
Development of Real-Time Smart City Mapping Utilizing Game Engines

Tucker Clark, Evan Brock, Dalei Wu, Yu Liang

Department of Computer Science and Engineering

University of Tennessee at Chattanooga, Chattanooga, TN 37403

Abstract— Game engines are ideal platforms to generate and
visualize digital twins of smart cities in real time. The real-time
mapping of a smart city faces two challenges: (1) streaming
data from Internet of Things (IoT) devices , (2) rendering a
high-throughput and heterogeneous digital twin. Current game
engine infrastructure is not built to handle the influx of real time
data streams from a diverse array of IoT devices, nor can they
render a real-time dynamic mesh streamed from a scanning
device such as a LIDAR. As meshes are the basic framework
needed to render digital twin objects that represent their real
word counterparts and real time IoT streams are necessary for
modeling an accurate digital twin, both of these issues must
be resolved in order to use game engines to create a digital
twin of a smart city. In this paper, we propose a networking
infrastructure capable of handling a wide variety of IoT devices
and a novel mesh rendering algorithm. Additionally, we provide
a quantitative error analysis. Experimental results show that
the proposed streaming method and rendering algorithm could
enable a game engine to efficiently generate a digital twin of a
smart city.

Keywords: LIDAR, mapping, GIS, augmented reality

I. INTRODUCTION

Visualization is one of the most powerful tools used by

computer scientists to portray the information that we gather.

Recently, visualization has become close to a requirement for

all subfields, due to the large amount of data generated by the

numerous different sources found in each domain. As fields

commingle, and interdisciplinary work becomes more and

more common, we will continually push our current tools to

their limits as they attempt to integrate with systems that they

were not built to mesh with. Every so often, a tool will fit

perfectly into an interdisciplinary application at a high level,

but will not have the underlying low level framework built to

interface with new and unique software. This is currently the

case with geographic information systems (GIS) and game

engines [1].

Game engines are often used to render large, detailed, 3D

environments, the same kind that geospatial experts seek to

replicate. The coordinate system within any game engine

can be used to replicate 3D localization of objects and

terrain, while taking advantage of their optimization and

portability. Both interactable and performant, game engines

seem to be the perfect candidate to visualize and interact

with the geographic environment, and thus are a near perfect

candidate to visualize a smart city [2]; industry clearly

agrees. Both Google and Mapbox have built APIs and SDKs

This work was supported by the National Science Foundation under grant
numbers 1647175 and 1924278.

in order to bring their infrastructure and frameworks into the

Unity game engine [3], [4].

But, game engines are just not built with IoT devices

in mind, which predominantly power the data pipeline of

any smart city. Game engines are simply not built to handle

live streaming data from unsupported objects, nor are they

built to render dynamically changing meshes defined by live

streaming data. In this paper, we describe both a framework

used to connect IoT devices to game engines through the

use of low level networking and a novel algorithm used

to circumvent current mesh rendering limitations found in

modern game engines, along with experimental results veri-

fying our theoretical findings. This enables both a data feed

and data visualization of a smart city in a game engine, a

desirable framework for geospatial experts seeking to model

infrastructure.

II. RELATED WORK

LIDARs are very desirable instruments for three-

dimensional mapping, because a basic mapping algorithm

involves two operations: acquisition of the LIDAR data, and

localization of sensors. Most previous work seek to local-

ize an object through deducing their own location through

LIDAR data [5], [6]. Other work uses a combination of

telemetry sensors and LIDAR data to achieve the same

purpose [7]. While these work great for object detection or

short term scans, they do not support collaborative scans,

where multiple scans can be stitched together automatically

through the geographical significance of their vertices in any

three-dimensional environment.

Using game engines for visualization of real GIS data

is uncommon, but [8] makes a notable step towards the

normalization of game engine mapping by developing an

application for 3D viewing of real data inside the game

engine, Virtools. They specifically note that their choice of

a game engine for 3D viewing is because of their “powerful

render engines that allow the visualisation of complex, highly

detailed landscapes in 3D in real-time”. These render engines

are desirable for allowing us to process and render data in

real-time, with acceptable performance

In this paper, a GPS is used for absolute localization,

and telemetry sensors for precise movements to store scans

with respect to geographical coordinates. Our algorithm

also allows for the reconstruction of an environment to be

observed in real-time. This is not an uncommon feature for

mapping technologies [9], but the implementation of our live

Authorized licensed use limited to: UTC Library. Downloaded on January 06,2021 at 06:35:40 UTC from IEEE Xplore. Restrictions apply.

maps on such a large scale inside a game engine has proven

to be very intuitive in our testing.

