Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling (ICAPS 2020)

EFP 2.0: A Multi-Agent Epistemic
Solver with Multiple E-State Representations

Alessandro Burigana
DMIF Department
University of Udine
[-33100 Udine, Italy

Francesco Fabiano
DMIF Department
University of Udine
[-33100 Udine, Italy

francesco.fabiano@uniud.it burigana.alessandro@spes.uniud.it

Abstract

Multi-agent systems have been employed to model, simulate
and explore a variety of real-world scenarios. It is becoming
more and more important to investigate formalisms and tools
that would allow us to exploit automated reasoning in these
domains. An area that has received increasing attention is the
use of multi-agent systems which allow an agent to reason
about the knowledge and beliefs of other agents. This type
of reasoning, i.e., about agents’ perception of the world and
also about agents’ knowledge of her and others’ knowledge,
is referred to as epistemic reasoning.

This paper presents an updated formalization and implemen-
tation of a multi-agent epistemic planner, called EFP. In par-
ticular, the paper explores the advantages of using alternative
state representations that deviate from the commonly used
Kripke structures. The paper explores such alternatives in the
context of an action language for multi-agent epistemic plan-
ning. The paper presents also an actual implementation of a
planner that uses the novel ideas, demonstrating concrete per-
formance improvements on benchmarks collected from the
literature.

Motivation

Artificial Intelligence, or Al, has recently gained attention
in several communities. It is, in fact, becoming essential for
the majority of the real-world scenarios, e.g., Industry 4.0,
to exploit techniques derived from the fields of automated
reasoning and knowledge representations. In particular, the
field of automated planning is one of the most important
branches of Al That is why we decided to focus our re-
searches on the planning problem.

Reasoning about actions and information has been one of
the prominent interests since the beginning of the Al (Mc-
Carthy 1959). The “simple” task of reasoning in the classi-
cal planning environments rapidly evolved into more com-
plex problems (Torrefio, Onaindia, and Sapena 2014). This
evolution, dictated both by research interests and real-world
needs, developed interesting families of problems that vary
in multiple aspects such as: i) the number of agents; ii) the
determinism of the actions; iii) the agent’s communication
policies; etc.

Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

101

Enrico Pontelli
Computer Science
New Mexico State University
Las Cruces, NM 88003, USA
epontell@cs.nmsu.edu

Agostino Dovier
DMIF Department
University of Udine
[-33100 Udine, Italy
agostino.dovier @uniud.it

In particular, this paper studies one of these settings that,
even if formalized by studies of philosophy/logic in the
early sixties, is a somewhat recent introduction in the plan-
ning scenario (Van Ditmarsch, van Der Hoek, and Kooi
2007). That is, the Multi-agent Epistemic Planning problem
(MEDP) or, as usually it is called in literature, epistemic plan-
ning. Epistemic planners, differently from most of the other
solvers, are not only interested in the state of the world but
also in the knowledge or beliefs of the agents. This could
also be viewed, as said in Gerbrandy (1999), as the process
of reasoning on the information itself. It is easy to see that
an efficient autonomous reasoner that could exploit both the
knowledge on the world and about other agents’ informa-
tion could provide an important tool in several scenarios,
e.g., economy, security, justice or politics.

Nevertheless, reasoning about knowledge and beliefs is
not as direct as reasoning on the “physical” state of the
world. That is because expressing, for example, belief re-
lations between agents often implies to consider nested and
group beliefs that are not easily extracted from the state de-
scription by a human reader. This inherent complexity is re-
flected in computational overhead that brings, most of the
time, infeasibility to the solving process. That is why it is
necessary to advance in the study of the epistemic planning
problem (Fabiano 2019; Le et al. 2018; Huang et al. 2017;
Wan et al. 2015; Muise et al. 2015).

Therefore, in this work, we present an updated version
of the Epistemic Forward Planner (EFP) presented in Le et
al. (2018). As main contribution we integrated the planner
with a new e-state (epistemic state) representation, based
on the concept of possibilities (Gerbrandy and Groeneveld
1997), along with a new transition function derived by Fabi-
ano et al. (2019). Finally, in the experimental evaluations,
we will show how this new implementation outperforms the
state-of-the-art planner, especially when combined with the
removal of already visited e-states.

Epistemic Planning

Dynamic Epistemic Logic Epistemic reasoning was ini-
tially formalized by logicians in the early sixties. This for-
malization rapidly evolved from allowing to reason on the
knowledge/beliefs of agents in a static environment into Dy-

namic Epistemic Logic (DEL), a formalism used to reason
not only on the state of the world but also on information
change in dynamic domains. As discussed in Van Ditmarsch,
van Der Hoek, and Kooi (2007): “information is something
that is relative to a subject who has a certain perspective
on the world, called an agent, and that is meaningful as a
whole, not just loose bits and pieces. This makes us call it
knowledge and, to a lesser extent, belief.” Due to space limits
we will provide only the fundamental definitions and intu-
itions of DEL; the interested reader is referred to Fagin and
Halpern (1994) for further details.

