New York Journal of Mathematics
New York J. Math. 26 (2020) 92-115.

Generalized Z-homotopy fixed points
of C,, spectra with applications
to norms of MUy

Michael A. Hill and Mingcong Zeng

ABSTRACT. We introduce a computationally tractable way to describe
the Z-homotopy fixed points of a Cy-spectrum FE, producing a genuine
C., spectrum E"% whose fixed and homotopy fixed points agree and are
the Z-homotopy fixed points of E. These form the bottom piece of a
contravariant functor from the divisor poset of n to genuine C,,-spectra,
and when E is an Neo-ring spectrum, this functor lifts to a functor of
Noo-ring spectra.

For spectra like the Real Johnson—Wilson theories or the norms of
Real bordism, the slice spectral sequence provides a way to easily com-
pute the RO(G)-graded homotopy groups of the spectrum EMZ giving
the homotopy groups of the Z-homotopy fixed points. For the more
general spectra in the contravariant functor, the slice spectral sequences
interpolate between the one for the norm of Real bordism and the es-
pecially simple Z-homotopy fixed point case, giving us a family of new
tools to simplify slice computations.

CONTENTS

Introduction

Representations and Euler classes

Quotienting by ay(q)

The Z-homotopy fixed points of hyperreal bordism spectra

Ol W=

Towards the homotopy Mackey functors of MU(&))/ ax(29)
References

Received August 31, 2018.
2010 Mathematics Subject Classification. 55Q91, 55P42  55T99.

93
96
97
104
112
114

Key words and phrases. equivariant homotopy, slice spectral sequence, homotopy fixed

points.
The first author was supported by NSF Grant DMS-1811189.

ISSN 1076-9803/2020

92


http://nyjm.albany.edu/nyjm.html
http://nyjm.albany.edu/j/2020/Vol26.htm

Z-HOMOTOPY FIXED POINTS 93

1. Introduction

In describing the category of K-local spectra [8], Bousfield considered a
“united” K-theory, combining the fixed point Mackey functor for the Cs-
spectrum of Atiyah’s Real K-theory [3] with Anderson and Green’s “self-
conjugate” K-theory Kgc [1, 11]. Self-conjugate K-theory assigns to a space
X the isomorphism classes of pairs (F,¢), where E is a complex vector
bundle on X and where ¢ is an isomorphism

ES E.
This can be described as the homotopy fixed points of KU with respect to
the Z action given by having a generator act via complex conjugation. Since
Real K-theory is cofree, this is equivalently the Z-homotopy fixed points of
the Co-spectrum Kp.

Atiyah’s Real K-theory is part of a bi-infinite family of genuine equivari-
ant cohomology theories built out of the Fujii-Landweber spectrum of Real
bordism [10, 23] and out of the norms of this to larger groups [17]. In the
Cs-equivariant context, foundational work of Hu—Kriz described Real ana-
logues of many of the classical spectra encountered in chromatic homotopy
[20], and Kitchloo-Wilson have used the Real Johnson-Wilson theories to
describe new non-immersion results [22]. In chromatic height 2, the corre-
sponding Real truncated Brown—Peterson spectrum can be taken to be the
spectrum of (connective) topological modular forms with a I';(3)-structure
[19].

The norm functor allows us to extend these classical chromatic construc-
tions to larger groups G which contain Cy, starting with the universal case
of MUy [17]. This gives the “hyperreal” bordism spectrum

MU(@) — Ng2MUR,

and the localizations of quotients of it play a role in G-equivariant chromatic
homotopy theory. For example, recent work of Hahn—Shi shows that if G is a
finite subgroup of the Morava stabilizer group S,, which contains Co = {1},
then there is a G-equivariant orientation map

MU 5 B,

a hyperreal orientation of E,, [14].

In all of these cases, we have a finite, cyclic group C,, acting on a spectrum.
A choice of generator of that cyclic group gives a surjection Z — C,, and
this allows us to form the Z-homotopy fixed points for any C,-spectrum.

Theorem 1.1. For any C,-spectrum E, there is a cofree C,-spectrum E"%
such that for all subgroups Cyq C Cy,, we have

(EhnZ) Ca ., Eh(%z)

9

the homotopy fized points of E with respect to the subgroups 7.
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The reason we care about this generality is that it allows us to embed
the Z-graded homotopy groups into more general RO(G)-graded homotopy
Mackey functors.

Corollary 1.2. The homotopy groups of the Z-homotopy fixed points are
the Z-graded piece of the RO(Cy,)-graded homotopy groups of E'"Z.

These RO(C),)-graded homotopy groups give information about the ori-
entability of representations with respect to the theory E"% and about the
image of the representation ring in the Picard group, as in [4].

Including the representation gradings simplifies many of the computa-
tions and it allows for an interesting generalization. The C,-spectra E"%
have another interpretation that makes leverages this extended grading and
provides intuition. Associated to any representation V of C,, for which
V& = {0}, we have an Euler class

ay: S0 — SV,

These Euler classes play a fundamental role in equivariant homotopy theory.
Inverting ay gives a model for the nullification which destroys any cells with
stabilizer a subgroup H such that V' # {0}, and varying the representation
allows us to isolate particular conjugacy classes of stabilizers. These classes
and some of their basic properties are reviewed in Section 2.

The Cp-spectrum E"7Z is the quotient of E by ax(1y, where \(1) is the
faithful, irreducible representation of C,, given by choosing a primitive nth
root of unity. The representation A(1) is itself part of a family of repre-
sentations A(k), indexed by the integers. If we instead quotient by other
fixed-point free, orientable representations of C),, then we produce other,
interesting spectra.

