly
outdated decisions. To ensure that such inaccuracy does not
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Figure 6: Poise uses a combination of match/action tables and
stateful registers to process context and data packets.

misclassify a “deny” as an “allow”, we blacklist the source IP
addresses that have recently violated the enterprise policy: all
connections from these clients would be blocked temporarily.

5.2 Buffering control plane updates

Insertions to FullConn requires control plane involvement, so
they take much longer than updating policy decisions for an
existing connection. As a result, when data packets in a new
connection arrive at the switch, the FullConn match/action
table may not have been populated with the corresponding
entry yet. To address this, Poise uses a level of indirection
by creating a small hardware Cache to buffer decisions for
pending table updates, which resides on the data plane and
can be updated at linespeed. All decisions in Cache are up-to-
date, since writes to this cache are immediately effective; but
this table has a smaller capacity. The FullConn table takes
more time to update, but it holds more connections.

The cache design. As shown in Figure 5, Cache has a
fixed number of entries. Our implementation uses 26 entries,
which corresponds to the output size of a CRC-16 hash func-
tion. Each entry is of the form h— [sip, sport, proto, dec],
where h is the CRC hash of the flow’s three tuple, i.e.,
h=CRC(sip, sport,proto), and dec is the decision made
based on the context packet. The size of Cache is 2! x (7 +
1)=0.38 MB memory. When Poise receives a context packet
from a new connection (Figure 6a), it immediately adds the
entry to Cache, and then invokes the control plane API to
insert the match/action entry in FullConn. Since CRC func-
tions are not collision resistant, different connections may be
mapped to the same entry; hence, we evict old entries upon
collision. When a data packet comes in (Figure 6b), Poise
first matches it against the FullConn table and applies the
decision upon success. If there is no entry for this packet,

then Poise indexes the Cache table instead. Upon a cache
hit, the corresponding decision is applied to the data packet.
Upon a cache miss, one of two situations has happened: a)
the switch has not seen a context packet from this client, or
b) the entry for this client has been evicted due to collision.
Poise distinguishes between these cases using the following
cache eviction algorithm.

Handling cache evictions. Upon collision, we always re-
place the existing entry with the new one. This is because
Poise has already invoked the control plane to install the cor-
responding entry in FullConn, which will complete in time.
Therefore, if a packet does not match any entry in FullConn
and experiences a collision in Cache, we use a special instruc-
tion to recirculate the packet inside the data plane to delay its
processing. Recirculated packets are sent back to the switch
ingress to be matched against the FullConn table one more
time. This recirculation is repeated up to k times, where the
latency is chosen to be larger than the expected time for the
control plane to populate an entry. If a packet has reached
this threshold, and the FullConn table still has not been pop-
ulated, then we consider this to be case a) above and drop the
packet.

Early denies. To reduce the amount of recirculated packets,
we make early decisions to drop a packet if its context is
evaluated to a “deny”. Specifically, when evicting an entry
from Cache, we add its source IP address into a blacklist
Bloom filter (BF in Figure 6) if the decision is to drop. Source
addresses in BF represent devices that have violated the policy
recently and need to be blacklisted for a period of time. If a
packet cannot find an entry in either Cache or FullConn, but
hits BF, we drop it without recirculation. Since Bloom filters
can only produce false positives, but never false negatives, we
will always correctly reject an illegal connection. However, we
might err on the conservative side and reject legal connections
as well, if the BF produces a false positive. This is a rare
case, however, as this will only happen during the window in
which FullConn has not been populated, the Cache entry has
been evicted, and the BF happens to produce a false positive.
Nevertheless, Poise periodically clears this Bloom filter to
reduce false positive rates, which grow with the number of
contained elements. When the BF is being cleared, packets
will be recirculated until the operation completes.

5.3 Handling denial-of-service attacks

Since Poise requires extra processing inside the network, we
need to ensure that it does not introduce new attack vectors.
Specifically, we have identified two potential denial-of-service
attack vectors and hardened the primitive against them.