Let AG be a set of agents s.t. |[AG| = n withn > 1 and
let F be a set of propositional variables, called fluents. Each
world is described by a subset of elements of F (intuitively,
those that are “true”). Moreover, in epistemic logic each
agent ag € AG is associated to an epistemic modal operator
B, that represents the knowledge/belief of ag herself. Fi-
nally, epistemic group operators E, and C,, are also intro-
duced in epistemic logic. Intuitively, E,, and C, represent
the knowledge/belief of a group of agents o and the common
knowledge/belief of a, respectively. To be more precise, as
in Baral et al. (2015), we have that:

Definition 1 (Fluent formula) A fluent formula is a propo-
sitional formula built using fluents in F as propositional
variables and the propositional operators \,V, =, . A flu-
ent atom is a formula composed of just an element f € F; a
fluent literal is either a fluent atom f € F or its negation —f.

With a slight abuse of notation, we will refer to fluent literals
simply as fluents.

Definition 2 (Belief formula) A belief formula is defined

as follows:

o A fluent formula is a belief formula;

o If v is a belief formula and ag € AG, then Bygp is a
belief formula;

o If p1,po and @3 are belief formulae, then —ps and
1 0p 2 are belief formulae, where op € {A,V,=};

o If p is a belief formula and) # o C AG then E,p and
C.p are belief formulae.

From now on we will denote with ESQ the language of the
belief formulae over the sets F and AG.

Example 1 Let us consider the formula B,g, Bag,p. This
formula expresses that the agent agy believes that the agent
agy believes that ¢ is true. The formula B,g, —p expresses
that the agent agy believes that o is false.

The classical way of providing a semantics for the lan-
guage of epistemic logic is in terms of pointed Kripke struc-
tures (Kripke 1963).

Definition 3 (Kripke structure) Let | AG| = n withn > 1.
A Kripke structure is a tuple (S, 7, By, ..., By), such that:
e Sis a set of worlds;

o 7 : S+ 2% isafunction that associates an interpretation
of F to each element of S;

o forl <i<n, By CS xS isa binary relation over S.

102

Definition 4 (Pointed Kripke structure) A pointed Kripke
structure is a pair (M,s) where M is a Kripke structure as
defined above, and s € S, where s points at the real world.

Following the notation of Baral et al. (2015), we will in-
dicate with M]S|, M[n], and M]i] the components S, ,
and B; of M, respectively. Intuitively, M [S] captures all the
worlds that the agents believe to be possible and M([i] en-
codes the beliefs of each agent. More formally the semantics
on pointed Kripke structures is as follows:

Definition 5 (Entailment w.r.t. a Kripke structure)

Given a fluent f, a belief formula o, a set of agents AG s.t.
|AG| = n, an agent ag; € AG with 1 < i < n, a group
of agents o C AG, a pointed Kripke structure (M,s) with
M= (S,m,By,...,B):

1 (M,5) = £ if M[r)(s) = f;

2. (M,s) = Bygp if for each t such that (s,t) € M]i] it
holds that (M, t) = ¢;

3. (M,s) = Eqp if (M,s) = Bag g for all ag; € o

4. (M,s) = Coyp if (M,s) = EE o for every k > 0, where
Elp = ¢ and Ef7' ¢ = Eo(Egp);

5. the semantics of the traditional propositional operators
is defined as usual.

Epistemic Planning Domains Let us introduce the no-
tion of multi-agent epistemic planning domain. Intuitively,
an epistemic planning domain contains all the necessary in-
formation to define a planning problem in a multi-agent epis-
temic scenario.

Definition 6 (Multi-agent epistemic planning domain)
We define a multi-agent epistemic domain as the tuple
D = (F, AG, A, pi, pg) where:

o Fis the set of all the fluents of D;

AG is the set of the agents of D;

o A represents the set of all the actions of D;

e o, is the belief formula that describes the initial condi-
tions of the planning process; and

o (o, is the belief formula that represents the goal condition.

Moreover, from now on, with the term action instance we
will indicate an element of the set AZ = Ax AG. Intuitively,
an action instance a(ag) identifies the execution of the action
a by the agent ag.

Given a domain D we will refer to its components through
the parenthesis operator. For instance to access the elements
F and AG of D we will use the more compact notation
D(F) and D(.AG), respectively.

Furthermore, we will indicate a state of an epistemic plan-
ning domain as e-state. Therefore, an e-state, that in our case
can be represented by both a Kripke structure or by a Pos-
sibility!, captures a configuration of the world and of the
agents’ knowledge/belief.

!Concept introduced in the next Section.

Epistemic Action Languages

The action language mA® Even though automated plan-
ning and DEL are both vastly explored fields of study, their
combination, i.e., epistemic planning, has gained attention
only recently in the Al community. In the last few years epis-
temic planning has been tackled using different techniques,
such as:

1. reducing the epistemic planning to a classical planning
problem (Muise et al. 2015; Kominis and Geffner 2015);

2. adapting algorithms from other planning domains, e.g.,
contingent planning (Huang et al. 2017); or

3. addressing the problem with already existing solvers sup-
ported by domain-specific external epistemic procedures
to derive the agent’s knowledge status (Hu, Miller, and
Lipovetzky 2019).

Nevertheless, all the previously mentioned approaches are
not suitable to reason on the agents’ beliefs’> on the full
extent of Lfflg. For instance: i) the reduction to classical
planning implies bounded nested-knowledge; ii) the system
presented in Huang et al. (2017) cannot deal with dynamic
common knowledge; and finally iii) the use of domain-spe-
cific procedures implies a loss of generality that is a limit in
a solver design. Moreover the approach in Hu, Miller, and
Lipovetzky (2019) cannot reason about agents’ beliefs (i.e.,
on KD45 logic) but only on the agents’ knowledge (i.e., S5
logic). Hence it is important to find strategies to address the
planning problem on the full extent of ESQ where the un-
derlying e-states are able to capture the concept of belief.

