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Abstract—Autonomous cognitive ground penetrating radar
(ACGPR), carried by drones or other robotic platforms, may
perform robust and accurate subsurface object detection and
recognition in varying environments based on real-time data pro-
cessing and decision making. However, limited system computing
resources and intelligence generating capability pose significant
challenges for the operations of such systems. To address these
challenges, in this paper we propose an ACGPR enabled by edge
computing (EC) and reinforcement learning. Specifically, an edge
computing based system architecture is presented to utilize edge
resources for real-time intelligence generation. A reinforcement
learning approach is developed as the decision-making model
for the ACGPR to adaptively adjust its operational parameters.
Simulation results show the accuracy and efficacy of the proposed
ACGPR system. The framework also provides insight into the
design of autonomous cognitive industrial Internet of things (IoT)
supported by edge computing and machine learning.

Index Terms—Autonomous cognitive GPR, reinforcement
learning, edge computing, signal processing

I. INTRODUCTION

Ground penetrating radars (GPRs) have been extensively

used in many industrial applications, such as coal mining,

structural health monitoring, subsurface utilities detection and

localization, and autonomous driving [1], [2]. A GPR system

transmits an electromagnetic wave into the ground at several

spatial positions and receives the reflected signal to form

GPR data, called A-scans, B-scans and C-scans with different

number of dimensions [1], [3]. Through processing these

types of GPR data, subsurface objects can be detected and

recognized.

Although GPRs are effective in many applications, most of

existing GPR systems are human-operated due to the need of

experience in operation configurations based on the interpre-

tation of collected GPR data. GPR-based subsurface survey

is complicated as various sensing environment and subsurface

objects have dissimilar features. In actual GPR survey, GPR

sensing quality could be affected by many factors, including

environmental factors, such as soil dielectric properties, envi-

ronment noise, clutter, multipath effects, combined near and

far field effects, and GPR operational system parameters, such

as wavelength (or frequency), waveform, polarization, wave

timing, and transmitter and receiving antennas direct coupling,

etc. In addition, the subsurface objects have different structural

features and electromagnetic (EM) properties that affect GPR

Fig. 1. A drone-borne GPR transmits radio signals into the ground and
receives the signals reflected by a underground object.

EM wave propagation differently. Hence processing GPR data

and extracting information of interest are challenging and

involve a series of sophisticated steps. In nearly all existing

GPR systems, GPR data processing is performed off-line

where the data are collected and stored on field, and then

post-processed on a computer after the scanning. Such a

processing approach is time-consuming and lacks adaptivity.

Also, some applications involve sensing tasks within haz-

ardous and inaccessible environments. To achieve optimal

sensing performance, it is desired to design an autonomous

cognitive GPR (ACGPR) system that can operate adaptively

under varying sensing conditions. Specifically, the system is

able to adaptively move with a robotic platform and adjust its

operational parameters through real-time interaction with the

sensing environment.

There has been some work done on the study and de-

velopment of autonomous GPRs [4]–[6]. Cornick et al. [4]

describe a localizing GPR system fused with GPS, LiDAR

and camera hooked at the bottom of an autonomous vehicle

for autonomous ground vehicle localization. The system al-

lows real-time creation of single-track maps with online data

processing, as well as real-time localization of the vehicle to a

prior map. In [5] the authors developed an autonomous robotic

system employing GPR probing of glacier surfaces for void

detection in ice. Supervised machine learning with pre-trained

models was applied to automatically classify data into crevasse

and crevasse-free classes. Foessel et al. [6] described a sled-
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mounted GPR integrated with position and latitude instrument

for autonomous search for antarctic meteorites. Although the

aforementioned systems have used robotic systems to move

GPR scanners, GPR moving and operational parameters were

not adaptively adjusted on the fly.

The concept of cognitive radar was first proposed in [7]

where recursive cognitive cycles are performed through a

feedback mechanism to dynamically tune radar operational

parameters and continuously improve sensing performance.

The cognition is based on real-time GPR data processing,

which requires significant computing and storage capability

of the system. However, typical ACGPR systems, such as

drone-borne GPR, as shown in Fig. 1, have limited computing,

storage, and power resources.