Total residency attacks. Different from stateless, IP-based
routing, Poise keeps state in the FullConn table. Therefore,
an attacker could initiate many new connections and try to
a) overwhelm the FullConn table and b) constantly involve
the switch CPU to install new entries. A defense, for instance,



could rate limit the number of active connections and to con-
trol the growth of the FullConn table. In addition, the Poise
control plane periodically scans through the FullConn table
and expires inactive entries (using hardware support) to make
room for new connections.

Cache eviction attacks. The above algorithm defends against
a malicious attacker that generates many connections to over-
whelm the FullConn table. However, an attacker can also
launch targeted DoS attacks without initiating a suspiciously
large number of connections. Specifically, she could send
context packets more frequently than usual, and try to evict
cache entries from Cache that are mapped to the same bucket.
Although the attacker may not know the hash seed, therefore
cannot predict who would be the victim of the attack, she
could degrade the performance of the connection that shares
the same hash entry, if one exists. To prevent such attacks,
we enhance the cache eviction strategy. When replacing an
old entry e, with a new entry e,, we check whether these two
entries are from the same source IP. If so, we immediately
replace the entries. If not, we opportunistically perform the
replacement. By doing so, we limit the amount of damage an
attack can cause by sending frequent context packets.

6 Orchestrating Poise

Next, we explain how we orchestrate the Poise in-network
primitive using a software controller, and describe the client
module that runs on the mobile devices for context collection.

The Poise controller. Poise has a controller that hosts the
compiler and distributes the generated data plane programs
to the switches. Unlike an OpenFlow-based SDN controller,
which actively makes decisions on behalf of the data plane, the
Poise controller is not involved in packet processing, so it does
not create any software bottleneck. The main controller runs
in a remote server, and uses well-defined RPC calls to com-
municate with programmable switches’ local control planes.
Each switch has a local control plane running on the switch
CPUgs, and it configures the switch data plane by installing
match/action table entries, loads new switch programs, and
serves as the primary logging component.

The Poise client module. Our client module PoiseDroid is in-
stalled at BYOD devices to collect context signals and embed
them into packets. PoiseDroid does not require modification
of existing Android apps, but rather acts as a pre-positioned
kernel module. When the device connects to the enterprise
network, it needs to go through an authentication phase (e.g.,
using WPA3 [95], or additionally using two-factor authenti-
cation [71]). The module stops propagating context signals
when the device leaves the network. Figure 7 shows the archi-
tecture of PoiseDroid with three submodules.

The context submodule. It collects context information from
the Android system services [97] using usermode-helper
APIs [34, 63], and it registers a virtual device to redirect
the context data to our kernel module. The information to be

Usermode
Helper API

Virtual " Sensor Information
Device - Collector

’/Sys(em Information ‘
Collector

Android [ Packet Monitor e {GHIIES

System Services
(e.g., location)

- — N Kernel
Context Tagger ‘ Socket

Context Sub-module Network Sub-module

[ LSM-based Guard | [ ExtendedLSM |
LSM-based Security Sub-module
Kernel Space (kernel layer)

User Space (system layer)

Figure 7: The architecture of the PoiseDroid client module.

collected is specified by a BYOD client configuration, which
includes a) app information, such as UIDs of active apps, b)
system information, such as screen light status, and c) device
status, such as accelerometer and gyroscope readings.

The protection submodule. It protects the registered virtual de-
vice, the system tools (e.g., dumpsys), and the system services
using LSM hooks in Android kernel [40, 72]. It monitors in-
vocations of selected system calls, such as ptrace(), open(),
mprotect() and chown(), and prevents any other processes to
write false data to these protected components.

The network submodule. It crafts and sends special context
packets with signals needed for the enterprise policies, using a
frequency specified in the configuration. When an app opens
a new socket, or when an existing socket sends packets after
being dormant for a while, it also generates a context packet.

7 Limitations and Discussions

Authentication. As an access control mechanism, Poise fo-
cuses on resource authorization and should be used with an
authentication method, e.g., the SAE (simultaneous authenti-
cation of equals) protocol [57] in WPA3 [95], or two-factor
authentication with TOTP [71]. Only authenticated users can
further access enterprise resources in Poise.