III. PROBLEM STATEMENT

Game engines have pros and cons for smart city mapping

applications. Game engines are development environment

that are created solely for the purpose of making video

games. Abstracting that, they are development environments

containing tools that make it easy to manipulate a virtual

environment.

To use a game engine to aggregate data streamed from

IoT devices, the software must be designed in such a way

that connectivity is supported to a wide variety of devices,

diverse in both operating system and in computational power.

This is the case with IoT devices. IoT devices are often low

power, low performance microcontrollers that run on some

type of embedded operating system, or run on a lightweight

distribution of Linux. In either case, the data sources for a

smart city, IoT devices, cannot connect to game engines as

a client using the networking modules built into most game

engines.

Another issue underlying game engines, is that they are

built to render objects fetched from secondary memory

periodically, such as when a new level or map is loaded

into RAM in order for the player to interact with it in game

[10]. In all cases, this object comes in the form of a 3D

mesh. In a smart city application, real world object data will

need to be streamed into the engine. In this case, the mesh

used to represent the object will not be known in advance,

but will be built procedurally as the information is streamed

into the engine. Game engines are currently not optimized

to handle this operation, as this feature would never need

to be present in a traditional game. Thus, it is the case that

the underlying data structures supporting mesh generation,

do not lend themselves to the scenario of a live, constantly

mutating mesh.

There has been research has been conducted on the dif-

ferent rendering methods available inside of current game

engines. But, to the best of our knowledge, no research

has revealed whether or not a game engine can handle live

streaming data from IoT devices. Most often, meshes begin

as raw point cloud data, coming from a scanning device such

as a LIDAR, which we will be using in our experiment to

generate point cloud data. So we ask: can a game engine

support the live streaming data from a wide variety of IoT

devices? If it can, can the game engine render this data in

real time?

IV. DATA PREPROCESSING

The data that is used to generate a scan is interpreted as

a collection of the geographical data from the drone and

the relative data from the LIDAR. The drone is responsible

for recording the offset of each scan, which is the vertical,

horizontal and orientation components difference from the

user-defined geographical zeroing point. The LIDAR detects

all objects within range and records their relative position to

the drone. The offset of the drone and the relative data are

processed every frame such that the offset is added to each

relative point to give each point geographical significance,

a process described in Equation 2. This allows us to take

multiple scans that will align automatically if parts of them

overlap. Keep in mind that the offset of the drone also

includes the orientation of the drone, so all recorded data

will always be placed on the same plane the drone is on

when a certain scan is recorded. This processed data is used

for all of the following rendering methods.

We consider X, Y, and Z to be the Cartesian components

for the three dimensional LIDAR data relative to the drone.

For a given point, n, the components of roll, pitch, and yaw

are κn, ρn, and ψn, respectively. The distance measured by

the lidar is returned as dn. For each point, κn and ρn are

usually the same as κn−1 and ρn−1 and only vary once the

LIDAR redefines as new scan with the new telemetry data,

which results in κn and ρn being updated. ψn will never be

the same as ψn−1, as well as dn This is because the LIDAR

will scan many points, returning a different ψn and dn for

each point before the κn and ρn are updated. The Cartesian

components Xn, Yn, and Zn of point n can be computed as





Xn

Yn

Zn



 =





dnsin(ψn) ∗ cos(κn)
dncos(ψn) ∗ cos(ρn)

dn

√

(sin(κn)sin(ψn))2 + (sin(ρn)cos(ψn))2



(1)

The derivation of components Xn, Yn, and Zn can be

explained as follows by assuming the drone rolls along the

Y-axis, pitches along the X-axis, and yaws along the Z-

axis. Xn is determined by every rotation of the drone except

for the rotation along the X-axis, which is pitch, ρ. The

value of dnsin(ψn) increases as ψ approaches 90◦ and 270◦,

because those are the angles perpendicular to the X-axis, and

therefore, the farthest away from it, increases the value of

this component. dnsin(ψn) is then multiplied by cos(κn) to

account for the return toward the X-axis as the drone rolls.

As the drone rolls farther, the X component becomes closer

to 0 as ρ approaches 90◦, because the scanned point would

be directly above or below the X axis in such a case.