Theorem 1.3. We have a contravariant functor from the divisor poset of
n to Cy-spectra, given by

d E/CL)\(d).

Moreover, if E is an O-algebra for an Ne-operad O, then for all d | n,
E/ayay is an O'-algebra for some Noo-operad O under O that depends only
on d, and the maps above out of E/ayq) are maps of O'-algebras.

The functor '+ E/ay ) is a lax-monoidal functor, so the fact that this
preserves operadic algebras is unsurprising. The interest part of the previous
theorem is that the quotients F/ ay(q) become increasingly structured as we
work down the divisor poset of d: even if I/ were a naive F..-ring spectrum,
E/a/\(l) is always a G-FE,o-ring spectrum.

The second part of the paper shows the computational usefulness of this
more general framework, especially when combined with the slice spectral
sequence of [17]. In Section 4, we begin by describing the homotopy groups
of the “self-conjugate” Johnson-Wilson theories Eg(n)"?%, using the fiber
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sequences of Kitchloo-Wilson, showing that just as Ksc = KO/n?, we have
ESC(n) = EO(TL)/QZ‘Q,

where x is the distinguished class identified by Kitchloo—Wilson.

We then generalize this to arbitrary heights and arbitrary cyclic 2-groups,
exploring the universal example of the norms of MUy as in [17]. The slice
filtration of MU(G)) gives us a spectral sequence computing the RO(G)-
graded homotopy Mackey functors of MU () [axa)-

Theorem 1.4. The slice spectral sequence for MU((G))/CL)\(D collapses at
Es> with no extensions. For ever orientable representation V', the associ-
ated orientation class uy survives the slice spectral sequence, providing an
orientation for the V -sphere.

The collapse of the slice spectral sequence here is formal: everything will
be concentrated in filtrations 0 and 1. The orientability with respect to
MU ((G))/ ax(1) of all orientable representations comes from a more general
analysis of the cofreeness of the spectra E/ayq).

The slice spectral sequences for MU(G) /a,\(d) are all compatible in a
natural way. Since the subgroups of Con are nested, we have a tower of
spectra with (n + 1)-layers:

MUY faygny = MU Jaygnoy = - = MU fayy.

The slice filtration of MU gives a spectral sequence computing the
RO(G)-graded homotopy groups of each of these spectra, and the maps
in the tower produce maps of spectral sequences. The first spectrum is
MUUG) v -1 U&) | and for exposition, we may replace it with the unit
copy of MUUG)),

At one end, we have the ordinary slice spectral sequence for the RO(G)-
graded homotopy groups of MU). At the other end, we have the slice
spectral sequence for the RO(G)-graded homotopy of MU(S) /q A(1) consid-
ered in Section 4. In the first, we have all Euler classes ay and no surviving
orientation classes uy . In the last, we have no Euler classes and all of the
orientation classes uy survive. As we pass from one spectral sequence to
the next, we kill another Euler class and find that the corresponding ori-
entation class (and all powers) survive. Since the complicated part of the
slice spectral sequence is exactly the orientation classes (all other classes are
permanent cycles), this procedure allows us to isolate each orientation class,
one irreducible at a time. We conclude with several computations results
which give some progress along this front.

Acknowledgements. The first author thanks the organizers of the Young
Topologists Meeting 2018 for the invitation to attend, and they also ex-
press their appreciation to Copenhagen University for its hospitality. Much
of the mathematics in the paper was done during that week. The second
author would like to thank the Isaac Newton Institute for Mathematical
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Sciences for support and hospitality during the programme Homotopy Har-
nessing Higher Structures when work on this paper was undertaken. This
work was supported by: EPSRC grant number EP/R014604/1. The authors
also thank Tyler Lawson, Andrew Blumberg, and Doug Ravenel for several
helpful conversations.

2. Representations and Euler classes

The irreducible representations of C;, over R are parameterized by conju-
gate pairs of nth roots of unity.

Notation 2.1. Let ¢ = €2™/™ be a fixed primitive nth root of unity.

Definition 2.2. For each k, let A(k) denote the real representation of C;, =
() given by complex numbers with

vz = CFo.

The following are immediate consequences of the definition and elemen-
tary representation theory.

Proposition 2.3.

(1) For each k, the identity gives an isomorphism A(k + n) = (k).

(2) For each k, complex conjugation gives an isomorphism A(k) = A\(—k).

(3) If k =0, then \(k) is a sum of two copies of the trivial representa-
tion.

(4) If n is odd, then for each k # 0 mod n, A(k) is irreducible.

(5) If n is even, then for each k # n/2 mod n, A(k) is irreducible, and
A(n/2) is two copies of the sign representation of Cy,.

A basic object in equivariant stable homotopy is the Euler class of a fixed-
point free representation, and for £ Z 0 mod n, the representations A(k)
are all fixed point free.

Definition 2.4. If V is a representation such that V< = {0}, then let
ay: SY — sV
be the inclusion of the origin and the point at infinity.

The classes ay are all essential, but there are various interesting divisi-
bility relations among them arising from our ability to use non-linear maps
between spheres.