Context integrity and privacy. One limitation of the cur-
rent Poise prototype is that it relies on external cryptographic
mechanisms to secure context packets. This is because today’s
P4 switches do not have built-in support for cryptography.
Adding cryptography support in P4 switches can be achieved
in two ways. First, the P4 standard allows cryptographic mod-
ules to be added as “externs”. The main Poise program can
invoke such an extern module to encrypt, decrypt, and authen-
ticate context packets. Second, a recent project SPINE [48]
shows that the current P4 language is expressive enough to
implement a keyed hash function. SPINE further leverages
this to generate one-time pads to encrypt/decrypt IP and TCP
headers at linespeed. Poise could use a similar design, where
clients encrypt context packets and the switch decrypts them
using shared keys. To protect integrity, Poise can additionally
use the keyed hash function to generate a MAC (message
authentication code) of the context fields at the clients, and
verify the MAC at the switch. To protect against replay at-
tacks, the context packets also need to include timestamps or
sequence numbers. Either way, the Poise switch or the “ex-
tern” module needs to be configured with key pairs with each
enterprise client.



Existing security mechanisms in enterprise networks can
also offer some support. Typically, client devices connect
to the network via wireless access points (APs), and then
to the wired network. Communication between clients and
APs can be protected by WPA3 [95], and communication
between the APs and the wired network by MACsec [15];
both can protect the integrity and confidentiality of packets
and are secure against replay attacks [15, 95]. Under these
protections, context packets are always encrypted on (wired
and wireless) network links, therefore secure against network
reconnaissance attacks. However, supporting cryptography in
P4 switches would provide stronger, end-to-end guarantees.

8 Evaluation

In this section, we describe the experimental results obtained
using our Poise prototype. Our experiments are designed to
answer five research questions: a) How well does the Poise
compiler work? b) How efficiently can Poise process the
security contexts inside the network? c) How well does Poise
scale to complex policies? d) How much overhead does the
Poise client incur on mobile devices? and e) How does Poise
compare with traditional SDN-based security?

8.1 Prototype implementation

We have implemented the Poise prototype using 5918 lines
of code in C/C++ and Python [20]. The Poise compiler is
implemented in C++, using Bison 2.3 as the syntax parser,
and Flex 2.5.35 as the lexer. It can generate switch programs
in P4 for the Tofino hardware. The PoiseDroid client module
is implemented in C as a pre-positioned kernel module on
Linux 3.18.31. It extends the default LSM framework, SEAn-
droid, to implement the protection submodule. For evaluation,
PoiseDroid runs on a Pixel smartphone with a Qualcomm
Snapdragon 821 MSM8996 Pro CPU (4 cores) and Android
v7.1.2. The Poise control plane is implemented in Python,
and runs as part of the control plane software suite for the
Tofino switch. It manages the match/action table entries and
reconfigures the data plane programs. It can also be config-
ured to invoke the hardware-based packet generator on the
switch to send traffic at linespeed (100 Gbps per port), which
we have used to test the latency and throughput of Poise.

8.2 Experimental setup

We set up a testbed with one Wedge 100BF Tofino switch and
two servers. The Tofino switch has a linespeed of 100 Gbps
per port, and 32 ports overall, achieving an aggregate through-
put of 3.2 Tbps when all ports are active. It also has a
200 Gbps pipeline—separate from the 32 regular ports—for
handling packet recirculation. Each server is equipped with
six Intel Xeon E5-2643 Quad-core CPUs, 128 GB RAM, 1 TB
hard disk, and four 25 Gbps Ethernet ports, which collectively
can emulate eight forwarding decisions (one per server port).
The servers are connected to the Tofino switch using breakout
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Figure 8: Poise compiles the policies efficiently.

cables from the 100 Gbps switch ports to the 25 Gbps server
Ethernet ports. At linespeed, the testbed should achieve full
100 Gbps bandwidth per switch port.

On the first server, one of its ports is configured to be an
enterprise server, and other ports are configured to emulate
a DPI device, a traffic scrubber, and a logger, respectively.
The other server functions as an enterprise client. The mobile
traces are first collected from our Pixel smartphone, and then
“stretched” to higher speeds to be replayed. The replay can
be initiated from a) the enterprise client, or b) the hardware
generator for Poise at linespeed.