Edge computing (EC) provides promising support for the

implementation and operation of ACGPRs. Edge computing

aims at pushing the computation, communication, and storage

resources from the remote data center to the edge of network

[8]–[10]. The name “edge” typically signifies the point at

which traffic enters or exits the network, for example, data

gateways to collect data from sensors or user devices. EC

is expected to reduce the computing latency and the burden

of backbone, and enable analytics and intelligence generation

to occur at the source of the data. In an edge-computing-

enabled ACGPR system, the proximity of edge servers to

the ACGPR sensor may satisfy requirement for real-time

or low-latency transmission of data and control feedback.

Also, for the purpose of resource conservation, the ACGPR

sensor may offload some of the computation tasks to an edge

server. In contrast, traditional remote cloud computing services

are not suitable for ACGPR due to the intermittent network

connectivity and long communication latency. There has been

some work done on the research of edge computing for the

support of real-time and/or autonomous systems [11], [12].

Although edge computing makes it very promising to

develop an ACGPR , there are still several significant re-

search challenges that need to be addressed. One of the

major challenges is the online intelligence generation in the

context of edge computing to enable a resource-constrained

GPR to autonomously and adaptively perform sensing tasks

in unknown environment. Existing robotic or drone-borne

GPRs are human-controlled with prior knowledge of the

environment [13]. In reality, however, these human-controlled

systems lack flexibility, scalability, and efficiency. Also, the

knowledge regarding the environment is normally limited or

unavailable. Therefore, a methodology allowing GPR to learn

to make decisions on missions through exploring unknown

environment is needed.

As a computational methodology for automatic decision-

making of intelligent agents in uncertain environments, rein-

forcement learning (RL) has progressed tremendously in the

past decade [14]. RL is mainly concerned with how RL agents

ought to take actions in an environment so as to maximize

some notion of cumulative reward. The full potential of RL

requires an agent to directly interact with the environment to

attain a flow of real-world experience. RL methods have been

(a) Traditional GPR

(b) Cognitive GPR

Fig. 2. The operational flows of a traditional GPR (a) and a cognitive GPR
(b).

successfully applied on the operation of autonomous systems

[15], [16].

This paper is focused on the development of an edge

computing and reinforcement learning framework that enables

autonomous cognitive GPR (ACGPR). First, an edge com-

puting architecture for ACGPR is developed. Functions of

different modules of the architecture are explained. Second, a

Q-learning approach with proper reward function is developed

to learn a policy that directs the ACGPR’s actions in an

unknown environment. To the best of our knowledge, this is

the first work based on edge computing and reinforcement

learning for the development of ACGPR.

II. SYSTEM ARCHITECTURE

The tuning of operational system parameters of a ACGPR,

such as wavelength (or frequency), waveform, polarization and

wave timing, can lead to considerable improvement in the

quality and scope of gathered information. Fig. 2(a) shows

the conventional mode of ACGPR operation where an expert

sets the operational parameters into an optimal configuration

based on prior experience with similar past situations. This is

an iterative time-consuming process. The conventional mode

is not suitable for continuous long-time operations, especially

in a complex environment inaccessible to humans.
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Fig. 3. The architecture of the proposed edge computing (EC)-enabled autonomous cognitive GPR (ACGPR).

The concept of cognitive GPR was proposed in [7] where

intelligence is generated on the fly to adaptively adjust the

operational parameters based on data analysis and feedback

control. As shown in Fig. 2(b), a cognitive GPR consists of

an adaptive GPR transceiver, a perceptor module, a memory

module, and a cognitive analyzer. The operation of the cog-

nitive GPR follows a perception-action cycle: first, the GPR

transceiver collects the reflected wave data about subsurface

objects and sends them to the preceptor. Then, the preceptor

processes and analyzes the data to extract signature patterns

and format a perception of subsurface conditions. The memory

module has a geographic information system (GIS) database

containing attributes about environment conditions and spatial

locations. The cognitive analyzer carries out computational

learning based on both the processing results from the percep-

tor and the prior knowledge about the environment from the

memory module to produce intelligent response for the control

of radar transceiver reconfigurations. During this process,

collected GPR data can also be integrated with other data

acquired by IoT devices such as positioning sensors and soil

moisture sensors. Once receiving the intelligent feedback from

the cognitive analyzer, the adaptive GPR transceiver adjusts its

operational parameters.