Lemma 2.5. For each k and £, there is a class

ar(keyr(k): SN — SHED

such that
AX(ke) = AA(kO)—A(K)) AA(K)-

Proof. The map is given by the f-power map z — 2. O
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Corollary 2.6. If gcd(k,n) = ged(€,n), then there are classes

AL —A(k)) AN A(Ak)—A(£))
such that

Ax(0) = QA0 -AR) OAK) AN Ax() = G(\(R)-A(0) AA(D)-

Remark 2.7. We chose notation to match the feature of Euler classes:

avew = ay - aw,

but even here, the notation here is slightly misleading, since in general

AA(O-A(R) " OAk)-A(0) 7 G0 = 1.
On fixed points, this previous corollary shows this is true. On underlying
homotopy, this is some map of non-trivial degree which is prime to n. This
failure to be an equivalence is detecting that m, (SA(K)_A(k)) is a non-trivial
rank one projective Mackey functor. This distinction goes away for hyperreal
spectra, however, since 7, of the norms of MUg is Z which has a trivial
Picard group.

Proposition 2.8. Let Sp((;;") denote the category of Cy,-spectra in which all
primes not dividing n are inverted, and assume that ged(¢,n) = ged(k,n).

Then the map az)-xk)) @S a weak-equivalence.
If we are working locally, we may therefore ignore any distinction between

A(k) and A(¢), provided ged(k,n) = ged(4,n).

Corollary 2.9. It suffices to consider aygry for p a prime and p* dividing
n, and in this case, ayph-1y divides ay(ry.

3. Quotienting by ax)
3.1. Various forms of the quotients.

Definition 3.1. For any C,-spectrum FE, let E/ay;y denote the cofiber of

A\ (k)
—

» AR E E.

Remark 3.2. If n|k, then ax(k) is the zero map, and the spectrum E/a)\(k) is
just EVEXTIE.

Since the spectra E/ay) are defined by a cofiber sequence, we have a
natural long exact sequence given by maps into this.

Proposition 3.3. For any virtual representation V and for any E, we have
a natural long exact sequence

= Ty (B) = 1y (B) = oy (Blayw) = Tyiaw-1(E) — -
Remark 3.4. This gives us a way to interpret the exact sequence in Propo-
sition 3.3: this is an odd primary analogue of the long exact sequence which
connects the restriction to an index 2 subgroup, multiplication by a corre-
sponding a,, and a signed transfer.
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In general, these spectra are much better behaved than we might have
originally expected as a cofiber, since we can reinterpret these as functions
out of a space.

Proposition 3.5. We have a natural weak equivalence
E/ayg) = F(S(A\(k))+, E).

Proof. This immediate from the cofiber sequence in pointed spaces

SA(K))y — SO — AR, 0
Corollary 3.6. The functor £+ E/ayy) is a lax monoidal functor via the
composite
ElaxuAE' Jaxgy = F(SA(K)+AS(A(k)) 4, EAE") = F(S(A(k))+, EAE'),
where the last map is induced by the diagonal.

Corollary 3.7. The functor E — E/ayq) preserves operadic algebras.

Remark 3.8. This is just the cotensoring of operadic algebras in G-spectra
over (G-spaces.

Corollary 3.9. If R is a ring spectrum and M is an R-module, then M /ayq)
is a module over R/ay(q)-

Corollary 3.10. Let d = ged(k,n). Then for all £ such that d|¢, multipli-
cation by ay) is zero in the RO(G)-graded homotopy of E/ayy-

Proof. By Corollary 3.9, it suffices to show this for £ = S°. By construc-
tion, the image of ay(y) in m, (So/a)\(d)) is zero, and since this is a ring, we
deduce that multiplication by ay () is always zero. ([l

The divisibilities between the ay) produce a tower of spectra under FE.

Proposition 3.11. If k|¢, then there is a natural map of Cy,-spectra under
E
E/a)\(@) — E/a)\(k,).

Proof. If k|¢, then we have a map of cofiber sequences
S(Ak))y —— 80 20, gAGk)

szf/ki l lak(l)/ak(k)

S(A(0))+ » SO SAD),

X0

Mapping out of this gives the desired result, together with the compatible
maps from FE. O

Corollary 3.12. The assignment
d+— E/a)\(d)

extends naturally to a contravariant functor from the poset of divisors of n
to Cy,-spectra.
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This has an equivariant algebraic geometry interpretation. Much of the
recent work in equivariant algebraic geometry begins with the prime spec-
trum of the Burnside ring Spec(A) of finite G-sets. There are distinguished
prime ideals in the Burnside ring for A, namely the ideals Ir generated by
those finite G-sets such that are stabilizer subgroups are in some fixed family
of subgroups F. These are obviously nested in the same way the correspond-
ing families are nested. To each non-trivial, irreducible representation V,
we have a family of subgroups

Fv={H | V" #£{0}},

and the effect on 7 of the localization map S — S° [a‘_/l] is the reduction
modulo Iz (see, for example, [15]). The quotient S°/ay is then instead
isolating the ideal Ir. These are those pieces built out of cells for which the
stabilizer is in F, and the functor above should be thought of as carving
down to smaller and smaller ideals.

3.2. A genuine Cj,-spectrum computing Z-homotopy fixed points.
Our initial interest in the spectra R/a/\(k) came from thinking about Z-
homotopy fixed points of a Cj-spectrum.

Definition 3.13. If F is a C),-spectrum, then let
EME = F(S(\(1))4, E).
Proposition 3.5 connects this back to the earlier discussion.
Corollary 3.14. For any Cy-spectrum E, we have a natural equivalence
E"E ~ Blay ).

The name comes from an analysis of the fixed points of the quotients by
the Euler classes.

Proposition 3.15. For any Cy-spectrum E and for any divisor d of n, we
have a natural weak equivalence

(E/ara) " =~ (E)",

where the right-hand side is the ordinary Z homotopy fized points, with Z
acting via the image of the generator v in the quotient group Cy/Cy.