8.3 Compiler

We start by evaluating the performance of the Poise compiler
and its generated programs. All programs support one million
connections in the FullConn table.

Compilation speed. In order to understand the performance
of our compiler, we measured the time it took to generate
switch programs for each of the seven policies. We found that
compilation finished within one second across all policies. P1
and P3 took slightly more time than the rest, because they
involve more context fields and our compiler needs to generate
more logic for header processing. Figure 8 shows the results.
Generated P4 programs. The generated P4 programs have
855-975 lines of code, which are significantly more complex
than the original policy programs that only contain a few
lines of code. For one million connections across policies,
the utilization of Poise for SRAM (used for exact match) is
roughly 43%, for TCAM (used for longest-prefix match) is
below 1.1%, and for VLIWs (Very Long Instruction Words,
used for header modifications) is below 7%.

8.4 In-network processing overhead

Next, we turn to evaluate the overhead of Poise in terms of
packet processing latency and switch throughput.

Packet processing latency. Poise increases the overhead of
packet processing, because it needs to process context headers
and approximate per-flow state. To quantify this overhead,
we have tested the latency for Poise to process a) a context
packet, b) a data packet, and compared them with c) the la-
tency for directly forwarding a packet without any processing.
Figure 9 shows that for all tested policies, the extra latency
on average is 72 nanoseconds for processing data packets,
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and 189 nanoseconds for processing context packets. In an
enterprise network where the round-trip times are on the order
of milliseconds, such a small extra latency is negligible.
Switch throughput. Next, we measured the throughput per
switch port using the hardware packet generator for stress
testing. The generator ingested mobile traces collected from
our phone, and stretched the trace to be 100 Gbps. Figure 10
shows the per-port throughput for all policies. As we can
see, although there is additional processing delay in Poise,
the pipelined nature of the switch hardware makes it achieve
full bandwidth nevertheless. In other words, Poise leverages
programmable data planes to enforce context-aware security
at linespeed, a key goal that we have designed for.

8.5 Scalability

Next, we evaluate how well Poise scales to complex policies.
As policies may perform different numbers of checks on dif-
ferent numbers of contexts, we define a “unit policy” to be
one that performs a single check on a single context. We then
create many unit policies, and use the Poise compiler to com-
pose them together. We characterize the complexity of the
composed policy in two dimensions: a) the number of checks
per context, and b) the number of contexts. For a), we further
distinguish between exact vs. range checks, and for b), we
distinguish between regular (i.e., non-monitor) vs. monitor
contexts. For instance, consider the following unit policies:

if match (usr==Bob) then fwd (mbox)
if match (lib==1.0.2) then fwd(server)

We say that the composed policy has two regular contexts and
performs two exact checks—one check per context.

Number of checks. Poise compiles each check into a
match/action entry, so the number of checks a switch can sup-

port depends on its available memory (SRAM and TCAM).
Exact checks (e.g., X==1) are supported by SRAM and range
checks (e.g., 10<X<20) by TCAM, so they are bottlenecked
by the SRAM and TCAM sizes, respectively. We first mea-
sured the maximum number of exact checks Poise can per-
form on a single context, by asking the compiler to compose
more and more unit policies until the compilation failed. We
found that our switch can support 1.2 million checks, which
are spread across 5 hardware stages. We then modified all
unit policies to perform range checks, and found that Poise
can perform 55 k checks, as the TCAM size is smaller.

Number of contexts. Poise compiles each regular context
into a match/action table, so the number of contexts is bot-
tlenecked by the number of tables a switch can support. We
increased the number of contexts (e.g., time, library version)
from one to the maximum until compilation failed, and found
that Poise can support a maximum of 40 contexts—each of
the 5 stages can support 8 context tables.

For each data point, we also measured the number of checks
Poise can perform per context. We found that the number of
checks per context decreases as we add more contexts, as
the context tables need to multiplex switch memory. With 40
contexts, Poise can perform 21 k exact checks or 0.8 k range
checks per context (Figure 11a). In other words, Poise can
support at least 21 k distinct context values (e.g., user IDs for
per-user policies) or 0.8 k distinct context intervals (e.g., time
intervals for time-based access control).