To the best of our knowledge, the first formalization of
a comprehensive action language for multi-agent epistemic
planning is m.A* (Baral et al. 2015). m.A* is high-level ac-
tion language that allows to reason about agents’ beliefs
on Efigwhere states are represented as Kripke structures.
In particular, m.A* has an English-like syntax and exploits
the concepts of events to define the transition function. The
entailment, on the other hand, is defined following Defini-
tion 5.

In Baral et al. (2015), the authors distinguish between
three types of actions:

1. world-altering actions (also called ontic): used to modify
certain properties (i.e., fluents) of the world,;

2. sensing actions: used by an agent to refine her beliefs
about the world; and

3. announcement actions: used by an agent to affect the be-
liefs of other agents.

Given a domain D and an action instance a € D(AZ),
a fluent literal f € D(F), a fluent formula ¢ and the belief
formulae ¢, v we can introduce the syntax of m.A*.

e executable a if ¢ captures the executability conditions;,
e a causes f if ¢ captures the ontic actions;
e adetermines f if ¢ captures the sensing actions;

?As mentioned in Fagin and Halpern (1994) the concept of

knowledge and belief are encoded by two different logics: S5 and
KD45, respectively.

103

e a announces ¢ if 1 captures the announcement actions.

In multi-agent domains another important concept is the
action observability. That is, the execution of an action
might change or not the beliefs of an agent depending on
whether or not she is aware of the action’s occurrence. m.A*
identifies three levels of action observability given an action
a, an agent ag:

o fully observant (denoted by ag € Fj) if ag knows about
the execution of a and about its effects on the world;

e partially observant (denoted by ag € P,) if ag knows
about the execution of a but she does not know how a
affected the world;

e oblivious (denoted by ag € O,) if ag does not know about
the execution of a.

Let us observe that partial observability for world-altering
actions is not admitted as, whenever an agent is aware of the
execution of an ontic action, she must know its effects on the
world as well. A final remark has to be done about the ac-
tions’ determinism. In both Le et al. (2018) and our approach
the actions’ effects are assumed to be deterministic. This as-
sumption can be relaxed allowing non-deterministic effects.
From the planning prospective this can be done, for instance,
following the approach presented in Kuter et al. (2008). For
the sake of readability we will not explore m.A* in more de-
tail and we refer the interested reader to Le et al.; Baral et
al. (2018; 2015) for a complete description.

The action language m.A? The main contribution of this
paper is an improved transition function and an implemen-
tation for m.A4” (Fabiano et al. 2019). m.A” is an epis-
temic action language based on m.A* that, instead of using
Kripke structures as e-states, uses possibilities (Gerbrandy
and Groeneveld 1997). Before introducing our contributions
it is therefore necessary to quickly introduce the notion of
possibility.

In this section we will briefly present the main concepts
related to m.A” and its e-states representation: possibilities.
For a complete survey on possibilities we recommend Ger-
brandy (1999).

Let us start by introducing some notions from the non-
well-founded set theory.

Definition 7 (Non-well-founded set (Aczel 1988)) Ler E°
be a set, E' one of its elements, E? any element of E*, and
so on. A descent is the sequence of steps from E° to E', E'
to E?, etc. ... A set is non-well-founded when among its
descents there are some which are infinite.

A simple example of non-well-founded set is the set) =
{Q} represented in Figure 1.

Definition 8 (Decoration and Picture) A decoration of a
graph G=(V, E) is a function 6 that assigns to each node
n € V a set o, in such a way that the elements of 6, are
exactly the sets assigned to successors of n, i.e., 0, = {0 |
(n,n’) € E}.

Given a pointed graph (G, n) (i.e., a graph with a partic-
ular node n € 'V identified), if 0 is a decoration of G, then
(G, n) is a picture of the set 0y

(a) Standard picture of €2. (b) Unfolding of €2.

Figure 1: The non-well-founded set 2 = {Q2} (Aczel 1988).

In particular, in Aczel (1988) is shown that, in non-well-
founded theory, every graph has a unique decoration and ev-
ery decoration can be converted to a unique system of equa-
tions.

We are now ready to introduce the concept of possibility.

Definition 9 (Possibility) Let AG be a set of agents and F
a set of propositional variables:

e A possibility u is a function that assigns to each proposi-
tional variable f € F a truth value u(f) € {0,1} and to
each agent ag € AG an information state u(ag) = o.

e An information state o is a (non-well-founded) set of pos-
sibilities.

The idea of possibilities is central in m.4”. In fact this lan-
guage, instead of using Kripke structures, exploits possibil-
ities as e-states. That is, m.A”, while keeping the same syn-
tax of m.4*, changes the way of representing an epistemic
state. Changing the underlying structure implies also a dif-
ferent formalization of the transition function (introduced in
the following Section). The differences in the e-state repre-
sentation and in the transition function are what allowed us
to outperform the state-of-the-art comprehensive epistemic
planner presented in (Le et al. 2018) by orders of magnitude
in most of the experiments.

Possibilities in MEP Following Fabiano et al. (2019) we
will now briefly explain how a possibility can be used to
represent an e-state (Figure 2). The main idea is to identify
with each possibility u both an interpretation of the world
and of each agent’s beliefs. That is, the component u(f) as-
signs a truth value to the fluent f in u while u(ag) represents
the (non-well-founded) set of possibilities that could be true
w.r.t. the agent ag.