Proof. We have a cofiber sequence of C,-spectra
1—
Cn/Cay — Cn/Cay — S(A(d)), -
This means that we have another fiber sequence of C),-spectra
1—
E/ay@ — F(Cy/Cay, E) —5 F(Cy/Cyy, E).
Since the fixed points of F(C,/Cy,, E) are E, the result follows. O
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Remark 3.16. If we apply the C),-fixed points to the diagram of spectra
indexed by the divisor poset of n of Corollary 3.12, then we recover the
composite of the coefficient system of spectra arising from the fixed points
with the Z-homotopy fixed points.

By restriction, our nZ homotopy fixed point spectrum also gives us the
homotopy fixed points for any subgroup between nZ and Z.

Corollary 3.17. If d|n, then
ph(52) _ (EhnZ)Cd_

Recall that any G-spectrum E gives us a spectral Mackey functor via the
functor

T — (F(T, E))°,
which extends to a spectral enrichment of the Burnside category by work of
Guillou-May [12]. We therefore have a spectral Mackey functor with
Cn/Cy g (32)
Remark 3.18. The quotient map
S(A), —S°
gives a canonical Cy-equivariant map
E — EhZ.
A choice of point in S(A(1)) gives a retraction
itE"E — it E.
These give us a way to connect the Mackey functor structure on E™Z to
that of FE itself.

3.3. Localness with respect to families. For £ and n not relatively
prime, the spectra E/ay,) are in general not cofree. They are, however,
local with respect to a larger family Fj of subgroups in the sense that the
natural map

Elayg) — F(EFut, E/ayw)
is a weak equivalence.
Definition 3.19. Let d|n. Let
Fi={H|HCCyqCCy,}.
For k£ not dividing n, let
T = Fged(k,n)-

Proposition 3.20. The Cy,-spectrum E/ay, is local for the family Fy,: the
natural map

E/axwy = F(EFir, E/ayw)
18 a weak equivalence.
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Proof. Let d = ged(n, k). Since every element of Cy acts as the identity in
A(k), the representation is the pullback of the representation A(k) for the
group C,,/Cy = C,, /q- Similarly, the space EFy is the pullback of the space
E(C,/Cy) under the quotient map. Since the C),/Cy-equivariant map

E(C,/Cyq) x S(/\(k)) — S()\(k))
is a C,, /Cy-equivariant equivalence, the pullback
EF;, x S()\(kz)) — S()\(k:))

is a Cp-equivariant equivalence. This means we have a natural equivalence
for any C),-spectrum F:

F(S()\(k))+, E) = F(E]—"k+ AS(AR)), E) ~ F(EFs, E/axw),
as desired. O

Remark 3.21. For cyclic p-groups, the linear ordering of the subgroups in-
duces divisibility relations amongst the classes ay). The argument above
shows that if the p-adic valuations of k and £ agree, then ay ) and ay() each
divide the other. On the other hand, the class ay(,) divides ay(,+1) (but
not ay(y-1y). This means that if we consider the commutative ring spectra

k
So/a)\(pk) = F(S()\(p ))+, SO),
then all of the classes a),) are equal to zero, and hence the geometric fixed
points for any subgroup containing Cy -1 are contractible.

3.4. Structured multiplications. Corollary 3.7 says that the functor
E— E/a,\(k)

preserves operadic algebras. When the operad in question is an N, operad,
then these quotients actually have more commutativity than we might ini-
tially expect (and in general, they are more commutative than the original
ring).

Recall that in genuine equivariant homotopy, there are a family of equi-
variant refinements of the classical F-operad. These N, operads, defined
in [5], have the property that algebras over them have not only a coherently
commutative multiplication (so a “naive” E., structure) but also coherently
defined norm maps for so pairs of subgroups. This structure is described by
an indexing system or equivalently an indexing category [5, 6].

Definition 3.22. Let Fin® denote the category of finite G-sets.
An indexing subcategory of Fin® is a wide, pullback stable subcategory
of Fin® that is finite coproduct complete.

The collection of all indexing subcategories of Fin® becomes a poset
under inclusion, and work of Blumberg—Hill and Gutierez—White shows that
there is an equivalence of categories between the homotopy category of Ny,
operads and (see also [7, 26]) this poset.
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Theorem 3.23 ([5, Theorem 3.24], [13]). There is an equivalence of cate-
gories from the homotopy category of Noo-operads to the poset of indexing
subcategories:

O s Fing,.

Definition 3.24 ([5, Definition 6.14]). Let O be an Ny-operad for C,, and

let H C C}, be a subgroup. Define a new indexing subcategory F mgg o by

saying that a map f: S — T is in }"inggo if and only if

G/Kx f:G/K xS —G/K xT € Fin.

Proposition 3.25. The assignment O —> NSO gives an endofunctor of the
homotopy category of Noo operads. We have a natural map

O — N§oO.

k
Theorem 3.26. Let Hy, = ker(Cp, 222 C,,). Then if R is an O-algebra,
then R/ayx, is an algebra over Ngk(’). Moreover, if k|¢, then the map

R/axy — R/axm
is a map of Ngg@-algebms.

Proof. By Proposition 3.20, the spectrum R/ay,) is local for the family of
subgroups of Hy = Cy4, where d = ged(k,n). In particular, it is an algebra
over the operad

F(EF4:,0).