We then modified all unit policies to check against network-
wide monitors. A monitor is compiled into two tables—one
for monitor updates, and another for monitor checks. Poise
supports a maximum of 20 monitors in 40 tables. Policies
can also use a mix of monitors and regular contexts. The con-
straint on the number of monitors m and the number of regular
contexts c is 2 X m+ ¢ < 40, as they are all compiled into ta-
bles under the hood. In terms of the number of checks per
monitor, the results for a policy with m monitors are similar as
those for a policy with 2 x m regular contexts (Appendix A.3).

Overhead. We define a “baseline” to be the latency and
throughput for a unit policy, where a context packet traverses
the hardware stages exactly once without recirculation. A
packet with k contexts would be recirculated to traverse the
stages [g] times, every time matching against 5 tables, one in
each stage. At the maximum, Poise supports 7 recirculations
for 40 contexts at a latency of 6.5us (Figure 11b), which is still
orders of magnitude lower than typical enterprise RTTs (ms).
Recirculation also causes extra traffic overhead. We measured
the overhead using 1 million connections and one context
packet per second per connection. As Figure 11c shows, the
maximum recirculation overhead is 0.37 Gbps per port. A
monitor policy with m monitors has similar results as a policy
with 2 x m regular contexts (Appendix A.3). Exact and range
checks have similar results, as the types of checks do not
affect the number of recirculations.
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Figure 11: Poise can perform 1.2 million exact checks for a single context, or 21k exact checks for a maximum of 40 contexts.
Context packets with more than 5 contexts need to be recirculated multiple times; Poise supports a maximum of 7 recirculations,
which leads to a latency of 6.5us and an additional 0.37 Gbps traffic per port in a dedicated recirculation pipeline. Poise supports
fewer range checks (55 k for one context, 0.8 k for 40 contexts) than exact checks, as the former are supported in TCAM, which
is smaller than SRAM; but the latency and bandwidth overheads are similar, as they do not depend on the types of checks. Data
packets are not affected by policy complexity, as they simply look up the decisions from the connection table.

We note that recirculation traffic is contained in a dedicated
200 Gbps switch pipeline—it does not compete with normal
user traffic. Also, recirculation only incurs latency on context
packets, as data packets simply look up previous decisions in
a single stage traversal. Therefore, even when recirculating
context packets, Poise still processes data packets at baseline
latency and full linespeed (Figures 11b-11c).

Discussion: Per-user policies. Poise supports per-user poli-
cies by including the user ID as a context. Therefore, per-user
policies merely reduce the number of total contexts by one,
from 40 to 39. The number of user IDs Poise can check against
is 21k, assuming the policy has 39 contexts. As another di-
mension of constraint, assuming each user may launch 1k con-
current connections, then Poise would support a maximum
of 1M/1k=1k users. To put this into perspective, Microsoft
headquarter reports 80 k employees in 125 buildings [18];
assuming that each building has its own access control switch,
then every switch needs to support 0.64 k users.

8.6 Client overhead

We now evaluate the overhead of the client module, using
vanilla Android without PoiseDroid as the baseline system.
CPU overhead. We tuned the frequency at which the client
module sends context packets, and measured the CPU over-
head for each frequency. In a naive design where PoiseDroid
tags every packet with context information, the CPU over-
head is as much as 11%. With an optimized design where
the client module sends one context packet per second, the
CPU overhead is drastically reduced to 1.3%. Figure 15a in
Appendix A.4 shows the results.

Traffic overhead. Next, we measured the traffic overhead due
to the context packets. This experiment assumes four context
fields (16 bytes). We found that, at one context packet per
second, the traffic overhead is less than 0.01%, a negligible
amount. Figure 15b in Appendix A.4 shows the results.
Battery overhead. We used PCMark [35], a battery life

benchmark tool to test smartphones and tablets, to quantify the
amount of battery overhead. Table 1 in Appendix A.4 shows
the results. The overall overhead across benchmarked activi-
ties introduced by PoiseDroid is only 1.02%, and even for the
activities that introduce the highest overhead (i.e., writing),
the overhead is only 2.87%.