Yn can be determined very similarly to the X component,

except it is unaffected by roll, κ. It approaches maximum

distance as ψ approaches 0◦ and 180◦. The value of the Y

component can also equal zero if ρ were to equal 90◦, where

the drone is in completely vertical pitch, in which case, the

Y component would be directly above or below the Y axis.

Determining Zn is slightly more complex, because all

orientations of the drone affect the vertical location of a data

point. The ρ and κ both affect the vertical position of a point.

The significance of ρ and κ varies based on ψ, because the

closer a point is to an axis that it is rotated around, the less

its vertical position changes. For example the significance of

the first half of the equation, dnsin(κn)sin(ψn), increases as

ψ approaches 90◦ or 270◦, at these points a change in κ is

most significant because the point is as far away as possible

from the axis it is being rotated around. Similar is true for

the second half of the equation, dnsin(ρn)cos(ψn), except a

change in ρ is most significant at a ψ of 0◦ and 180◦. Because

Authorized licensed use limited to: UTC Library. Downloaded on January 06,2021 at 06:35:40 UTC from IEEE Xplore. Restrictions apply.

of this relationship, as the significance of a change in one

component increases, the significance of a change in the

other component decreases. This is because as distance from

one axis of rotation increases, the distance from the other

axis of rotation decreases. The square root of the squared

components, dnsin(κn)sin(ψn) and dnsin(ρn)cos(ψn), is

taken to calculate the entire Z component.

It is important to note that ψn is representative of the same

axis that both the LIDAR rotates on and the drone yaws on.

Because of this, we compensate for the drone’s rotation such

that the ψn is always relative to an absolute point, and is not

affected by the yaw of the drone. We consider D to be the

Fig. 1: Application of a rotation of the drone in an indoor

environment

three-dimensional position of the drone in meters, and can

add geographical significance to any point by adding the X,

Y, and Z components of D (i.e., Dx, Dy, and Dz), to the

relative components of any point: Xn, Yn, and Zn. This will

allow us to produce the geographic set of coordinates, Gx,

Gy, and Gz. This is important because sometimes, when there

are no objects to represent the global location of the drone,

we need to place vertices for our point cloud with respect to

the global origin, rather than relative to the location of the

drone at a certain time.




Gx

Gy

Gz



 =





Xn

Yn

Zn



+





Dx

Dy

Dz



 (2)

V. 3D RENDERING

When rendering the data in a 3D environment, it is

important that the objects used to render can hold a global

position and be combined with old data seamlessly. The

amount of data rendered increases throughout a scan, mean-

ing a lightweight rendering method is highly favorable. It

is important that the algorithm chosen to do this performs

well, because if the frames per second (FPS) drops below

the scan rate of any scanning device, data will begin to be

thrown out, as it will possibly be updated before the next

frame is processed.

A. Rendering Methods

Point clouds have many properties that make them ideal

for mapping LIDAR data in 3D environments. The problem

is that we needed a point cloud that we could constantly add

data to, circumventing the array restrictions of most game

engines. There are several different ways to implement this.

We will be using the Unity game engine for the following

rendering methods.

1) Single Mesh

Game engines’ array restrictions prevent us from directly

appending new data to old data, but they do not prevent us

from redefining the data entirely, and including the newest

data. This can be used to restrict the amount of objects we use

to render the scene to only one, and hosting all the data from

it. This creates an object with rapidly changing geometry,

as more vertices are added to it each second. Every vertex

is positioned using the pre-processing algorithm described

section 4. This does not scale well because the more data is

being rendered, the longer the array is that must be entirely

redefined every time new data is available. This linear growth

can be seen in Figure 3.

2) Parallelized Meshes

Using a hybrid system of smaller meshes hosted by

individual objects, we were able to significantly improve

scalability. The premise is to use the drone’s location at a

given time to generate an object every frame. When that

object is generated, it retrieves the current data from the

LIDAR and hosts the data to itself. This essentially creates an

object whose virtual location is representative of the drone’s

location at a given time, and whose mesh vertices represent

each individual point that was recorded while the drone was

at that position. This results in many objects with vertices

that resemble a LIDAR scan. In our implementation, about

70 points are hosted per object, which has a considerable

impact on performance since 16.67 objects are being gener-

ated per second, but has a logithmic growth function. It does

not drop below 60 FPS until about 60 seconds of scanning

and bottoms out at around 30 FPS, which is sufficient, but

still undesirable. This can be seen in Figure 3.

