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Abstract
Population protocols [6] are a class of algorithms for modeling distributed computation in

networks of finite-state agents communicating through pairwise interactions. Their suitability for
analyzing numerous chemical processes has motivated the adaptation of the original population
protocol framework to better model these chemical systems. In this paper, we further the study of
two such adaptations in the context of solving approximate majority: persistent-state agents (or
catalysts) and spontaneous state changes (or leaks).

Based on models considered in recent protocols for populations with persistent-state agents
[3,5,14], we assume a population with n catalytic input agents and m worker agents, and the goal of
the worker agents is to compute some predicate over the states of the catalytic inputs. We call this
model the Catalytic Input (CI) model. For m = Θ(n), we show that computing the parity of the
input population with high probability requires at least Ω(n2) total interactions, demonstrating a
strong separation between the CI model and the standard population protocol model. On the other
hand, we show that the simple third-state dynamics [7,20] for approximate majority in the standard
model can be naturally adapted to the CI model: we present such a constant-state protocol for the
CI model that solves approximate majority in O(n log n) total steps with high probability when the
input margin is Ω(

√
n log n).

We then show the robustness of third-state dynamics protocols to the transient leaks events
introduced by [3, 5]. In both the original and CI models, these protocols successfully compute
approximate majority with high probability in the presence of leaks occurring at each step with
probability β ≤ O

(√
n log n/n

)
. The resilience of these dynamics to leaks exhibits similarities to

previous work involving Byzantine agents, and we define and prove a notion of equivalence between
the two.
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19:2 Approximate Majority With Catalytic Inputs

1 Introduction

The population protocol model [6] is a theoretical framework for analyzing distributed
computation in ad hoc networks of anonymous, mobile agents: at each step, a random pair of
agents is chosen to interact, and their local states are updated according to a global transition
function. Population protocols can solve numerous problems in distributed computing,
including majority (which is also referred to as consensus) [5, 7, 12], source detection [3, 14],
and leader election [4, 16,17].

Population protocols are a special case of chemical reaction networks (CRNs), which
are systems of transition rules describing how a set of chemical reactants stochastically
transform into a set of products. In particular, population protocols are chemical reaction
networks with exactly two reactants which form two products, where each transition rule
for a pair of reactants is weighted with probability 1. Given their suitability for modeling
chemical processes, population protocols have been used to study computation not only by
chemical reaction networks [10], but also DNA strand displacement [11, 21] and biochemical
networks [9]. These applications of population protocols in chemistry have inspired various
adaptations of the model. In this paper, we focus on two such variations on population
protocols in the context of solving majority, the problem of determining which of two states
is initially more prevalent in a population.

The first modification to the model we consider, which was introduced to the literature
in previous works studying source detection and bit-broadcast [3, 14] and later studied in
the context of the majority problem [5,13], is the presence of persistent-state agents, or
agents whose state never changes. While some works use persistent-state agents to model
authoritative sources of information [14] or “stubborn” nodes that are unwilling to change
state [13], others describe these entities as an embodiment of chemical catalysts because they
induce a state transition in another agent without themselves changing state [3,5]. Using the
latter perspective, we refer to these persistent-state agents as catalysts.

In this work, we call the class of population protocols with catalysts the catalytic input
(CI) model. We formally define the model to consist of n catalytic input agents, which
in accordance with their name do not ever change state, and m worker agents that can
change state and wish to compute some function on the states of the catalysts. While the
CI model is similar to the standard population protocol model, we show that there exists a
strong separation between the two in terms of their computational power.

The next variation on the model we consider is the introduction of transient leak events,
studied previously in the contexts of solving source detection and comparison [3, 5]. In brief,
a “leak” simulates the low-probability event that a molecule undergoes a reaction that would
typically take place in the presence of a catalyst. In population protocols, this is modeled
by a spontaneous change of state at a single agent, and note that catalytic agents in the
CI model are not susceptible to leaks because they never change state. A leak replaces an
interaction between two agents at any given step with some fixed probability, known as the
leak rate [3]. Although leaks have typically been studied in the presence of catalysts, we
consider leaks to more generally model unpredictable or adversarial behavior which may
occur in the absence of catalysts as well.