Although the concept of cogitive GPR is promising for

detection and recognition of subsurface objects, it is chal-

lenging to develop an ACGPR with resource-limited mobile

robotic platforms, such as unmanned aerial vehicles (UAV) and

unmanned ground vehicles (UGV). Both the perceptor module

and the cognitive analyzer need sufficient computing capacity

to perform real-time data analysis. A large memory capacity is

required to maintain and update the prior knowledge available

to the system.

In view of the advantage of edge computing that brings

computing and storage resources to edge devices, we propose

an edge computing based system architecture for ACGPR,

as shown in Fig. 3 [17]. The system mainly includes two

parts: the front end and the back end. The front end is

mobile and includes a GPR transceiver for launching and

receiving electromagnetic waves, a microcomputer for local

computation, and a wireless access point for communicating

with the edge server. The back end of the ACGPR resides at

the edge server and includes the perceptor module, the memory

module, and the cognitive analyzer.

The perception-action cycle of the edge computing enabled

ACGPR incorporates the communication between the front

end and the back end, and can be described as follows. The

GPR transceiver at the front end captures the reflected wave

data about underground objects. There are several types of

computation tasks that need to be performed over the GPR

data, such as data preprocessing, data compression, region-

of-interest identification, and object detection and recognition.

Based on the resource constraints and the delay performance

requirement, a scheduler running within the microcomputer

at the GPR front will decide whether each task should be

performed locally at the front end or offloaded to the edge

server at the back end [17]. Following the decision, the

microcomputer either executes a task locally or offloads the

task. With the related information from the GPR front end, the

cognitive analyzer at the edge server performs machine learn-

ing and generates control command for the GPR transceiver

recalibration. The control command will be wirelessly sent

back to the GPR front-end. As a result, the operational

parameters of the GPR is adjusted in a self-adaptive manner,

and will be continuously updated as the GPR scanner explores

the environment.

For a detailed discussion about the computation tasks of-

floading method, the interested readers are referred to refer-

ence [17]. This paper will focus on the implementation of the

cognitive analyzer module based on reinforcement learning.

III. THE COGNITIVE ANALYZER BASED ON Q-LEARNING

The cognitive analyzer is a critical module of the proposed

ACGPR. It produces intelligent responses to control the GPR

movement and its operational configurations based on the

collected GPR data and prior knowledge about GPR measure-

ment. This section presents a reinforcement learning approach

to the implementation of the cognitive analyzer. Specifically
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Fig. 4. An autonomous cognitive GPR, performing subsurface sensing for a
buried L-shaped pipe.

a near optimal ACGPR sensing algorithm based on ǫ-greedy

Q-learning is developed.

A. Modeling of Autonomous Cognitive GPR Sensing

In view of typical missions of the proposed ACGPR system

and its limited energy resource, it is considered in this work

that the goal of the proposed ACGPR is to detect a subsurface

object in some unknown environment with minimum latency

and energy consumption.

Let sk = (xk, yk, Ek) ∈ S denote the system state in each

time epoch k, where xk and yk are the horizotal coordinates

of the GPR location in a three-dimensional environment, as

shown in Fig. 4. Ek is the amount of remaining energy of the

battery powering the GPR.By observing the state sk the GPR

chooses an action ak = (nk, sk, ek, wk, pk, fk) ∈ A where

nk, sk, ek, wk denote the actions of moving north, south, east,

west, respectively, and pk and fk are the adopted transmit

power and radio frequency, respectively. Let rk specify the

immediate reward the GPR agent attains after taking action

ak at state sk and transitioning to state sk+1. Thus, rk can be

defined as a reward function: rk : SXA −→ R.

The action variables are optimized in each time epoch to

maximize the long-term accumulated reward. In addition, the

state transition and reward are stochastic and can be modelled

as a Markov decision process, where the state transition

probabilities and reward depend only on the environment

and the obtained policy. The state transition probability P =
(sk+1, rk|sk, ak) is defined as the probability of transition

from state sk to state sk+1 with the reward rk when the action

ak is taken according to the policy π. Therefore, the long-term

expected reward is given by

V (s, π) = Eπ

K∑

k=0

γkrk (1)

where γ = (0 ≤ γ ≤ 1) is the discount factor and E indicates

the statistical conditional expectation with the state transition

probability P.