3) Compressed Parellelized Meshes

Compressed parallelized meshes strongly resemble the

previous method, but with an additional measure of opti-

mization. Almost all of the load from the previous method

comes from the amount of 3D objects required to host all

of the vertices, the vertices themselves have very little effect

on performance. This can be fixed by hosting more than

70 vertices per object, so that less of them are required for

the same data. By recording global data using the method

described in equation 2, we are able to use it periodically

to generate a new object that hosts thousands of points, and

then deleting all the objects hosting identical information.

This compression results in far fewer objects required, and

results in superior performance and scalability, as seen in

figure 3.

Authorized licensed use limited to: UTC Library. Downloaded on January 06,2021 at 06:35:40 UTC from IEEE Xplore. Restrictions apply.

B. Dynamic Scan Construction

The performance of this solution can be further improved

by combining all of these smaller meshes once the scan is

saved. Since a save deems the scan is complete, it is no

longer necessary to create new objects or have more than

one to represent the most recent changes to the scan. This

is done by recording the global coordinates of all vertices

throughout the scan, then reconstructing the scan attached to

a single object. This allows the scan to still be dynamically

constructed during the scan for operator convenience and

preserves resources once it is no longer necessary to modify

the scan.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

In order to evaluate the performance of the mentioned

rendering algorithms, we are conducting an experiment that

connects a LIDAR, carried by drone, to a Unity environment,

where rendering takes place. The data being rendered is

supplied from the LIDAR in the form of a point cloud. A

Raspberry Pi acts as the drone’s micro controller controlling

data streams to and from the LIDAR and drone.

A. Experiment Setup and Data Flow

Our networking scheme is built from scratch and uses

only the built-in socket functions on each machine, the

differing languages are primarily used as a way to access

these functions. Our networking scheme is divided into

two sections: the Unity server and the raspberry pi micro-

controller.

Networking in any game engine is one of the most

important features it can offer. Communication speed and

integrity are of the highest priority in multiplayer games,

which our application essentially is. Unity offers a wide suite

of networking features, but the majority of these features

only work between two Unity environments, where client and

server must be on a machine that is capable of running Unity.

In the case of smart cities, almost all devices used for data

acquisition do not meet the requirements to run Unity. Our

code on both ends: client and server, must be built from basic

networking libraries in languages that each device supports.

This puts limitations on the code that we use in Unity. We use

the basic C# library, which uses OS level sockets no matter

what platform the application is running on. When building

our project to a Windows, iOS, or Android machine, it will

always use OS level sockets to communicate. It follows

that our communication format must also be language and

platform agnostic, as a variety of IoT devices will be used.

One of Unity’s best features is the ability to parse a string in

JavaScript Object Notation (JSON) format directly into the

3D environment through the use of Game Objects, which are

discussed later. It is a safe bet to assume that a given IoT

device can send a string over the network, which means it

can send a string formatted as a JSON. We do just that. Once

the JSON is received through the Unity socket, it is parsed

directly into the 3D environment.

For our testing, we used a DJI M100 with a SLAMTEC

RPLiDAR A2 mounted on top, producing two-dimensional

scans aligned with the drone.

B. Localization of the Drone in a Virtual Environment

Localizing the drone correctly and proportionally in a vir-

tual environment is necessary to properly generate a virtual

map. Most 3D environments’ coordinate system consists of

arbitrary units, so it’s important to unify all sensors and

hardware to use the same unit. It required considerable post-

processing on the host side of the network to convert various

inputs with inconsistent formats into meters.

1) GPS Localization

The GPS coordinates in the DJI SDK are represented

in geographic radians, which is a simple conversion in

geographic degrees. From there, we must use a function of

latitude to convert longitude to meters, since the significance

of a degree of longitude varies at different latitudes.

40075 ∗ cos(latitude)/360 (3)

The conversion for latitude is simply done with a constant.

Once the data is in the correct unit, we can properly represent

the horizontal position of the drone using the two values to

represent both axes.

2) Orientation of Drone

Knowing the orientation of the drone is required due

to the variability of the LIDAR data with respect to the

physical drone’s orientation. This must be represented in the

virtual environment to generate map data along the plane

of the drone’s current orientation. The orientation of the

drone is represented by a compass and a gyroscope. These

components need to be mapped to an object in the virtual

environment that represents the orientation of the physical

drone. The result is a virtual drone that yaws, rolls, or pitches

identically to the physical drone.