The choice of possibilities over Kripke structures as
e-state representation provides several advantages. The
most important is that, as said in Gerbrandy and Groen-
eveld (1997), a possibility represents the solution to the min-
imal system of equations in which all bisimilar Kripke struc-
tures are collapsed. More intuitively this means that a class
of bisimilar Kripke structures, that in m.A4* represents dif-
ferent e-states, is easily represented by a single possibility
and therefore, by a single e-state in m.A”. That is, thanks to
possibilities and to the newly introduced transition function
it has been possible to maintain e-states with smaller size,
w.r.t. EFP 1.0, during the solving process. From a more con-
crete point of view, implementing m.4” allowed us to work
on e-states of reduced dimension® without having to rely on
minimization techniques, such as the algorithms presented

SW.r.t. the e-states generated following m.A*.

104

AB N VA B
W A B w'/
I |
C C
l)&i
A B/CV AB.C V:\\B C

(a) Picture of w.

wo = {(A {w,w'}), (B, {w,w'}), (C, {v,v'}), f, g h}
w' = {(A {w,w'}), (B, {w,w'}), (C,{v,v'}), g, h}
v ={(A{v,v'}), (B, {v,v'}), (C{v,v'}), f, h}

Vo= A vV, (B AV, V), (G {v, v}), b}

(b) System of equations of w.

Figure 2: Representation of a generic possibility w. The pos-
sibility is expanded for clarity.

in Paige and Tarjan; Dovier, Piazza, and Policriti (1987,
2004), during the solving process. Another advantage in
using possibilities derived from their non-well-founded as-
pect. In fact, since a possibility is a non-well-founded graph,
which nodes are themselves possibilities, our planner stores
each calculated possibility; and, whenever needed, EFP 2.0
retrieve the stored possibilities (through pointers) to reuse
it as “node” inside a new e-state. To summarize, although
possibilities and Kripke structures are tightly connected, the
advantages of using m.A” are: i) the reduced size of the e-s-
tates that does not depend on external procedures; and ii) the
fact that possibilities can be stored and easily reused thanks
to their non-well-founded nature. In this sense we can see
possibilities as a more compact representation, w.r.t. Kripke
structure, that allows us to save computational resources.

An Updated Transition Function for m.4”

As first main contribution we present the formalization of
a new transition function for the action language m.4”, an
epistemic action language initially introduced in Fabiano et
al. (2019). m.A” borrows the syntax from m.A* but changes
the underlying e-state representation from Kripke structures
to possibilities. After rapidly introducing the concept of en-
tailment we will describe an improved transition function for
m.AP along with some important properties.

Let us start with the concept of entailment for possibili-
ties. The following definition combines the concept of Ger-
brandy (1999) with the action language m.A*.

Definition 10 (Entailment w.r.t. possibilities) Ler the be-
lief formulae p, 1, ps, a fluent f, an agent ag, a group of
agents o, and a possibility u be given.

ulEfifu(f)=1
u =By iffor each v € u(ag), v
uEpifulE e
W o1V o ifu b= gr oru o
uE 1 Ap2iful=grandu = po;
ukE=Ey,piful=Bagp forallag € o

E

SR L~

7. ul= Cop ifu = EE o for every k > 0, where ES p = ¢
and EE o = B, (EE).

We are now ready to introduce an updated version of
the transition function. The new transition function is more
compact and therefore, more understandable than the orig-
inal. Moreover, the “simplicity” of the e-states update for-
malization is reflected in a much cleaner and faster im-
plementation. Let a domain D), its set of action instances
D(AT), and the set S of all the possibilities reachable from
D(¢;) with a finite sequence of action instances be given.
The transition function ® : D(AZ) x S — S U {0} for
mAP relative to D is defined as follows.

Definition 11 (m.A4” transition function) Allow us to use
the compact notation u(F) = {f | f € D(F) Au E
fYu{=f | f € D(F) Au £ f} for the sake of readabil-
ity. Let an action instance a € D(AT), a possibility u € S
and an agent ag € D(AG) be given.
If a is not executable in u, then ®(a,u) = 0 otherwise
®(a,u) = ', where:
e Let us consider the case of an ontic action instance a. We
then define u' such that:

e(a,u) = {¢| (acauses ¢) € D}; and

e(a,u) = {=l | ¢ € e(a,u)} where ==L is replaced by ¢.

sy 1 7FEUE) \) Uela.
0 if=fe (u(F)\e(a,u))Ue(a,u)

L fuGe ifag < O,

u'(ag) =4 U @(a,w) ifage F,
weu(ag)

e if a is a sensing action instance, used to determine the
fluent f. We then define u’ such that:

e(a,u) ={f | (a determines f) € D ANu = f}
U{—f | (a determines f) € D Au [~ f}

u'(F) = u(F)
u(ag) ifag € O,
, U o(a,w) ifage P,
u(ag) = { weu(ag)
U ®(a,w) ifag€ F,

weu(ag): e(a,w)=e(a,u)

e if a is an announcement action instance of the fluent for-
mula ¢. We then define u’ such that:

[0 ifulo
e(a,u)—{1 ifu =
u'(F) = u(F)
u(ag) ifag € O,
, P(a,w) ifag e P,
u'(ag) = { weu(ag)
O(a,w) ifage F,

weu(ag): e(a,w)=e(a,u)

105

mA? Properties The newly introduced transition function
allowed us to reason about fundamental properties that, as
said in Baral et al. (2015), each multi-agent epistemic ac-
tion language should respect. In particular, each epistemic
reasoner should ensure that:

e if an agent is fully aware of the execution of an action
instance then her beliefs will be updated with the effects
of such action execution;

e an agent who is only partially aware of the action occur-
rence will believe that the agents who are fully aware of
the action occurrence are certain about the actions effects;
and

e an agent who is oblivious of the action occurrence will
also be ignorant about its effects.
These propositions fully capture the concept of beliefs up-
date and ensure that, when satisfied, the action language can
be soundly used for multi-agent epistemic reasoning. Due to
space limits we will only list these properties without pre-
senting their proofs that can be found in the Supplementary
Documents (available upon request).
In the following we will use p’ instead of ®(a,p) when
possible to avoid unnecessary clutter.