B. The Reward Function

It is assumed that at the start the ACGPR has no knowledge

of the environment. Through exploration over time, the GPR

agent learns a policy that maximizes the long-term reward.

Fig. 5. 1A and 1B show the entropy values with respect to B-Scan’s scan axis
and two-way time, respectively. OTSU [18] thresholds of 0.3793 and 0.95 for
1A and 1B were used to identify points on the graph that fall below them
and forms a valley. 2A and 2B are a one to one mapping with 1A and 1B
that shows the exact region where entropy values are low. 3A indicates the
identified region-of-interest (ROI) in red boxes derived by superimposing 2A
on 2B to detect multiple hyperbola on a B-Scan.

Specifically the agent would receive a higher reward when it

detects a subsurface object using less energy in a shorter time

period. The reward function rk can be defined as

rk = a
Cmax

Ck

+ b
pmax

pk
+ c

tmax

tk
(2)

Ck = fEα(t) + gEα(s) (3)

where a, b, c, f, g are the weight coefficients of different quan-

tities; Cmax, pmax, tmax are the maximum entropy, maximum

transmit power, and the sensing deadline respectively; pk is

the GPR transmit power, tk is the actual time spent, and Ck

denotes the sum of entropy where Eα(t) and Eα(s) are Renyi

entropy that characterizes the singularity of the captured GPR

data. Higher data singularity, corresponding to lower Renyi

entropy, indicates higher chance of detecting the subsurface

object. The calculation of Eα(t) and Eα(s) will be explained

later as shown by Eq. (6) and Eq. (8), respectively.

In radargram, the region-of-interest (ROI) data have dissim-

ilar features from the background data. By performing statisti-

cal analysis to evaluate data singularity, ROI data segments can
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be identified. Then by checking corresponding coordinates,

the location and burying depth of a subsurface object can be

determined. In this study, Renyi entropy analysis [18], [19] is

implemented to search for ROI.

For GPR data processing, Renyi entropy characterization is

developed to identify the singular region. In particular, a high

Renyi entropy value indicates high degree of data similarity

while a low entropy value highlights high degree of data

singularity. Assume the received GPR reflection signal is Y (t),
it can be described as

Y (t) = D(t) + S(t) (4)

where D(t) represents the reflection signal from the object

of interest; S(t) models remaining interference and noise

upon preprocessing. In calculation, power normalization is

first performed with the summation of the power of the same

time index data points on different traces. The normalization

equation is expressed as

yi(t) =
||Yi(t)||

2

∑M

i=1
||Yi(t)||2

(5)

where yi(t) is the normalized signal, i is the trace index, M

is the total number of traces included, and t is the time index

of pulse data on each reflection trace waveform. Upon power

normalization, a generalized Renyiś entropy is calculated to

assess data singularity over wave travel time along Y -axis

Eα(t) =
1

1− α
loge

M∑

i=1

yi(t)
α. (6)

where Eα(t) is the entropy quantification, and α denotes the

entropy order. Eq. (6) is equivalent to the basic Shannon

entropy when α equals 1.

Subsequently, Renyi entropy calculation is applied to scan-

ning traces along X-axis

yj(s) =
||Yj(s)||

2

∑T

j=1
||Yj(s)||2

(7)

where yj(s) is the normalized signal, j is the time index of

pulse and T is the total number of time indexes; s is the trace

index of pulse data. Then the Renyi entropy to assess data

singularity over scanning position along X-axis is

Eα(s) =
1

1− α
loge

T∑

j=1

yj(s)
α. (8)

Fig. 5 1A and 1B show the entropy values Eα(s) and

Eα(t) with respect to B-Scan’s scan axis and two-way time,

respectively. The four low entropy value regions that fall below

the OTSU threshold in Fig. 5 1A along the scan axis are 100

- 201, 382 - 413, 607 - 722, and 987 - 106, each indicating

the presence of a subsurface object. Likewise in Fig. 5 1B is

the region 49 - 100 along the two-way time axis. These values

are marked one-to-one onto the original B-Sans as shown in

Fig. 5 2A and 2B, which are superimposed to form Fig. 5 3A

displaying the exact ROI marked with red boxes.