3) Derivation of Drone’s Altitude

The altitude of the drone is measured by barometer,

which are not suited for accurate sea level measurement, as

fluctuations in air pressure can easily cause tens of meters

of error in the measured altitude in the same location when

measured at different times. However, we can retrieve the

sea level altitude at any global coordinate from an online

database and use it as an offset, and use the barometer as

a relative measurement. This makes any fluctuations in air

pressure limited to the duration of the flight, since the drone

can be re-zeroed once it lands in the same spot it took off

from.

4) Localization Inaccuracies

The accuracy of our scans is limited by our hardware,

primarily our GPS and barometer. With the solution to our

barometer inconsistencies resolved, we can now focus on

the accuracy problems relating to the GPS when relying

on it for centimeter-level precision. The GPS itself is rated

to be accurate within a 15 meter radius. The drone uses

this GPS only for calibrating itself via satellite, and the

precision of the location information that it sends is the result

of it using an accelerometer in combination with the GPS

Authorized licensed use limited to: UTC Library. Downloaded on January 06,2021 at 06:35:40 UTC from IEEE Xplore. Restrictions apply.

to estimate more precisely the difference even the smallest

movements make in the recorded coordinates. This does not

affect the local scan quality, but it does affect the accuracy

of the recorded coordinates each scan is associated with.

This present problems only when multiple adjacent scans

are stitched together. They do not always align properly, but

they are generally always in the right orientation, and the

right relative direction from adjacent scans. This could be

improved by using more accurate hardware, or by matching

similar sections of the scans, which would require all scans

to be done adjacently.

C. Error Breakdown

To further characterize the errors introduced during the

aforementioned drone-positioning process, Figure 2 provides

a visual representation of all possible sources of error relative

to the orientation of the drone, presented from three different

views of the drone: top view, rear view, and side view,

respectively. The drone has lateral error on all three axes,

as well rotational error on all three axes. In addition to this,

it has rotational error from the LiDAR, and distance error

from the LiDAR’s laser. All of these are defined relative to

the airframe of the drone and are listed in Table I [11].

Fig. 2: Error Components





σtx

σty

σtz



 =





σx wx cos(θ)
σy wy sin(θ)
σz wz rz









1

d
σd



 (4)

TABLE I: Comprehensive Sources of Positional Error

GPS Error σx , σy

Barometer Error σz

Drone Orientation ρ (pitch), κ (roll), ψ (yaw)

Orientation Error σρ (pitch), σκ (roll), σψ (yaw)

The angle of LiDAR θ
LiDAR Angle Error σθ

LiDAR Range Error σd

where

wx , sin(θ) sin(σθ) + sin(θ) sin(σφ) + cos(θ) sin(σφ) (5)

wy , cos(θ) sin(σθ) + cos(θ) sin(σφ) + sin(θ) sin(σκ) (6)

wz ,

√

(sin(θ)sin(σκ))2 + (cos(θ)sin(σρ))2 (7)

rz ,

√

(sin(θ)sin(κ))2 + (cos(θ)sin(ρ))2 (8)

Equations (4)-(6) can be described as a breakdown of the

significance of certain error sources under certain circum-

stances. As such, many of the sources of error are amplified

or reduced depending on the recorded angle of the scanned

point. One linear source of error is distance, as all sources of

error except σx, σy, σz, and σd are increased by the distance

of the scanned point.

The quantification for σtz is slightly different because

the effects of pitch and roll both manipulate the vertical

position of a scanned point, while the yaw of the drone,

when compensated for in pre-processing, does not.

D. Results and Discussion

Fig. 3: Comparison of performance of rendering methods.

The combination of geographic localization and relative

mapping results in a powerful application that can be used

to update current geographic databases easily, or construct

a new one from scratch. This is due to all scans containing

data relating to their real world coordinates, which makes

them very easy to locate in a 3D environment.

When we take the real world environment in Figure 5 from

Google Earth, and scan it in two separate flight sessions, the

Authorized licensed use limited to: UTC Library. Downloaded on January 06,2021 at 06:35:40 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: The building and the field are scanned separately,

but are combined automatically in a 3D environment

Fig. 5: Building and nearby field for reference. Coordinates:

35.04276671,-85.29910206

result is still a single large scan, with a seamless border

between the two.