We explore the impact of leaks on third-state dynamics [7, 20] solving majority. Our
work demonstrates that third-state dynamics can solve approximate majority, or majority
with a lower-bounded initial difference between the counts of the two input states, with
upper-bounded leak rate both in the standard and CI population models.
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1.1 Related Work
The third-state dynamics protocol in the original population model (sometimes called
undecided-state dynamics) was introduced by Anlguin et al. [7] and independently by Perron
et al. [20]. An agent is either in a state X or Y , or in a blank state B (sometimes called an
undecided state). The transition rules are shown in Figure 1, and we refer to this protocol
as DBAM1. Assuming an initial X majority, a simplified analysis from Condon et al. [12]
showed that all n agents in the population transition to the X state within O(n log n) total
interactions with high probability, so long as the input margin |X| − |Y | at the start of the
protocol is at least Ω(

√
n log n). The DBAM protocol is also robust to a small subset of faulty

Byzantine agents [7, 12], meaning that all but a O(
√
n log n/n) fraction of the population

still reaches the X state within O(n log n) interactions with high probability, despite the
presence of these dishonest agents.

The DBAM protocol and similar variants of third-state dynamics have been shown to more
generally compute consensus (where all agents converge to either X or Y , but where this
need not be the initial majority value), both in the original population protocols model [7,12]
and in other similar distributed models [8, 13]. In particular, the closely related results of
d’Amore et al. [13] analyzed an analogous version of the DBAM protocol in the synchronous
PULL model. The authors considered systems with stubborn agents (as in [24]) which are
similar to the persistent-state catalytic agents we consider in the present work. However, the
parallel synchronous scheduling model considered in [13] is fundamentally distinct from the
sequential pairwise scheduling used in population protocols.

The notion of a persistent source state in population protocols originated from [14], where
sources are used to solve detection (the detection of a source in the population) and bit
broadcast (the broadcast of a 0 or 1 message from a set of source agents). An accompanying
work [3] introduces the concept of leaks, or spontaneous state changes, and investigates the
detection problem in their presence. Generally, leaks can be dealt with using error-correcting
codes [22]; however, for certain problems there are more efficient specialized solutions. For
example, Alistarh et al. [3] demonstrate that detection in the presence of leaks (up to rate
β = O(1/n)) can be solved with high probability using log n

k + O(log log n) states, where
k ≤ n is the number of sources in the population.

More recently, [5] examines leaks in the context of the comparison problem. Comparison
is a generalization of the majority problem, where some possibly small subset of the population
is in input state X0 or Y0 and the task of the population is to determine which of the two
states is more prevalent. Alistarh et al. [5] solve comparison in O(n log n) interactions with
high probability using O(log n) states per agent, assuming |X0| ≥ C|Y0| for some constant C,
and X0, Y0 ≥ Ω(log n). The protocol is self-stabilizing, meaning that it dynamically responds
to changes in the counts of input states.

1.2 Our Contribution
In this work, motivated by the recent interest in population models with catalytic agents
and with transient leaks, we study the well-known third-state dynamics protocols [7, 20] for
solving approximate majority in the presence of each of these variants separately as well

1 DBAM stands for double-B approximate majority where double-B captures the fact that following an
X + Y interaction, both agents transition to the B state. This protocol is the two-way variant of the
original protocol from [7], which uses one-way communication and where only one agent updates its
state per pairwise interaction.

OPODIS 2020
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X +B → X +X

Y +B → Y + Y

X + Y → B +B

Figure 1 Transition rules for the DBAM pro-
tocol [7] in the original population model.

X +B → X +X IX +B → IX +X

Y +B → Y + Y IY +B → IY + Y

X + Y → B +B

Figure 2 Transition rules for our DBAM-C
protocol in the CI model.

as together. To begin, we formalize the CI model consisting of n catalysts and m workers,
where N = n+m. While conceptually similar to other models considering these types of
catalytic agents [3, 5, 13], introducing the distinction between the two (possibly unrelated)
population sizes provides a new level of generality for designing and analyzing protocols in
this setting, both with and without leaks.

Although the CI and original population models are almost identical, we show a strong
separation between the computational power of the two. When m = Θ(n), we prove a lower
bound showing that parity, the problem of determining whether the number of catalysts is
odd or even, cannot be computed in fewer than Ω(n2) interactions with high probability in
the CI model. On the other hand, the result of [19] shows that this predicate is computable
within O(n polylog n) total steps in the standard model with high probability2.

While some problems have strictly different lower bounds on running time in these
two models, others do not and can in fact be solved using nearly identical techniques. In
particular, we show that the approximate majority problem can be solved in the CI model
by naturally extending the DBAM protocol.