Overall benchmark. Next, we used CF-Bench, a comprehen-
sive benchmark tool designed for multicore mobile devices,
to quantify the overall overheads of PoiseDroid. This tool can
further measure the overheads introduced by native code, Java
code, and an overall benchmark score, where higher scores
mean better performance. Figure 16 in Appendix A.4 shows
that PoiseDroid only introduces 5%, 4%, and 5% additional
overhead for the native, Java, and overall scores.

8.7 Poise vs. OpenFlow-based SDN

Last but not least, we compare the paradigm of programmable
in-network security, as embodied in Poise, against the
paradigm of OpenFlow-based SDN security, in terms of a)
the speed for security decision change, and b) resilience to
control plane saturation attacks [82]. As we motivated before,
one key advantage of Poise over traditional SDN security so-
lutions is the avoidance of software-based packet processing
on a remote controller, because Poise uses programmable data
planes to directly process context signals in hardware.
Setup. We set up a Floodlight v1.2 SDN controller on a sep-
arate server, and configured other servers to use the controller
via OpenFlow as implemented in OpenvSwitch v2.9.2. We
implemented our example policies (P1-P7) as software “SDN
apps” in the controller. These apps listen for client context
updates, and push OpenFlow rules to the clients for access
control. This closely mirrors the setup in state-of-the-art secu-
rity solutions based on OpenFlow-based SDN [58, 75, 82].
Defense agility. We quantify the defense agility of a secu-
rity system by measuring 9, the time it takes to change its
access control decision after seeing a new context packet. For
OpenFlow-based SDN, this includes the round-trip time delay
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Figure 12: Poise is resilient to control plane saturation attacks.
Attack strength is measured by the number of context changes
per second that the attacker generates. In the OpenFlow-based
solution, new connections and context changes would gen-
erate PacketIn and FlowMod events between the OpenFlow
switch and the central controller.

for the context packet to reach the controller and for the con-
troller to push new OpenFlow rules back to the OpenvSwitch.
(We did not include the additional latency of OpenvSwitch
because a hardware OpenFlow switch can reduce this signif-
icantly.) We found that, depending on the network load, the
agility of the baseline system is & =5 ms—2.47 s. In compari-
son, Poise directly processes context changes on the fast path,
achieving 8 < 500 ns in all cases, which is three to seven
orders of magnitude faster than the baseline.

Control plane saturation attacks [82]. An attacker can also
create high loads on the channel between the data plane and
the control plane by generating a large number of context
changes. This effectively degrades the performance of legiti-
mate users for establishing new connections, as the PacketIn
messages go through the same channel. As Figure 12 shows,
the central controller struggles to keep up with the amount of
context changes that it needs to process. At an attack strength
of 1M context changes per second, legitimate clients clients
were not able to establish new connections (99%-+ connec-
tion requests from legitimate clients were dropped; the rest
experienced a latency 30x higher than normal on average).
Poise, on the other hand, processes context changes entirely
in the data plane at hardware speeds. The performance for
legitimate clients stays almost constant during the attacks.

9 Related Work

SDN/NFYV security. SDN/NFV-based solutions for enterprise
security started with SANE [46] and Ethane [45]. Recent
work also includes PSI [98], FortNox [77], PBS [58], Pivot-
Wall [75], OFX [84], and CloudWatcher [80]. Existing work
has also considered new attack vectors in SDNs [59, 82, 83,
96], such as control plane saturation attacks [82]. Poise lever-
ages the recent development of programmable data planes,
and develops defenses that are resilient to control plane satu-
ration attacks with much higher agility.

Context-aware security. Security researchers have recog-

nized the need for context-aware security to support fine-
grained, dynamic policies. Barth et al. [41] propose a logic
framework for contextual integrity. Recent work has devel-
oped various applications leveraging this concept. Contex-
IoT [60] analyzes UI activities, app information, and con-
trol/data flow information, and prompts users for runtime
permissions. FlowFence [51] runs applications in sandboxes
and enforces information flow control across IoT applications.
PBS [58] uses OpenFlow-based SDN for BYOD security. Yu
et al. [99] sketch a vision for using network function virtual-
ization for context-aware [0T security. DeepDroid [91] traces
IPC and system calls to achieve fine-grained security. Com-
pared to existing work, Poise designs a network primitive for
security enforcement, and has an end-to-end framework for
specifying, compiling, and enforcing declarative policies.