Proposition 1 (Ontic Action Properties) Assume that a is

an ontic action instance executable in u s.t. a causes | if |

belongs to D. In mAP it holds that:

1. for every agent x € F, if u |= By then v’ |= Byl;

2. forevery agenty € O, and a belief formula ¢, u" = By
iff u = By, and

3. for every pair of agents x € I, andy € O, and a belief
formula ¢, if u = ByByp then v’ = B,By.

Proposition 2 (Sensing Action Properties) Assume that a
is a sensing action instance and D contains the statement a
determines f. In m.A” it holds that:

1. ifu |=fthenu |= Cpf;

2. ifu = —f then v’ = Cp,—f;

3. v ECp(CpfVCp—f),

4. u): CFQ(CPQ(CFaf\/ CFa—ﬂc));

5. forevery agenty € O, and a belief formula ¢, u" = By
iff u = Byy; and

6. for every pair of agents x € I, andy € O, and a belief
formula ¢, if u |= ByByp then v’ |= B,By.

Proposition 3 (Announcement Action Properties)
Assume that a is a announcement action instance and D
contains the statement a announces . If u |= ¢ in mAP it
holds that:

1. U): CFE¢"

2. v = Cp(CpoV Cpmo);

3. v = Cp(Cp(Cr¢ Vv Cr9)):

4. forevery agenty € O, and a belief formula ¢, u’ |= Byp
iff u = By, and

5. for every pair of agents x € F, andy € O, and a belief
formula ¢, if u = BBy then v’ = B,By.

In Baral et al. (2015) is shown how the above listed
properties capture the concept of update in epistemic envi-
ronment. Therefore, we consider two epistemic action lan-
guages that respect all of the above mentioned properties
correct w.r.t. the knowledge/belief update. That is the case
with mA* and m.A”.

Epistemic Forward Planner

Along with the new transition function formalization in
this work we also present an updated version of the epis-
temic planner EFP (Le et al. 2018), called EFP 2.0*. This
new solver redesigned every element of EFP 1.0 to intro-
duce multiple e-states representations and, therefore, mul-
tiple transition functions. On the other hand, our implemen-
tation keeps the same modular structure of EFP 1.0.

We will now introduce how EFP 2.0 works and how it dif-
fers from its predecessor.

EFP 2.0 Structure

The planning process executed by EFP 2.0 is a breadth-first
search with duplicate checking. Let us note that the com-
putation of the initial state is not a trivial task in MEP. In
particular, given a belief formula ¢; it is, in general, pos-
sible to generate infinite e-states that respect ;. To over-
come this problem EFP 1.0 imposes that the initial state de-
scription should be a finitary S5-theory (Son et al. 2014). In
EFP 2.0 we still require the initial description to be a finitary
S5-theory but we allow ¢, to be less specific. In particular,
without going into details of finitary S5-theories, whenever a
fluent f is not considered by ;, EFP 2.0 assumes that is com-
mon knowledge between all the agents that f is unknown.
Another remark that has to be done is about the e-states.
EFP 2.0 has a “templatic” e-state definition. This means that
each solving process can be executed using the desired e-
state representation with its relative transition function. Cur-
rently EFP 2.0 implements two e-states representations, i.e.,
Kripke structures and possibilities, and two transition func-
tions: i) the one introduced in Baral et al. (2015) (for Kripke
structures); ii) the transition function for possibilities in-
troduced above. Another important concept that EFP 2.0
integrates is the Kripke structures size reduction. We, in
fact, implemented two algorithms (Paige and Tarjan 1987,
Dovier, Piazza, and Policriti 2004) that starting from a
generic Kripke structure compute its bisimilar, and therefore
semantically equivalent, correspondent with minimal size.
Finally EFP 2.0 introduces the concept of “already vis-
ited e-state”. Excluding the already visited states during the
planning is a common practice and it is done in the major-
ity of the solving processes. Nevertheless, EFP 1.0 did not
implement the visited states comparison. That is because
comparing two e-states is not as trivial as comparing, for
instance, two sets of fluents. In fact, being each e-state in
mA* a Kripke structure, comparing two e-states means to
check for isomorphism between them. Given the inherent
complexity of the isomorphism algorithm the e-states visited
check could, therefore, results in a even less efficient solving
process. That is why in EFP 1.0 the comparison for already

*Source code available upon request.

106

visited states was left as future development. On the other
hand, with possibilities the equality check should be faster
since, thanks to the non-well-foundeness, we can collapse
each possibility in a small system of equations and exploit
the already calculated possibilities information. That is why
in EFP 2.0 we implemented the visited e-state check initially
for possibilities and later for Kripke structures. As shown in
Table 1, we found that all the solver’s executions (with both
possibilities and Kripke structures as e-states) were faster
when the check was active.