In the approximate majority problem in the CI model, each catalytic input agent holds a
persistent value of IX or IY and each worker agent holds either an undecided, or blank value
B, or an X or Y value corresponding to a belief in an IX or IY input majority, respectively.
The worker agents seek to correctly determine the larger of |IX | and |IY | so long as the input
margin ||IX | − |IY || is sufficiently large. By adapting the third-state dynamics process [7],
we present a constant-state protocol for approximate majority with catalytic inputs called
DBAM-C (see Figure 2). The protocol converges with high probability in O(N logN) total
steps when the initial input margin is Ω(

√
N logN) and m = Θ(n). We then show that this

input margin is optimal in the CI model up to a O(
√

logN) factor when m = Θ(n).
Moreover, in the presence of transient leak events, we show that both the third-state

dynamics protocol in the original model and our adapted protocol in the CI model exhibit
a strong robustness to leaks. When the probability of a leak event is bounded, we show
that with high probability both protocols still quickly reach a configuration where nearly all
agents share the correct input majority value.

Notice that the approximate majority problem in the CI model is equivalent to the
comparison problem considered by [5], so we demonstrate how our protocol compares to the
results of this work. We show that our DBAM-C protocol converges correctly within the same
time complexity of O(n log n) total steps, while only using constant state space (compared to
the logarithmic state used by the protocols in their work). Moreover, in populations where
m = Θ(n), our protocol tolerates a less restrictive bound on the input margin compared to [5]
(Ω(
√
n log n) compared to Ω(n)). In the presence of transient leaks, our protocol also shows

robustness to a higher leak rate of β ≤ O(
√
n log n/n). However, unlike [5], our protocol is

not self-stabilizing and requires that the number of inputs be at least a constant fraction of

2 We define “high probability” to mean with probability at least 1− n−c where n is the total number of
agents and c ≥ 1.
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the total population for our main results. In order to achieve these results, we leverage the
random walk analysis techniques and analysis structure introduced by [12].

Finally, we compare the impact of leaks on population protocols with that of faulty
Byzantine processes. While the fast robust approximate majority protocol of [7] is proven to
be robust to a number of Byzantine agents that is bounded by the input margin [7, 12], we
show that DBAM is robust to a similarly bounded leak rate and has sampling error matching
the result from [12].

The structure of the remainder of the paper is as follows: in Section 2 we introduce
notation and definitions central to our results. Section 3 presents our lower bounds over
the CI model, which demonstrates the separation between the CI and original population
models. In Section 4, we analyze the correctness and efficiency of the DBAM-C protocol for
approximate majority in the CI model, and in Section 5 we demonstrate the leak-robustness
of both the DBAM-C and original DBAM protocols. Then in Section 6, we compare the notion
of transient leaks with the adversarial Byzantine model, demonstrating parallels between
previous results examining Byzantine behavior and our work.

Throughout the paper, we provide overviews of the intuition and techniques used to
obtain our results and defer most proofs to the full version.

2 Preliminaries

We begin with some definitions. Denote by N the number of agents in the population.

Population Protocols

Population protocols are a class of algorithms which model interactions between mobile
agents with limited communication range. Agents only interact with one another if they are
within close enough proximity of each other. In order to model this type of system in an
asynchronous setting, interactions between pairs of agents are executed in sequence. The
interaction pattern of these agents is dictated by a scheduler, which may be random or
adversarial. In this work we will assume that the scheduler is uniformly random, meaning
that an ordered pair of agents is chosen to interact at each time step independently and
uniformly at random from all N(N − 1) ordered pairs of agents in the system.

As defined by [6] which first introduced the model, a population protocol P consists
of a state set S = {s1, s2, ..., sk}, a rule set R : S2 7→ S2, an output alphabet O, and
an output function f : S 7→ O. The output function computes the evaluation of some
function on the population locally at each agent. The configuration of the population is
denoted as a vector c = 〈c1, c2, ..., ck〉 such that each ci ≥ 0 is equal to the number of agents
in the population in state si, from which it follows that

∑
ci = N . For convenience, we

denote by |si| the number of agents in the population in state si.
At each point in time, the scheduler chooses an ordered pair of agents (ai, aj), where ai

is the initiator and aj is the responder [6]. The agents interact and update their state
according to the corresponding rule in R. In general, a rule in R is written as A+B −→ C+D
to convey that two agents, an initiator in state A and a responder in state B, interact and
update their states to be C and D, respectively. By convention, N/2 interactions make one
unit of parallel time [7]. This convention is equivalent to assuming every agent interacts
once per time unit on average.