Policy languages. Most domain-specific languages for net-
working [38, 42, 69, 78, 79, 90, 98, 100] are not targeted
at security. Policy languages for network security also exist,
but we are not aware of an existing language that can sup-
port context-aware policies on programmable data planes.
For instance, PSI [98] uses finite state machines to specify
security policies, but it assumes that the policies are imple-
mented by general-purpose software; PBS [58] assumes a
traditional SDN environment. Poise builds upon an existing
SDN language (NetCore [69]), but adapts it for enforcing
context-aware security on programmable data planes.

Programmable data planes. Poise builds upon the emerging
trend of using data plane programmability [43, 44, 85] for in-
network computation, e.g., load balancing [65], network mon-
itoring [73], key-value cache [62, 66], and coordination [61],
but it focuses on a very different goal: security. The closest to
our work is a recent workshop paper [70], but it neither has a
full system implementation nor evaluation.

10 Conclusion

We have described Poise, a system that can enforce context-
aware security using a programmable, efficient, in-network
primitive. In Poise, administrators can express a rich set of
policies in a high-level language. Our compiler then compiles
the policies down to switch programs written in P4. These
programs run inside modern switches with programmable
data planes, and can enforce security decisions at linespeed.
Our evaluation shows that Poise has reasonable overheads,
and that compared to OpenFlow-based defense, it is highly
agile and resilient to control plane saturation attacks.
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A Appendix

In this appendix, we include more discussions and results.

A.1 Poise protocol format

In this subsection, we extend the discussion in §4.3 and de-
scribe the Poise protocol format in more detail. The Poise
client module periodically sends context packets for each ac-
tive connection. Context packets have the same flow tuples
(source IP, destination IP, source port, destination port) with
data packets from the same TCP/UDP flows. The only differ-
ences are that a) context packets have a special IP protocol
number (IPProto=143 for TCP, IPProto=144 for UDP; both

are unassigned protocol numbers [21]), b) context headers
come after the transport-layer (TCP/UDP) header, and c¢) con-
text packets do not have payload. Poise never propagates
context packets to external networks but rather drops them
at the switch, and it does not modify data packets. Figure 13
shows the format for TCP flows.

Data packet

Ethernet  IP (proto=6) TCP Payload

Context packet
Ethernet IP (proto=143) TCP Context

Figure 13: Context packets have a special IP protocol number.
Data packets from Poise clients have unchanged headers.

A.2  Compiler optimizations

This subsection extends §4.3 and describes in more detail the
compiler optimizations.

Table deduplication. Suppose that we would like to compose
two policies that perform checks on the same context type.
A naive compiler would simply compile each check into a
separate match/action table. With this approach, the number of
policies that can be supported would be limited by the number
of match/action tables in a switch. Depending on the switch
model, this number is on the order of O(10), which is quite
small. Our compiler can recognize that policies share the same
context type, and it merges checks on the same context type
by creating one table for each unique context across policies.
Then, it compiles each check into a match/action table entry
instead of a separate table. This optimization allows Poise
to scale the number of context types to the number of table
entries a switch can support, not the number of unique tables.
This number is on the order of O(1M).

Policy collapsing. Consider now a policy that checks many
context fields one by one, and only arrives at the final decision
afterwards. The key challenge for handling such a policy is
that these checks create “dependent tables”, which due to P4
constraints must reside in separate stages. In essence, such a
policy would result in a long chain of tables, which might ex-
ceed the number of available stages (O(1-10)) in a switch. Our
optimization collapses a chain of tables of length k into multi-
ple shorter chains ki, ky, .., k;, each of which stays within the
number of available stages. Due to another P4 constraint—a
packet can only match against a single table per stage, match-
ing against all subchains ki, k>, ..,k would require recircu-
lating the packet ¢ times, each for a subchain. Recirculation
of context packets would cause additional latency, as such
packets now need to traverse the switch multiple times before
finishing processing, and also additional recirculation traffic
in a dedicated switch pipeline.