Algorithm 1: Autonomous Cognitive GPR sensing optimiza-

tion algorithm based on ǫ-greedy Q-Learning

1 Initialize learning rate α ∈ (0 < α ≤ 1), epsilon ǫ = 0.9,

discount factor γ ∈ (0 ≤ γ ≤ 1), EPS DECAY = 0.9998,

power max, environment

2 Initialize Q(s, a), for all s ∈ S, a ∈ A
3 Set x = 1, Maximum epoch X

4 for x ≤ X do

5 obs = env.reset();

6 e← random number from (0,1);

7 if e < ǫ then

8 Choose action ak randomly;

9 else

10 Choose action ak according to

11 argmaxak∈A Q(sk+1, a)
12 end

13 Generate B-Scan and calc. Renyi entropy;

14 Calculate Ck by Eq. (3);

15 if Ck+1 ≤ Ck then

16 rk = aCmax

Ck

+ bpmax

pk

+ c tmax

tk
;

17 Ck = Ck+1;

18 done = True

19 else

20 done = False

21 end

22 new obs = env.(obs);

23 maxa Q(sk+1, a) = np.max(q table[new obs]);

24 if done = True then

25 Qnew = rk;

26 else

27 Qnew = (1− α) ∗Q(sk, ak)

+α ∗ (rk + γ.max
a

Q(sk+1, a))

28 end

29 Update Q(sk, ak) with Qnew;

30 Set sk+1 = (xk+1, yk+1);
31 ǫ *= EPS DECAY;

32 end

The entropy analysis is an intensive computation process

that highly demands for computing power and CPU time. To

leverage the strength of edge computing, in the proposed edge

computing enabled ACGPR system, the entropy analysis is

most likely implemented on the edge server instead of on the

front-end microcomputer.

C. The Proposed Q-Learning Approach

In reality, the state transition probability P is difficult to

obtain due to the uncertainty of the sensing environment. In

this work, a model-free reinforcement learning approach, Q-

learning, is investigated to solve the decision-making problem

for optimal ACGPR sensing. The optimal policy π∗ will be
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derived to maximize the long-term reward V (s, π). For any

given state s, the optimal policy π∗ can be obtained by

π∗ = argmax
π

V (s, π), ∀s ∈ S (9)

We denote the Q-value, Q(s, a), as the expected accumulated

reward when taking an action ak ∈ A following a policy π for

a given state-action pair (s, a). Thus, the action-value function

Q(s, a) can be defined as

Q(s, a) = Eπ[rk + γQπ(sk+1, ak+1)|sk = s, ak = a] (10)

In our proposed Algorithm 1, Q(s, a) is the value calculated

from reward function Eq. (2) for any given state s and action

a, and is stored in a Q-table which is built up to save all

the possible accumulative rewards. The Q-value is updated

during each time epoch if the new Q-value is greater than the

current Q-value. The Q(s, a) is updated incrementally based

on the current reward function r and the discounted Q-value

Q(sk+1, a), ∀a ∈ A in the next time epoch. This is achieved

by the one-step Q-update equation:

Q(sk, ak)← (1− α).Q(sk, ak) + α(rk + γ.max
a

Q(sk+1, a))

(11)

where rk is the immediate reward for the current state, α is the

learning rate (0 < α ≤ 1) and γ discount factor (0 ≤ γ ≤ 1)
of the learning algorithm. In each time epoch, the Q-value

is calculated in the next step by taking into account all the

possible actions that could be taken, and then the maximum

Q-value is chosen and the corresponding action is recorded.

To navigate through the unknown states instead of trusting

the learned values of Q(s, a) completely, the ǫ-greedy ap-

proach is used in the Q-learning algorithm with epsilon decay

factor to strike a balance between the exploration and exploita-

tion dilemma. Specifically, a random number e = (0 < e ≤ 1)
is picked and if it is less than ǫ the agent selects a random

action, otherwise chooses an action that maximizes Q(sk+1, a)
as shown on lines (6-11) of Algorithm 1.

TABLE I
RELATIVE DISTANCE BETWEEN THE ACGPR AND THE SUBSURFACE

OBJECT, AND THE RESPECTIVE ENTROPY VALUES WITH RESPECT TO SCAN

AXIS AND THE TWO WAY TIME DERIVED FROM THE B-SCAN X AXIS AND

Y AXIS RESPECTIVELY, Ck DERIVED FROM EQU. (3)

.