An execution is the sequence of configurations of a run of the protocol, which converges
when the population arrives at a configuration d such that all configurations chronologically
after d have the same output at each agent as those in d [6]. In order to determine the

OPODIS 2020
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success or failure of an execution of P , we will consider a sample of the population to signify
the outcome of the protocol [3]. After the expected time to converge, one agent is selected at
random and its state is observed. The output associated with the agent’s state is considered
the output of the protocol. The probability of sampling an agent whose state does not reflect
the desired output of the protocol is called the sample error rate. Multiple samples can
be aggregated to improve the rate of success.

Catalysts and Leaks

Following [3], in an interaction of the form A + B −→ A + D, we say A catalyzes the
transformation of the agent in state B to be in state D. If A catalyzes every interaction it
participates in, A is referred to as a catalyst.

In chemistry, a reaction that occurs in the presence of a catalyst also occurs at a lower
rate in the absence of that catalyst. For this reason, recent work in DNA strand displacement,
chemical reactions networks, and population protocols [3, 5, 21] have studied the notion of
leakage: When a catalytic reaction A+B −→ A+D is possible, then there is some probability
that a transition B −→ D can occur without interacting with A at all. This type of event,
called a leak, was introduced in [21].

The probability with which the non-catalyzed variation of a reaction takes place is the
leak rate, which we denote by β. We simulate a leak as follows: At each step in time,
with probability 1− β, the scheduler samples an ordered pair of agents to interact with one
another as described in the beginning of the section; the rest of the time (i.e. with probability
β) one agent is chosen uniformly at random from all possible agents and the leak function
` : S → S is applied to update this agent’s state. Note that we only consider non-catalytic
agents to be susceptible to these faulty events.

Catalytic Input Model

In this work, we formalize a catalytic input (CI) model consisting of n catalytic agents that
supply the input and m worker agents that perform the computation and produce output.
We define N = m+ n to be the total number of agents in the population. At each time step,
the scheduler samples any two agents in the population to interact with one another. If two
catalysts are chosen to interact, then the interaction is considered to be null as no nontrivial
state transition occurs. When n = o(m), the probability that two catalysts are chosen to
interact is upper bounded by a constant, and so the total running time of the protocol is
asymptotically equivalent to the number of non-null interactions needed to reach convergence.
In the CI model, we consider convergence to be a term that refers to the states of the worker
agents only, as the catalytic agents never change state. Namely, for the approximate majority
problem, successful convergence equates to the worker agents being in the majority-accepting
state. In general, we wish to obtain results that hold with high probability with respect to
the total number of agents N .

3 Catalytic Input Model Lower Bounds

In this section, we characterize the computational power of the CI population protocol model.
Using information-theoretic arguments, we prove two lower bounds over the catalytic model
when the number of input agents is a constant fraction of the total population:
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I Theorem 1. In the catalytic input model with n input agents and m = Θ(n) worker agents,
any protocol that computes the parity of the inputs with probability at least 1−N−γ requires
at least Ω(N2) total steps for any γ ≥ 1.

I Theorem 2. In the catalytic input model with n input agents and m = Θ(n) worker agents,
any protocol that computes the majority of the inputs within O(N logN) total steps requires
an input margin of at least Ω(

√
N) to be correct with probability at least 1−N−γ for any

γ ≥ 1.

The first result can be viewed as a separation between the CI and original population
models: since it is shown in [19] that the parity of agents can be computed in the original
model within O(polylog n) parallel time with high probability, our result indicates that not
all semi-linear predicates over the input population in the CI model can be computed in
sub-linear parallel time with high probability. Additionally, this rules out the possibility
of designing fast protocols for exact majority in the CI model when the input size is a
constant fraction of the entire population. On the other hand, the second result indicates the
existence of a predicate — approximate majority — that does not require a large increase in
convergence time to be computed with high probability in this new model.