As future work we also plan to exploit the bisimulation
algorithm for the equality check on possibilities that, hav-
ing faster implementations than isomorphism, e.g. (Dovier,
Piazza, and Policriti 2004), should make EFP 2.0 even more
efficient.

Experimental Evaluation

In this Section we compare the new multi-agent epistemic
planner EFP 2.0 with, to the best of our knowledge, the only
other comprehensive multi-agent epistemic solver in liter-
ature, i.e., the planner presented in Le et al. (2018). All the
experiments were performed on 3.60GHz Intel Core i7-4790
machine with 32GB of memory.

From now on, to avoid unnecessary clutter, we will make
use of the following notations:

e [to indicate the (optimal) length of the plan;

e WP to indicate that the solving process returned an Wrong
Plan;

e TO to indicate that the solving process did not return any
solution before the timeout (25 minutes);

e EFP 1.0 to denote the Breadth-First search planner pre-
sented in Le et al. (2018). We chose the Breadth-First
solver because we wanted to focus on the base of the solv-
ing process so that all the future optimizations could ben-
efit from this research.

e K-MAL to identify our solver while using Kripke struc-
tures as e-state representation and the transition function
of Baral et al. (2015).

e K-BIS to identify our solver while using Kripke struc-
tures as e-state representation and the algorithm to find the
coarsest refinement, presented in Paige and Tarjan (1987),
to minimize the e-states size. We also tried to compact
the e-states using the algorithm presented in Dovier, Pi-
azza, and Policriti (2004) but the performances were al-
most identical. This is probably because the Kripke struc-
tures we are considering are relatively small in size.

e P-MAR to identify our solver while using possibilities as
e-state with the transition function introduced in the pre-
vious Section.

All the configurations K-MAL, K-BIS, and P-MAR check
for already visited states. To indicate the same config-
urations without the visited states check we will use
K-MAL-NV, K-BIS-NV, and P-MAR-NV.

We evaluate EFP 2.0 on benchmarks collected from the
literature (Kominis and Geffner 2015; Huang et al. 2017). In
particular, these domains are:

[

Grapevine

|

[TAG[[[FI [[A[[L][EFP 1.0 || KMAL-NV | K-MAL][K-BIS-NV | K-BIS |[P-MAR-NV | P-MAR |
2 [wp 09 09 19 20 03 02
3 o | ag | 4] W 9.19 8.13 1354 | 1276 1.34 1.25
5 we 94.49 75.32 11138 | 84.46 8.67 7.71
6| wp 372.64 | 27893 || 398.10 | 232.54 | 27.63 20.26
2 [we 1.85 1.786 1.95 2.08 17 18
o laol 4] W 403.11 | 27453 || 178.52 | 111.38 13.49 7.31
5 we TO TO TO 775.63 || 123.54 | 36.54
6 || wp TO TO TO TO 427.97 | 108.64

Table 1: Runtimes for the Grapevine domain. We compare the configurations with and without the visited e-states check.
EFP 1.0 errors are caused by a wrong initial e-state generation.

1. Collaboration and Communication (CC). In this domains
n > 2 agents move along a corridor with & > 2 rooms
in which m > 1 boxes can be located. Whenever an
agent enters a room, she can determine if a certain box
is in the room. Moreover, agents can communicate infor-
mation about the boxes’ position to the another attentive
agents. The goals consider agents’ positions and their be-
liefs about the boxes (Table 2).

2. Selective Communication (SC). SC has n > 2 agents that
start in one of the £ > 2 rooms in a corridor. An agent can
tell some information and all the agents in her room or the
neighboring ones can hear what was told. Every agent is
free to move from one room to its adjacent. The goals
usually require some agents to know certain properties
while other agents ignore them (Figure 3).

—=— EFpP 1.0
—e— P-MAR

100 |-

'S = 0
S S S
T T T

Search time (in seconds)
N
T

fe=}
T

Plan length

Figure 3: Comparison between EFP 1.0 and P-MAR on SC
instances with £ = 11 rooms and | AG| = 9.

3. Grapevine. n > 2 agents are located in k > 2 rooms.
An agent can move freely to each other room and she can
share a “secret” with the agents that are in the room with
her. This domain supports different goals, from sharing
secrets with other agents to having misconceptions about
agents’ beliefs (Table 1).

4. Coin in the Box (CB). n > 3 agents are in a room where
in the middle there is a box containing a coin. None of
the agents know whether the coin lies heads or tails up
and the box is locked. One agent has the key to open the
box. The goals usually consist in some agents knowing

107

whether the coin lies heads or tails up while other agents
know that she knows or are ignorant about this (Table 3).

5. Assembly Line (AL). In this problem there are two agents,
each responsible for processing a different part of a prod-
uct. Each agent can fail in processing her part and can in-
form the other agent of the status of her task. Two agents
decide to assemble the product or restart, depending on
their knowledge about the product status. The goal in this
domain is fixed, i.e., the agents must assemble the prod-
uct, but what varies is the depth of the belief formulae
used as executability conditions (Table 4).

All our experiments (Tables 1-4, Figure 3) show that
EFP 2.0, if used with its fastest configuration P-MAR, per-
forms significantly better than EFP 1.0. We believe that these
results derive from several factors.