The proof of the special case that d = 1 [5, Proposition 6.25] goes through
without change, showing that this localized operad is Ngk(’). ([

Corollary 3.27. If R is an O-algebra, then R/ayq) is a G-Ex-ring spec-
trum.

Algebras over a G-Fy.-operad have all norms in their homotopy Mackey
functors. These constructions were first studied by Brun who showed that
m, carried the structure of Tambara’s TNR-functors [9], [27], and then in
other degrees, this was described in [17] and in work of Angeltveit-Bohmann

[2].
Corollary 3.28. If R is an O-algebra, then m,(R/ay)) is an RO-graded
Tambara functor in the sense of [2].

Remark 3.29. There is an obvious generalization of Angeltveit-Bohmann
to incomplete Tambara functors, and the analogue of Corollary 3.28 holds
there.
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3.5. A Greenlees—Tate approach. We now restrict attention to n =
p™ for p a prime. We can combine our quotienting by Euler classes with
inverting others, giving an approach to computation. First note that the
divisibility relations immediate give the following.

Proposition 3.30. Inverting a class ayr) also inverts aypr-1).

In general, inverting the classes a)(q) is closely connected to the geometric
fixed points.

Proposition 3.31. The infinite \(d)-sphere M9 = So[a;(ld)] is a model
for EF,.

Proof. The colimit of the unit spheres in kA(d) as k — oo is a model for
EF,4, from which the result follows. U

Corollary 3.32. The Cp.-geometric fized points of E can be computed as
C — C
M E = (Elay 1)) "

The Cx-fixed points of a Cjm-spectrum are naturally a Cpm/ Cr-spectrum.
Since the fixed points of

(E[a;éok_l)})cﬂ ~ %

for r < k, the Cpm-spectrum E [a/\(pk,l)] is completely determined by its

C,r-fixed points.

Theorem 3.33. For any Cpm-spectrum E and for £ > k, we have a natural
weak equivalence

Ot (Eayge) = (87 E) fayge.
Proof. A finite G-CW complex like S ( )\(pg)) is small, and hence
F<S(>\(p€))+7 hj} ES)\(pk_l)E> = hj} F(S()\(pé))_p ESA(pk_I)E>

~ 1im xR (S(Aw)) ).

—

Since £ > k, Cpr acts trivially on S ()\(pe)), and hence the C-fixed points
pass through the function spectrum:

F(‘S()‘(pe))_pE[a;(lpkfl)Dcpk = F<S()‘(p£))+7E[a)_\(lpkfl)]cpk)v

giving the result. O
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4. The Z-homotopy fixed points of hyperreal bordism
spectra

4.1. The Real Johnson—Wilson spectra. Building on work of Kitchloo—
Wilson, we can quickly compute the homotopy groups of the Z-homotopy
fixed points of any of the spectra Er(n). Work of Hahn—Shi then also allows
us to compute the Z-homotopy fixed points of any of the Lubin—Tate spectra,
viewed as Ch-spectra [14].

Definition 4.1. Let
Esc(n) := Eg(n)"
be the “self-conjugate Johnson—Wilson theory”.

For each chromatic height n, Kitchloo-Wilson identify a particular ele-
ment

Ty € m,, EO(n),
where
b, = 221 _gn+2 | 1
such that we have a cofiber sequence
¥ EO(n) 2% EO(n) — E(n)

and the homotopy fixed point spectral sequence computing 7. EO(n) can be
recast as the Bockstein spectral sequence for this cofiber sequence [21]. We
can reinterpret this cofiber sequence using the equivariant periodicity in the
spectrum Egr(n), using slice spectral sequence names.

Proposition 4.2. The class ugg is a permanent cycle in the slice spectral
sequence for Er(n), and multiplication by ugz gives an equivariant equiva-
lence

2n+1 2n+1

X ER(n) — X OER(TL).

Combined with the isomorphism given by multiplication by v,, we can
rewrite x,, in terms of a,:

_on_1, on\27"1 1
Tn = ag0; ' (uy) .

Corollary 4.3. We have an equivalence
Eso(n) = EO(n) /2.

An almost identical analysis can be applied to the work of Hahn—Shi on
the homotopy groups of the Hopkins—Miller spectra FO,,. We leave this to
the interested reader.



Z-HOMOTOPY FIXED POINTS 105

4.2. The slice spectral sequence for MU ((G)-cohomology. From
this point on, let G = Cyn, and again, let

MU' = N§E MU

be the hyperreal bordism spectrum introduced in [17].

The slice tower for MU(S)) gives for every G-space X a spectral sequence
computing the RO(G)-graded Mackey functor cohomology MU ((G))*(X ).
This spectral sequence arises from computing homotopy classes of maps
from X to the slice tower for MU and if X is finite, then it converges
strongly. Moreover, this spectral sequence is a spectral sequence of RO(G)-
graded Tambara functors, though we will not need this structure.

To describe the Ey-term, we need some notation and elements from [17].

Notation 4.4. Let
Pok = PCy = R[Cox]
be the regular representation of Cyx.

Theorem 4.5 ([17, Proposition 5.27, Lemma 5.33]). There are classes
7o S%2 — g, MU
such that if G = (7y) then
Tape MU = 7[5y iy A2 1 g, ]

By the free-forget adjunction for associative rings, the classes 7; give as-
sociative ring maps
SF) — g, MU
and smashing these together and norming up gives us a map of associative
algebras
A= N\ N& (sr]) —» MU©),
i>1
The underlying spectrum of A looks like a polynomial algebra in the classes
T;, in that it is a wedge of [representation| spheres indexed by the monic
monomials in the polynomial ring m.ii MU ((©)) The group G acts on the
various monomials via the action on generators given by
i AE j<ant o
VT = { (_1)1'771, j=on"1_1,
The sign here is reflecting the degree of the action map on the sphere
52 and hence is accounted for via the representations. Our indexing set

for the wedge can really be viewed as the monic monomials in the ring
Tt MU(D) @ 7./2.