One key characteristic of a CI population is the inability for worker agents to distinguish
which inputs have previously interacted with a worker. Instead, every worker-input interaction
acts like a random sample with replacement from the input population. For proving lower
bounds in this model, this characteristic of a CI population leads to the following natural
argument: consider a population of n catalytic input agents and a worker population
consisting of a single super-agent. Here, we assume the super-agent has unbounded state
and computational power, and it is thus able to simulate the entire worker population of
any protocol with more workers. In this simulation, any interaction between a worker and
an input agent is equivalent to the super-agent interacting with an input chosen uniformly
at random: in other words, as a sample with replacement from the input population. Thus
we view the super-agent as running a central randomized algorithm to simulate the random
interactions that occur in population protocols. If the super-agent needs S samples to
compute some predicate over the inputs with high probability, then so does any multi-worker
protocol in the CI model. We denote this information-theoretic model as the Super CI
model, and restate the above argument more formally in the following lemma.

I Lemma 3. Consider a population with n catalytic input agents and a worker population
consisting of a single super-agent W . Let P be a predicate over the input population that
requires S total interactions between W and the input population in order for W to correctly
compute P with probability ε. Then for a CI population with n catalytic inputs and m worker
agents, computing P correctly with probability ε requires at least S total interactions.

Proof Sketch of Theorem 1

In a CI model population with n input agents and m worker agents where m = Θ(n),
Theorem 1 shows that computing the parity or exact majority of the inputs requires at least
Ω(n2) = Ω(N2) total interactions to be correct with high probability. We prove this by
showing that in the Super CI model described in the previous section, a computationally
unbounded super-agentW requires at least Ω(n2) samples of the input population to correctly
compute the input parity with high probability. Applying Lemma 3 then gives Theorem 1.

More formally, for an input population C of n agents, each with input value 0 or 1, the
parity of C is said to be 1 if an odd number of agents have input value 1, and 0 otherwise.

OPODIS 2020
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Now, consider the majority predicate over C, which is simply the majority value of the input
population. Letting X denote the number of 1-inputs, and Y the number of 0-inputs, we
refer to the input margin of the population C as the quantity |X − Y |. Suppose that n is
odd and the input margin of C is 1. Then X and Y are either

⌊
n
2
⌋
and

⌈
n
2
⌉
or vice versa.

These two cases can be distinguished either by computing the majority predicate or the
parity predicate, making both of these problems equivalent to distinguishing the two cases
under this constraint on the input. We will now argue that distinguishing these cases in the
Super CI model requires Ω(n2) samples.

Recall that in the Super CI model, a predicate over the input population C is computed
by a single super agent worker W with unbounded computational power. Thus, the output
of W can be viewed as a mapping between a string of input values obtained from interactions
with between W and the input population and the output set {0, 1}. We refer to interactions
between W and the input population as samples of the input, and for a fixed number of
samples S, we refer to W ’s output as its strategy.

First, we show that for some fixed distribution over the input values of C, the strategy
that maximizes W ’s probability of correctly outputting the majority value of C is simply to
output the majority value of its samples. Let I ∈ {0, 1}S be the sample string representing
the S independent samples with replacement taken by W , and let S denote the set of all 2S
possible sample strings. We model the population of input agents as being generated by an
adversary. Specifically, let M denote the majority value (0 or 1) of the input population,
where we treat M as a a random variable whose distribution is unknown. In any realization
of M , we assume a fixed fraction p > 1/2 of the inputs hold the majority value. Given an
input population, the objective of the worker agent is to correctly determine the value of
M through its input sample string I. By Yao’s principle [23], the error of any randomized
algorithm (i.e., the randomized simulation run by the super-agent) on the worst case value of
M is no smaller than the error of the best deterministic algorithm on some fixed distribution
over M . So our strategy is to pick a distribution over M , and to use the the error of the best
deterministic strategy with respect to this distribution as a lower bound on the worst-case
error of any randomized algorithm used by the super-agent.

Thus, assuming M is chosen according to some fixed distribution, we model the worker’s
strategy as a fixed map f : {0, 1}S → {0, 1}. Letting FS denote the set of all such maps, W
then faces the following optimization problem: maxf∈FS

Pr[f(I) = M ]. For a given f ∈ FS ,
let pf = Pr[f(I) = M ], and let Φ ∈ FS denote the map that outputs the majority value of
the input sample string I. In the following lemma, we show that when the distribution over
M is uniform, setting f := Φ maximizes pf . In other words, to maximize the probability
of correctly guessing the input population majority value, the worker’s optimal strategy is
to simply guess the majority value of its S independent samples. The proof of the lemma
simply uses the definitions of conditional probability and the Law of Total Probability to
obtain the result.