First and foremost the choice of using possibilities as e-
states and m.A” as action language ensured that every e-state
generated during the planning process had always smaller or
equal size w.r.t. the same state generated in EFP 1.0. In par-
ticular, EFP 1.0, generating e-states with non-minimal size,
introduces extra (always increasing) overhead at each ac-
tion application w.r.t. EFP 2.0. Moreover the implementation
of P-MAR exploits already calculated e-states information
when it creates new ones reducing even more the e-states
generation time. From our results it is clear that EFP 1.0
and P-MAR perform similarly on very small instances of the
problems but as soon as the problem grows the two solvers
have different behaviors. In fact, while EFP 1.0 search time
increases very rapidly P-MAR stays relatively stable. That is
because when the problems become more complex the plan-
ner, generally, has to generate more e-states. Regarding the
other configurations of EFP 2.0, namely K-MAL and K-BIS,
we note that they generally outperforms EFP 1.0. Neverthe-
less, in some cases (Tables 2 and 4), we note some excep-
tional peeks in these configuration’s performances. These
peeks are the results of: i) the use of the visited-state check
that in some configurations may add an extra overhead that
in EFP 1.0 was not present; and ii) a less optimized entail-
ment-check function, w.r.t. EFP 1.0, in the configurations of
EFP 2.0 that are based on Kripke structures. A remark has
to be done on the K-BIS configuration. From the results
(Tables 1-4) it is clear how this configuration, even if ex-

[L|[EFP 1.0 [K-MAL [K-BIS | P-MAR |[EFP 1.0 | K-MAL [K-BIS | P-MAR |

CC1: |AG[=2, [F| =10, [A[= 16 | CC.3: JAG| =3, |F| = 14, [A| = 24
3 .08 .05 .08 .02 12 .07 .13 .03
4 .16 .09 .16 .03 .56 31 54 10
5 1.31 .79 1.14 .16 6.55 3.25 4.89 .60
6 6.99 3.58 4.42 0.64 25.11 9.09 12.66 1.71
7 49.44 15.95 16.06 2.61 TO 92.37 142.06 12.37

CC2: [AG| = 2. [F| = 14, [A[= 28 || CCA:[AG| =3, |F| = 14, A = 42
3 31 21 37 .07 .62 54 .81 A5
4 1.54 .98 1.77 .26 3.22 2.84 5.40 87
5 22.14 12.55 18.80 1.68 104.97 106.02 152.38 7.41
6 171.19 72.92 102.97 7.71 473.03 246.08 | 313.70 25.47
7 TO 43791 | 592.48 38.81 TO TO TO 174.67

Table 2: Runtimes for the Collaboration and Communication domain.

[CBwith[AG[=3,[F]=8,JA[=21 |

L | EFP 1.0 | K-MAL | K-BIS | P-MAR
2 .003 .003 .006 001

3 048 .077 .097 016

5 WP 5.546 1.438 367

6 WP 108.080 | 14.625 | 2.932
7 WP 317.077 | 38.265 | 6.996

Table 3: Runtimes for the Coin in the Box domain.

| AL with [AG] =2, [F[=4,]A[=6]
d | EFP 1.0 | K-MAL | K-BIS | P-MAR
2 43 32 42 .07
4 .96 5 .64 J1
6 | 26.20 27.85 13.51 2.44
8 TO TO 883.87 | 150.92
C 44 32 43 .08

Table 4: Runtimes for the Assembly Line domain. The last
row identify the instance where the executability conditions
are expressed through common knowledge.

ecutes the solving process on minimal sized e-states, it is
still outperformed by P-MAR. The reasons to this are essen-
tially two: 1) thanks to their non-well-founded nature possi-
bilities allow to re-use already generated information during
the planning process; and ii) the use of external algorithms
to minimize the size of the e-states introduces an extra over-
head w.r.t. P-MAR.

Another important factor that makes EFP 2.0 faster than
EFP 1.0 is the concept of visited e-states. As we can see in
Table 1 the planner takes advantage from this check even
when the e-states are represented as Kripke structures. The
fact that the visited-state check increases the performances
of EFP 2.0 proves that, even if this check relies on ‘heavy’
algorithms, the epistemic planning process benefits from the
duplicates elimination.

Finally, the complete refactoring of the code helped us to
implement a more efficient solver. In fact, even if EFP 2.0
is based on EFP 1.0, the remodeling of the solver allowed

108

us: i) to correct bugs related to the initial e-state genera-
tion (Table 1) and to the transition function (Table 3); and
ii) to optimize the code. This optimization is reflected by
the comparison between K-MAL and EFP 1.0. In fact, these
two configurations both use Kripke structures as e-states and
implements m.A* (Baral et al. 2015). Nevertheless K-MAL
generally outperforms EFP 1.0 as shown in Table 2.

Conclusion and Future Works

In this paper we introduced an updated formalization of the
transition function for the multi-agent epistemic action lan-
guage m.AP. In particular, the newly introduced transition
function allowed us to prove some desirable properties of
m.A? and helped us in deriving a clean and efficient imple-
mentation for a comprehensive epistemic planner based on
possibilities, namely EFP 2.0.

We also provided some experimental results by com-
paring the state-of-the-art comprehensive epistemic plan-
ner EFP 1.0 (Le et al. 2018) with EFP 2.0 on benchmarks
collected from the literature. As shown in the reported ta-
bles, the employment of possibilities as representation for
epistemic state achieves better results, especially when cou-
pled with the visited-state check. By conducting an analy-
sis on the algorithms we believe that this higher efficiency
is due to i) the employment of the dynamic programming
paradigm that allowed us to re-use already calculated infor-
mation about e-states; and ii) the reduced size of the e-states
w.r.t. EFP 1.0. Finally the complete refactoring of the solver
presented in Le et al. (2018) allowed to apply corrections
and optimizations to the original solving process.