Notation 4.6. If p is a monic monomial in

_ _ gn—1_1_ _
L[F1, T,y T1,72,...],

then let Hj; be the stabilizer of p modulo 2.
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Let |p| be the underlying degree, i.e. the degree when we forget all equiv-
ariance, and let
ﬂp
[H|
Finally, let Z,, be the set of orbits of monic monomials in

Pl =

2n—1_

Z/Z[Flv’yfl)"'u’y 1f1,772,...]
of underlying degree n, and let Z = |JZ,.

The distributive law for the norm over the wedge then gives us a descrip-
tion of A as a G-spectrum.

Proposition 4.7. We have an identification
A~ 211
VGins
peEL
The algebra A gives the slice associated graded.

Theorem 4.8 ([17, Theorem 6.1]). The slice associated graded for MU ()
18
HZ[G -71,G - Ta,...] := HLAN A~ \/ G+I/}S”’3” A HZ.
peET
The odd slices are contractible, and the (2n)™ slice are the wedge sum-
mands of AN HZ corresponding to monomials of underlying degree 2n.

Corollary 4.9. For any finite G-space X, there is a strongly convergent
spectral sequence of RO(G)-graded Mackey functors

By = H*(X:Z)[G - 71,G - Fg,...] = MU (X).

Corollary 4.10. There is a strongly convergent spectral sequence of RO(G)-
graded Mackey functors

By =, (HL/ayw)[G - 71,G - Ta,...] = m, (MU D) Jay ).

A remark on the notation here might be helpful to the reader. Consider
a monic monomial p. The gives a summand

G I{I\,s Sl A g7,
of AN HZ, and hence for any X, a summand of
H*(X;Z)[G-7,G 7o, ... ]
By construction, the summand corresponding to p is
1o, 27, X5 2),

where G
TH; Mackey™? — MackeyG
p

is induction, defined by Tng(T) = M(i3, T).
D p
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The bidegrees are determined by recalling that the spectral sequence is the
Adams grading applied to the spectral sequence for a tower. In particular,
we have

EYY =my_ JF(X,PEnY) = m,  F(X, MU = MU (X).

Note that this formula works for any V' € RO(G). Because the odd slices
are contractible, this formula is only non-zero when dim V' is even and non-
negative. Consider a virtual representation V' with virtual dimension 2n.
Since

)sV

=\/ G4 A SPlA 17,

pELn
the F5 term for this V is:
By =ny F|X,\/ Gt n SIPlA Hz
PELn
- @ 15,5, v (X )
PELn
= @ 17,76, v—s o)) F (X HL)
PELy
G S _a*
— € 16, (),
PELn

Remark 4.11. The slice spectral sequence for computing homotopy groups
as considered in [17] lies in Quadrants I and III, (and we note that the fact
that s can be negative here is important for that). Since we are using the
slice filtration of MU) to compute the MUU(E)-cohomology of a space,
we no longer have the usual simple vanishing lines or regions, since the cells
of X can move us into Quadrants II and IV.

4.3. The RO(G)-graded homotopy of HZ/ayx(1). Recall that for any
orientable representation V', there are orientation classes

uy € Hgimv (S5 Z) = Z.
These classes have the property that for any subgroup H,
iyuy € Hamy (SHY2) 2 Z

is a generator. In particular, multiplication by uy is always an underlying
equivalence.

Proposition 4.12. The elements
Uy € Tgimv—v (HZ/G,\(U)(G/G)

are tnvertible.
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Proof. Since HZ/ay(y) is cofree (Proposition 3.20), weak equivalences are
equivariant maps detected on the underlying homotopy. In particular, mul-
tiplication by uy is an invertible self-map. ([

Before we describe the RO(G)-graded homotopy groups of HZ/ay1y, we
need to single out some Mackey functors. For the readers convenience, we
also include the “hieroglyphics” used in [18], which we will use in our spectral
sequence charts.

Notation 4.13.

(1) Let Z* be the dual to the constant Mackey functor Z, and we will
use = to denote this.

(2) Let Z_ be the fixed point Mackey functor for the integral sign rep-
resentation, and we will use O to denote this.

(3) Let Z* be the dual of Z_, and we will use = to denote this.

(4) Let B be defined as the cokernel of the unique map Z* — Z which
is the identity when evaluated at G/e. We will use o to denote this.

(5) Let B_ and G be defined by the short exact sequence

C C T
2" " B-5H5B—G—0,

0 = Ei = TCQH—l CQn—li

where the map T'r is adjoint to the identity under the induction-
restriction adjunction. We will use © to denote B_ and e to denote
G.

(6) Let T be the unique non-trivial extension of Mackey functors
0G>T 7",

where the transfer on Z* (G/Cqyn-1) hits the generator of G(G/G).
We will use = to denote this.

Remark 4.14. The Mackey functors B and G are so named because B shows
up in the Borel homology of a point with coefficients in Z, while G arises in
the homotopy of the Geometric fixed points of HZ.

The FEilenberg-Mac Lane spectra associated to many of these Mackey
functors are actually RO(Can)-graded suspensions of HZ.