I Lemma 4. Let I = {0, 1}S be a sample string of size S drawn from an input population
with majority value M and majority ratio p, and assume Pr[M = 1] = Pr[M = 0] = 1/2.
Then Pr[Φ(I) = M ] ≥ Pr[f(I) = M ] for all maps f ∈ FS, where Φ is the map that outputs
the majority value of the sample string I.

We have established by Lemma 4 that to correctly output the input population majority,
the super worker agent’s error-minimizing strategy is to output the majority of its S samples
when the distribution over M is uniform. Now the following lemma shows that when the
input margin of the population is 1, this strategy requires at least Ω(n2) samples in order to
output the input majority with probability at least 1− n−c for some constant c ≥ 1. The
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proof uses a tail bound on the Binomial distribution to show the desired trade off between
the error of probability and the requisite number of samples needed to achieve this error.

I Lemma 5. Let C be a Super CI population of n agents with majority value M and input
margin 1, and consider an input sample string I = {0, 1}S obtained by a super worker agent
W . Then for any c ≥ 1, letting Φ(I) denote the sample majority of I, Pr[Φ(I) 6= M ] ≤ n−c
only holds when S ≥ Ω(n2).

The proof of Theorem 1 follows from Lemmas 3, 4, and 5 by invoking Yao’s principle.

Overview of Theorem 2

As mentioned, Theorem 1 implies a strong separation between the CI model and original
population model, as [19] and [1,2] have shown that both parity and majority are computable
with high probability within O(n polylog n) total steps in the original model, respectively.
Thus, the persistent-state nature of input agents in the CI model may seem to pose greater
challenges than in the original model for computing predicates quickly with high probability.
However, using the same sampling-based lower bound techniques developed in the preceding
section, Theorem 2 shows that when m = Θ(n), and when restricted only to S = O(n log n)
total steps, any protocol computing majority in the CI model requires an input margin of at
least Ω(

√
n) = Ω(

√
N) to be correct with high probability in N .

Moreover, in Section 4 we present a protocol for approximate majority in the CI model
that converges correctly with high probability within O(N logN) total steps, so long as
the initial input margin is Ω(

√
N logN). Thus, the existence of such a protocol indicates

that the Ω(
√
N) lower bound on the input margin is nearly tight (up to

√
logN factors) for

protocols limited to O(N logN) total steps when m = Θ(n).

4 Approximate Majority with Catalytic Inputs

We now present and analyze the DBAM-C protocol for computing approximate majority in the
CI model. The protocol is a natural adaptation of a third-state dynamics from the original
model, where we now account for the behavior of n catalytic input agents and m worker
agents. Using the CI model notation introduced in Section 2, we consider a population with
N = n+m total agents. Each input agent begins (and remains) in state IX or IY , and we
assume each worker agent begins in a blank state B, but may transition to states X or Y
according to the transition rules found in Figure 1. Letting iX and iY (and similarly x, y and
b) be random variables denoting the number of agents in states IX and IY (and respectively
X,Y , and B), we denote the input margin of the population by ε = |iX − iY |. Throughout
the section, we assume without loss of generality that iX ≥ iY .

Intuitively, an undecided (blank) worker agent adopts the state of a decided agent (either
an input or worker), but decided workers only revert back to a blank state upon interactions
with other workers of the opposite opinion. Thus the protocol shares the opinion-spreading
behavior of the original DBAM protocol, but note that the inability for decided worker agents
to revert back to the blank state upon subsequent interactions with an input allows the
protocol to converge to a configuration where all workers share the same X or Y opinion.

The main result of the section characterizes the convergence behavior of the DBAM-C
protocol when the input margin ε is sufficiently large. Recall that we say the protocol
correctly computes the majority of the inputs if we reach a configuration where x = m. The
following theorem shows that, subject to mild constraints on the population sizes, when the

OPODIS 2020



19:10 Approximate Majority With Catalytic Inputs

input margin is Ω(
√
N logN), the protocol correctly computes the majority value of the

inputs in roughly logarithmic parallel time with high probability.

I Theorem 6. There exists some constant α ≥ 1 such that, for a population of n inputs, m
workers, and initial input margin ε ≥ α

√
N logN , the DBAM-C protocol correctly computes

the majority value of the inputs within O
(
N4

m3 logN
)
total interactions with probability at

least 1−N−c for any c ≥ 1 when m ≥ n/10 and N is sufficiently large.