An immediate development to this work will be the im-
plementation of a visited-state check based on bisimulation
to reduce even more the planning times. Moreover, as future
continuations to this work, we plan to: i) consider other al-
ternatives to Kripke structures and possibilities; ii) formalize
the concept of non-consistent belief in m.A”; iii) implement
the notion of distributed knowledge in EFP 2.0; iv) introduce
the concept of epistemic static laws; v) further investigate
the connection between Kripke structures and non-well—
founded sets. vi) derive heuristics, as in Le et al. (2018), to
prune the search space; and vii) consider symbolic e-states

representations such as BDDs.

Acknowledgments

This research is partially supported by: the NSF HRD
1914635 and NSF HRD 1345232 projects, the University
of Udine PRID ENCASE project, and the GNCS-INdAAM
2017-2020 projects.

References

Aczel, P. 1988. Non-well-founded sets. CSLI Lecture Notes,
14.

Baral, C.; Gelfond, G.; Pontelli, E.; and Son, T. C. 2015.
An action language for multi-agent domains: Foundations.
CoRR abs/1511.01960.

Dovier, A.; Piazza, C.; and Policriti, A. 2004. An efficient
algorithm for computing bisimulation equivalence. Theoret-
ical Computer Science 311(1-3):221-256.

Fabiano, F.; Riouak, I.; Dovier, A.; and Pontelli, E. 2019.
Non-well-founded set based multi-agent epistemic action
language. In Proceedings of the 34th Italian Conference
on Computational Logic, volume 2396 of CEUR Workshop
Proceedings, 242-259.

Fabiano, F. 2019. Design of a solver for multi-agent epis-
temic planning. In Proceedings 35th International Confer-
ence on Logic Programming (Technical Communications),
ICLP 2019 Technical Communications, Las Cruces, NM,
USA, September 20-25, 2019, 403—412.

Fagin, R., and Halpern, J. Y. 1994. Reasoning about
knowledge and probability. Journal of the ACM (JACM)
41(2):340-367.

Gerbrandy, J., and Groeneveld, W. 1997. Reasoning about
information change. Journal of Logic, Language and Infor-
mation 6(2):147-169.

Gerbrandy, J. 1999. Bisimulations on planet Kripke. Inst. for
Logic, Language and Computation, Univ. van Amsterdam.

Hu, G.; Miller, T.; and Lipovetzky, N. 2019. What you
get is what you see: Decomposing epistemic planning using
functional strips.

Huang, X.; Fang, B.; Wan, H.; and Liu, Y. 2017. A general
multi-agent epistemic planner based on higher-order belief

change. In IJCAI International Joint Conference on Artifi-
cial Intelligence, 1093—-1101.

Kominis, F., and Geffner, H. 2015. Beliefs in multia-
gent planning: From one agent to many. In Proceedings of
the International Conference on Automated Planning and
Scheduling, ICAPS, 147-155.

Kripke, S. A. 1963. Semantical considerations on modal
logic. Acta Philosophica Fennica 16(1963):83-94.

Kuter, U.; Nau, D. S.; Reisner, E.; and Goldman, R. P. 2008.
Using classical planners to solve nondeterministic planning
problems. In Rintanen, J.; Nebel, B.; Beck, J. C.; and
Hansen, E. A., eds., Proceedings of the Eighteenth Inter-
national Conference on Automated Planning and Schedul-
ing, ICAPS 2008, Sydney, Australia, September 14-18, 2008,
190-197. AAAL

109

Le, T.; Fabiano, E.; Son, T. C.; and Pontelli, E. 2018. EFP
and PG-EFP: Epistemic forward search planners in multi-
agent domains. In Proceedings of the Twenty-Eighth Inter-
national Conference on Automated Planning and Schedul-
ing, 161-170. Delft, The Netherlands: AAAI Press.

McCarthy, J. 1959. Programs with common sense. In Pro-
ceedings of the Teddington Conference on the Mechaniza-
tion of Thought Processes, 715-91.

Muise, C. J.; Belle, V.; Felli, P.; Mcllraith, S. A.; Miller, T.;
Pearce, A. R.; and Sonenberg, L. 2015. Planning over multi-
agent epistemic states: A classical planning approach. In
Proc. of AAAI, 3327-3334.

Paige, R., and Tarjan, R. E. 1987. Three partition refinement
algorithms. SIAM Journal on Computing 16(6):973-989.

Son, T. C.; Pontelli, E.; Baral, C.; and Gelfond, G. 2014.
Finitary s5-theories. In European Workshop on Logics in
Artificial Intelligence, 239-252. Springer.

Torrefio, A.; Onaindia, E.; and Sapena, 0. 2014. Fmap:
Distributed cooperative multi-agent planning. Applied Intel-
ligence 41(2):606-626.

Van Ditmarsch, H.; van Der Hoek, W.; and Kooi, B. 2007.
Dynamic epistemic logic, volume 337. Springer Science &
Business Media.

Wan, H.; Yang, R.; Fang, L.; Liu, Y.; and Xu, H. 2015.
A complete epistemic planner without the epistemic closed

world assumption. In IJCAI International Joint Conference
on Artificial Intelligence, 3257-3263.