Proposition 4.15. We have equivalences
HZ_~%'""HZ
HT ~ 337Uy,

Proof. These are direct consequences of the standard chain complexes com-
puting Bredon homology for Con. See, for example [15, 16, 17]. O

Let M be the Mackey functor graded by i+ jo depicted in Figure 1. Here
the horizontal coordinate is ¢ and the vertical coordinate is j.
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=

-2 0
FiGURE 1. The Mackey functor M

Theorem 4.16. The RO(G)-graded homotopy groups of HZ/ay ) are given
by
+1 41 £l +1
M[u)\(l),u)\(Q),uA(4),...,u%}.
Proof. Since multiplication by wy is invertible, for any orientable V', we
have

my (HZ/axq)) = Tgimy (HZ/ax))-
This means that

m (HZ/ayw) = (3. (HE/ax1) @ Bpo (HZ ay) )kl - 6]
The statement of the Theorem is then that as graded Mackey functors,
M =r,(HZ/ayq)) © Tuye(HZ/axq))-

We apply Proposition 3.3 to compute these. For this, we need to de-
termine the Z-graded homotopy groups of S *MHZ, of ¥"7HZ, and of
»~2MD=9H7. These are given by Proposition 4.15. (]

Remark 4.17. The image of the element a, is non-zero in ES(HZ/CL/\(U)Z
this is the generator of 1572 (H Z/ a,\(l)), multiplied by the class ug,. That
this is a transfer is a consequence of the fact that a2 = 0.

4.4. The Z-homotopy fixed points of MU(&)), We can now put ev-
erything together to describe the RO(G)-graded homotopy Mackey functors
for the Z-homotopy fixed points of MU(E)),

Corollary 4.18. The elements u‘j/[vl and all polynomials in the 7; and their
conjugates are all in slice filtration zero. The minus first homotopy Mackey
functor Z* of the zero slice is in bidegree (—1,1), while the Mackey functor
including a, has bidegree (—o,1). Finally, the Mackey functor Z_ is in
bidegree (1,0).

Theorem 4.19. The slice spectral sequence collapses at Eo with no exten-
SL0NS.

Proof. The entire spectral sequence is concentrated in filtrations zero and
one. This gives the collapse of the spectral sequence, and Fo = E. Since
the only torsion classes are in filtration 1, there are no possible additive
extensions. O
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Remark 4.20. In fact, there are no extensions in the category of Mackey
functors. This can be seen by computing the relevant Ext groups.

Corollary 4.21. The RO(G)-graded homotopy of MU((G))/CL)\(U is given
by

£1 41 41 +1 ~
M[u)\(l),u)\(Q),uA(4), . ,uQU][G ST, ]

Corollary 4.22. For MU((G))/a)\(l), all orientable representations are ori-
entable: if V' is an orientable representation, then multiplication by uy gives
an equivariant equivalence

SY MU fayqy <5 IV MU fay )

This means in particular, that the RO(G)-graded homotopy groups are
especially simple: we see only the Z-graded homotopy Mackey functors (cor-
responding to trivial representations) and the Z-graded homotopy Mackey
functors of a single sign suspension. Put another way, the image of RO(G)
in Pic(MUS) Jayy)) is fairly small.

Corollary 4.23. The image of RO(Can) in Pic(MU((G))/a)\(l)) is
Z-{1}&7Z/2-{1—0c}.

Every orientable virtual representation acts as its virtual dimension.

The slice filtration of MU((G))/aA(l). The slice associated graded of

MU((G))/a)\(l) does not agree with maps from S(A(1))4 into the slice asso-

ciated graded for M U©), For convenience, we used the latter, and it also
has extremely nice multiplicative properties guaranteed. We sketch some of
the analysis of the slice filtration for MU((G))/CL)\(U.

Proposition 4.24. The slice tower for HZ/aA(l) s given by

HZ —— HZ/G,\(l)

!

sz 20, gy,

Proof. Theorem 4.16 shows that the Postnikov tower for HZ/a) (i) is given
by this small tower. Since the fibers are all slices in order, this is also the
slice tower, by [17, Proposition 4.45]. O

The k-invariant listed is actually ay(j): the source is 12 W HZ.

Remark 4.25. The category of slice < n spectra is cotensored over G-spaces:
if E is slice < n, then for every G-space X, F (X, E) is also slice < n.
This is the dual of the statement that the category of slice > (n + 1)-
spectra is tensored over G-spaces (and more generally, over (—1)-connected
G-spectra).
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The argument in [17, Section 6] then gives a way to determine the slice
tower for MU(&) /ax(1)- Since we do not need this for later arguments, we
only sketch the results here. The basic insight is that the obvious monoidal
ideals in the algebra A above give a filtration of MU((G))/aA(I). The bottom
stage is

G
(MU Jayyy) /A}SO ~ HZ[ay),
which is a two-stage slice tower with a zero and —1-slice. The rest of the
argument goes through essentially unchanged now, showing that the filtra-

tion by these ideals coincides with a (slightly speeded up) version of the slice
filtration.

Proposition 4.26. The slice associated graded for MU((G))/a)\(l) 18
Gr(MUD fay 1)) = AN (S HZ* v HZ),
where the graded degree comes from the underlying degree of the pieces in A,

together with a —1 for the S~ 'HZ* and a 0 for HZ.

Nothing really changes in our argument above except the filtrations of
some of the elements. The Mackey functor Z* in filtration 1 and degree —1
moves to filtration zero, and the class whose transfer is a, now occurs in
filtration zero.