A.3 Scalability

This subsection includes more results for §8.5. Figure 14
shows the scalability of Poise for monitor policies, in terms
of a) the number of monitors, and the number of checks per
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Figure 14: The scalability of Poise with monitor policies. The high-level takeaways are similar as those for regular, non-monitor
policies (Figure 11 in §8.5). The only difference is that a monitor uses two tables, whereas a regular context uses one table.

monitor (Figure 14a), b) the latency of context and data pack-
ets (Figure 14b), and c) the throughput of recirculated context
traffic and data traffic (Figure 14c¢).

Policies could also use a mix of monitor and regular context
types. At a high level, a monitor is just another type of context,
except that it uses two tables instead of one. Figures 17, 18,
19, and 20 present the scalability results assuming 1, 2, 5, and
10 monitors in the policies; the rest of the available tables are
used for regular contexts.

A.4 Client overhead

This subsection includes the full results for §8.6 on the client
overhead due to the extra PoiseDroid module.
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Figure 15: CPU and traffic overheads of PoiseDroid under
different frequencies of context packets. Baseline: Android.
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Figure 16: The overall overhead of PoiseDroid, as measured
using the CF-bench benchmark tool (higher is better).

Table 1: The battery overhead of PoiseDroid (lower is better).

Attribute | Overall | Browsing | Video | Writing | Photo | Data
Android 5493 4278 5458 4530 11432 | 4136
PoiseDroid | 5591 4303 5597 4660 11746 | 4145
Overhead 1.02% 0.06% 2.55% | 2.87% | 2.75% | 0.22%

CPU and traffic overheads. Figures 15a and 15b show the
CPU and traffic overheads at different frequencies of con-
text packets. For each data point, we uploaded a video file
of 1.73 GB to a remote FTP server using the mobile app
AndFTP [1], and measured the CPU overhead as collected
from the /proc/loadavg file. As we can see, if Poise were
to tag each data packet with context information, then the CPU
and traffic overheads are prohibitive (~10%). Because the in-
network primitive is stateful, it can remember past decisions
for each connection; this enables an optimized design where
client modules can send out context packets periodically. The
Poise primitive can look up its stateful data structure and
apply access control decisions accordingly. For instance, at
the frequency of one context packet per second, the CPU and
traffic overheads are both low enough to be practical.
Battery overhead. Table 1 shows the battery overhead of the
PoiseDroid client, as measured by PCMark [35]. PCMark
tests capture a wide variety of activities, such as browsing,
video playback, photo editing, writing, and data manipulation.
In the beginning of the experiment, the phone was charged
with full capacity (100%), and the tests ran until the battery
dropped to less than 20%. We can see that, the highest over-
head across all scenarios is only 2.87%.

Overall benchmark. Figure 16 shows the results obtained
by CF-Bench, a comprehensive benchmark tool for testing
multicore mobile devices. PoiseDroid introduces 5%, 4%, and
5% additional overheads for the native code, Java code, and
overall scores, compared to the baseline system of a vanilla
Android system without PoiseDroid installed.



Number of checks

M
q
100k [
b
10k
—&— Exact
1k Range
100 1 1 1 1
1 2 5 10 20 38

Number of regular contexts

(a) Num. of contexts vs. num. of checks

Latency (us)

—4— Context packet
F —— Data packet

o = N W~ OO N
T T

°- °- P
e ol s s e ol

1 2 5 10 20
Number of regular contexts

(b) Num. of contexts vs. latency

—. 100 el o L o

[}

Q

e}

S 90

5

o

S —— Data traffic

3 —=— Recirculation

£ 05 L

= I/
O A 1

1 2 5 10 20 38
Number of regular contexts

(c) Num. of contexts vs. traffic overhead

Figure 17: Scalability results for policies with one monitor and 1-38 regular contexts. The number of (exact or range) checks
Poise can perform is the same for a regular or monitor context. Similarly for all figures below.
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Figure 18: Scalability results for policies with two monitors and 1-36 regular contexts.
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Figure 19: Scalability results for policies with five monitors and 1-30 regular contexts.
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Figure 20: Scalability results for policies with ten monitors and 1-20 regular contexts.
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