Distance

(m)
Traces

Entropy w.r.t

scan axis

(Eα(s))

Entropy w.r.t

two way time

(Eα(t))
Ck

1 21 7.65 1.58 1.538
2 23 8.48 1.57 1.675
3 25 5.79 1.56 1.225
4 27 6.11 1.55 1.277
5 30 4.66 1.54 1.034
6 33 4.78 1.53 1.057
7 38 3.47 1.525 0.833
8 42 3.36 0.152 0.585
9 50 2.76 1.51 0.712
10 60 2.62 1.506 0.688
11 75 2.50 1.5 0.667
12 100 2.28 1.49 0.628
13 150 2.09 1.48 0.595
14 300 1.09 1.43 0.42

Fig. 6. Learning curves of different epsilon values ǫ = {0.2, 0.5, 0.9} applied
to the autonomous cognitive GPR with 25k episodes.

Fig. 7. Convergence performance of the proposed ǫ-greedy Q-learning
algorithm in terms of the average cost.

IV. PERFORMANCE EVALUATION

In this work simulation is curried out to evaluate the

proposed ACGPR. GprMax [20], designed for modeling GPR,

is used to simulate a GPR agent that is configured to operate in

two radio frequency bands, 400 MHz and 1.6 GHz. Selecting

different radio frequencies and moving in different directions

are considered as the possible actions of the GPR agent.

Based on the relative distance between the GPR and the

subsurface object, corresponding B-Scan can be generated as

the collected observation data from the environment. Renyi

entropy is calculated with respect to scan axis and two-way

time as shown in Table I.

To evaluate the proposed Q-learning algorithm, its per-

formance with epsilon ǫ = {0.2, 0.5, 0.9} and learning rate

α = {0.01, 0.2, 0.7} is measured. High long-term reward r of

20.04 is achieved by the ACGPR when ǫ = 0.9, learning rate

α = 0.1, discount factor γ = 0.95, and the epsilon decay =

0.9998.

Fig. 6 shows the learning curves of different epsilon values

ǫ = {0.2, 0.5, 0.9} applied to the ACGPR with 25k episodes.
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Fig. 8. Learning curves of different learning rate values α = {0.01, 0.2, 0.7}.

It illustrates a high epsilon value close to 1 enables the agent

to learn to achieve a higher long-term reward of approximately

20.04 while a lower epsilon value close to zero (i.e. 0.2 and

0.5) enables the agent to achieve a descent long-term reward

of 17.1 and 18.9, respectively.

Fig. 7 illustrates the convergence performance of the pro-

posed Q-learning algorithm, where Y-axis presents the average

cost C, in each episode. It is observed that the average cost

is converged to stable values below zero from episode 15K

onward, where the ACGPR was able to locate the subsurface

object accurately with the shortest time period.

Different configurations of learning rate α were carried out,

as shown in Fig. 8. It can be observed that high Learning rates

outperform lower learning rates.

V. CONCLUSIONS

In this paper, we proposed an autonomous cognitive GPR

(ACGPR) system enabled by edge computing and reinforce-

ment learning. The system architecture of the ACGPR was

presented. A typical perception-action cycle of the ACGPR

was explained. To adaptively adjust the movement of the GPR

scanner and its operational parameters with the constraints of

operational latency and power resource limitation in an un-

known sensing environment, an ǫ-greedy Q-learning algorithm

was developed to derive the optimum policy which tells the

action of the ACGPR system at a given state, hence achieving

a long-term reward for accurately identifying a subsurface

object. Simulation was conducted to demonstrate the efficacy

of the proposed system.

In real-world scenarios with high-dimensional observation

spaces Q-learning algorithm is intractable because a huge

size of memory is needed to store all the Q-values. Studies

show that Deep Q-Network (DQN) algorithm may address

this issue. However DQN can only handle the cases with

discrete and low-dimensional action space [21]. Since ACGPR

sensing is a physical control task with continuous and high-

dimensional action spaces, as future work we will consider the

Deep Deterministic Policy Gradient (DDPG) method which

concurrently learns a Q-function and a policy [21].
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