4.5. The Hurewicz image. We can link the Hurewicz images of MU(©)
and of MU() /ax(1) using the slice filtration. The ring map
MUU@) MU((G))/G)\(I)
induces a map of slice spectral sequences.
Corollary 4.27. The map of spectral sequences induced by MU(E) —

MU((G))/aA(l) factors as the quotient by filtrations greater than or equal to
two, followed by the inclusion induced by HZ — HZ/ay(1).

This identification of the map of spectral sequences limits the possible
size or the Hurewicz image.

Corollary 4.28. If x € 77,? (MU((G))) 1s in the Hurewicz image, then the

Hurewicz image of x in 7rkG (MU((G))/a/\(l)) is non-zero if and only if the

slice filtration of x is at most 1.

Corollary 4.29. The Hurewicz image of Egr(n)"” is the same as that of
Ksc = KhE.

For larger groups, the Hurewicz image does grow, although this is still a
very harsh condition. The Hurewicz image is actually quite small, since in
fact, we shall see this bounds the Adams—Novikov filtration of a class in the
Hurewicz image by 1. For this, we recall a result of Ullman’s thesis.
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Theorem 4.30 ([28]). The slice and homotopy fized point spectral sequences
agree below the line of slope 1 through the origin.

All of the classes we are considering are in this range, so it suffices to
consider the homotopy fixed point statement. For this, recall that we have
a comparison map between the Adams—Novikov and homotopy fixed point
spectral sequences for hyperreal spectra.

Theorem 4.31 ([17, Section 11.3.3]). There is a natural map of spectral
sequences from the Adams—Novikov spectral sequence computing the homo-
topy groups of the homotopy fixed points to the homotopy fized point spectral
sequence.

Putting this together, we deduce an upper bound on the Hurewicz image
for any of the Z-homotopy fixed points of the norms of MUg.

Theorem 4.32. The Hurewicz image of (MU((G)))hZ factors through the
homotopy of the connective image of j spectrum.

Proof. Since a map of spectral sequences can only increase filtration, the
Adams—Novikov filtration of any element in the Hurewicz image is bound
above by its slice filtration, and this is at most 1. The result follows from
[24] (See [25, Theorem 5.2.6(c,d)]| for more detail). O

5. Towards the homotopy Mackey functors of MU (%) / ax(29)

One of the computationally exciting features of the spectra MU (&) /@)
is that we effectively isolate the contribution of a single Euler class. In the
case where all orientable Euler classes were killed above, the putative orien-
tation classes uy all survived the slice spectral sequence, giving orientations
for MU /q A(1)- Working more generally, not all of these will survive. We
illustrate this with the first non-trivial examples.

5.1. Surviving orientation classes. While not all orientation classes sur-
vive the slice spectral sequence for 7 > 0, many still do.
Theorem 5.1. For all k > j, the orientation classes uygry survive the slice
spectral sequence for MU((G))/G/)\(QJ').
Proof. Since the classes uy(oxy are all invertible in the RO(G)-graded ho-
motopy of HZ/CL)\(QJ'), the F» terms computing

1o (MU Ja2)) and oy (ary) (MUD Jay )

are isomorphic. By the vanishing lines in this slice spectral sequence, there
are no possible targets for the differentials on the classes uy o) for k > j. [

This in turn gives us periodicity results analogous to those we deduced for
the reduction modulo ay(1). Proposition 3.20 above shows that the spectrum

MU((G))/G,)\(Z]') is local for the family of subgroups of Cy;.



Z-HOMOTOPY FIXED POINTS 113

Lemma 5.2. Let X and Y be finite G-CW complexes, and let
Fr (MU Jay00) A X — (MU Jay05)) AY.

If the restriction i}, f is an equivariant equivalence, then f is an equivariant
Cyj ’
equivalence.

Proof. Since X and Y are assumed to be finite G-CW complexes, the smash
products with MU((G))/aA(Qj) are again Cy;-local. This is the statement of
the lemma. O

Corollary 5.3. IfV is any orientable representation of Con such that i*&y_ V
is trivial, then multiplication by wy induces an equivariant equivalence

SV (MU Jay ) =5 STV (MU fayz0)).

Proof. By assumption, the irreducible summands of V are all of the form
A(2Fr) for k > j. In particular, the corresponding class uy is a permanent
cycle, and hence homotopy class, by Theorem 5.1. Since the restriction of
uy to Cy; is the element 1, Lemma 5.2 gives the result. (]

5.2. The remaining orientation classes. Unsurprisingly, the remaining
orientation classes all support differentials in the slice spectral sequence, just
as in the initial case of MU itself.

Theorem 5.4. Let V be a representation such that V2 # V. Then uy
supports a non-trivial differential in the slice spectral sequence.

Proof. Let H = Cyr be the smallest subgroup of Ca» such that i3,V is not
trivial. By assumption, the largest possible value for this group is Cy;. By
the definition of H, we must then have

iV =aR @ 2"bo,
for some natural number a and natural numbers r > 0 and b odd, and hence

. ~ r—1
iuy = (u3, )

Since H C Cy;, we know that
MU Jay o5y = i MU v 57155 MU,

and the associated spectral sequence is just two copies of the slice spec-
tral sequence for i}, M U@ In particular, the class (u%;l)b supports a
differential here [17, Theorem 9.9]:

r—1 r—1 _ C. T
d(2**1)(2k71)+2’”((u%0 )b) = b(u3, )b 1<N022k7"2’“—1a(2’“—1)ﬁ2k ay )

By naturality, we therefore deduce that wy must have supported as differ-
ential of potentially smaller length, completing the result. ([
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