The results shown in Figure 4 very closely represents the

distinctive features in the environment, such as the walls of

the facility and the trees surrounding it, but it does struggle

to represent the ground when scanning the field. This is

because our results were recorded with a two-dimensional

LiDAR where the horizontal configuration of the LiDAR

made it difficult to scan the ground. This resulted in a low

point density on areas defining the ground, and during post-

processing, the density was not high enough to produce a

distinctive plane. While some areas of the scan could be

improved, the project shows promising application for real

time mapping with respect to previous data.

The quality and density of the scan could be improved

greatly by using a three-dimensional LIDAR, which would

also help scan the ground, since the drone would not have

to perform aggressive maneuvers to point the sensor at

the ground. However, the concept and functionality can be

applied to virtually any scanning hardware.

VII. CONCLUSIONS

In this paper, we have proposed both a networking

paradigm and a unique algorithm for rendering real time

dynamic meshes in a game engine, both key features in

using a game engine for the modeling of a smart city.

Experimental implementations have shown FPS increases

that are 25% higher for a runtime of 120 seconds and

33% higher for a runtime of 180 seconds than the current

methods implemented by Unity, an industry leader in game

engine design. This paper brings to light a fundamental

issue underlying the implementation of mesh rendering in

game engines, specifically for dynamic meshes that change

according to a real time stream.

ACKNOWLEDGEMENT

The authors would like to thank Dakila Ledesma and

Maxwell Omwenga for their helpful discussion and sugges-

tions.

REFERENCES

[1] C. Andrews, “Gamification in gis and aec,” [online] Available at:
https://www.esri.com/arcgis-blog/products/arcgis/3d-gis/gamification-
in-gis-and-aec/ [Accessed on May 30, 2020], Feb. 2020.

[2] C. Rusu, “Ar, vr, gamification: cutting-edge technologies applied
in smart cities,” [online] Available at: http://citisim.org/ar-vr-
gamification-cutting-edge-technologies-applied-in-smart-cities/
[Accessed on May 30, 2020], 2018.

[3] Maps SDK for Unity Overview - Google Maps
Platform Gaming Solution [Online]. Available:
https://developers.google.com/maps/documentation/gaming/overview musk
[Accessed on May 30, 2020].

[4] Maps for Unity. [online] Available at: https://www.mapbox.com/unity/
[Accessed on May 30, 2020].

[5] Z. J. Chong, B. Qin, T. Bandyopadhyay, M. H. Ang, E. Frazzoli,
and D. Rus, “Synthetic 2D LIDAR for precise vehicle localization in
3D urban environment,” in Proc. IEEE International Conference on

Robotics and Automation, Karlsruhe, Germany, May 2016.
[6] ——, “Mapping with synthetic 2D LIDAR in 3D urban environment,”

in Proc. IEEE/RSJ International Conference on Intelligent Robots and

Systems, Tokyo, Japan, Nov. 2013.
[7] I. Toroslu and M. Doğan, “Effective sensor fusion of a mobile robot

for SLAM implementation,” in Proc. The 4th International Conference

on Control, Automation and Robotics, Auckland, New Zealand, April
2018.

[8] P. Greenwood, J. Sago, S. Richmond, and V. Chau, “Using game
engine technology to create real-time interactive environments to assist
in planning and visual assessment for infrastructure,” in Proc. Interna-

tional Congress on Modelling and Simulation, Cairns, Australia, July
2009.

[9] P. Agrawal, A. Iqbal, B. Russell, M. K. Hazrati, V. Kashyap, and
F. Akhbari, “PCE-SLAM: A real-time simultaneous localization and
mapping using LiDAR data,” in Proc. IEEE Intelligent Vehicles

Symposium (IV), Los Angeles, CA, Jun. 2017.
[10] B. Klein, “Managing the scalability of visual exploration using game

engines to analyse UHI scenarios,” Procedia Engineering, vol. 169,
pp. 272–279, 2016.

[11] N. May and C. Toth, “Point positioning accuracy of airborne LiDAR
systems: A rigorous analysis,” in Proc. Photogrammetric Image Anal-

ysis, Munich, Germany, Sept. 2007.

Authorized licensed use limited to: UTC Library. Downloaded on January 06,2021 at 06:35:40 UTC from IEEE Xplore. Restrictions apply.