Because the CI model allows for distinct (and possibly unrelated) input and worker
population sizes, we aim to characterize all error and success probabilities with respect to the
total population size N . The analysis in the proof of Theorem 6 characterizes the convergence
behavior of the protocol in terms of both population sizes m and n, and thus the convergence
time of O((N4/m3) logN) is not always equivalent to O(N logN). On the other hand, in
the case when m = Θ(n) — which is an assumption used to provide lower bounds over the
CI model from Section 3 — we have as a corollary (further below) that the protocol correctly
computes the majority of the inputs within O(N logN) total steps with probability at least
1−N−α.

Analysis Overview

The proof of the main result leverages and applies the random walk tools from [12] (in their
analysis of the original DBAM protocol) to the DBAM-C protocol. Given the uniformly-random
behavior of the interaction scheduler, the random variables x, y and b (which represent the
count of X, Y , and B worker agents in the population) each behave according to some
one-dimensional random walk, where the biases in the walks change dynamically as the values
of these random variables fluctuate. Based on the coupling principle that an upper bound on
the number of steps for a random walk with success probability p to reach a certain position
is an upper bound on the step requirement for a second random walk with probability p̂ ≥ p
to reach the same position, we make use of several progress measures that give the behavior
of the protocol a natural structure. As used in the analysis of Condon et al. [12], we define
x̂ = x+ b/2, ŷ = y + b/2, and P = ε+ x̂− ŷ. It can be easily seen that x̂+ ŷ = m will hold
throughout the protocol. On the other hand, the progress measure P captures the collective
gap between the majority and non-majority opinions in the population. Observe that the
protocol has correctly computed the input majority value when P = ε+m and ŷ = 0.

Our analysis uses a structure of phases and stages to prove the correctness and efficiency
of the protocol. Every correctly-completed stage of Phase 1 results in the progress measure
P doubling, and the phase completes correctly once P is at least ε plus some large constant
fraction of m. Then, every correctly-completed stage of Phase 2 results in the progress
measure ŷ decreasing by a factor of two, and the phase completes correctly once ŷ drops to
O(logm). Finally, Phase 3 of the protocol ends correctly once ŷ drops to 0. The details of
this structure are stated formally in the full version of the paper.

Note that among the protocol’s non-null transitions (see Figure 2), only the interactions
IX +B, IY +B, X +B, and Y +B change the value of either progress measure. For this
reason, we refer to the set of non-null transitions (which includes X + Y interactions) as
productive steps, and the subset of interactions that change our progress measures as the
set of blank-consuming productive steps The analysis strategy for every phase and stage
is to employ a combination of standard Chernoff bounds and martingale techniques (in
general, see [18] and [15]) to obtain with-high-probability estimates of (1) the number of
productive steps needed to complete each phase/stage correctly, and (2) the number of total
steps needed to obtain the productive step requirements. Given an input margin that is
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sufficiently large, and also assuming a population where the number of worker agents is at
least a small constant fraction of the input size, we can then sum over the error probabilities
of each phase/stage and apply a union bound to yield the final result of Theorem 6.

While the DBAM-C protocol is conceptually similar to the original DBAM protocol, the
presence of persistent-state catalysts whose opinions never change requires a careful analysis
of the convergence behavior. Moreover, simulation results presented in Section 5 show
interesting differences in the evolution of the protocol for varying population sizes. As
a simple corollary of Theorem 6, we also state the following result, which simplifies the
convergence guarantees of the DBAM-C protocol in the case when m = Θ(n).

I Theorem 7. There exists some constant α ≥ 1 such that, for a population of n inputs,
m = cn workers where c ≥ 1, and an initial input margin ε ≥ α

√
N logN , the DBAM-C

protocol correctly computes the majority of the inputs within O(N logN) total interactions
with probability at least 1−N−a for any a ≥ 1 when N is sufficiently large.

We note that the result of Corollary 7 implies that the CI model input margin lower
bound from Theorem 2 is tight up to a multiplicative O(

√
logN) factor.

5 Approximate Majority with Transient Leaks

We now consider the behavior of the DBAM and DBAM-C protocols in the presence of transient
leak faults. Even in the presence of these adversarial events (which occur up to some bounded
rate β), both the DBAM and DBAM-C protocols will, with high probability, reach configurations
where nearly all agents share the input majority opinion. In the presence of leaks, we
consider the approximate majority predicate to be computed correctly upon reaching these
low sample-error configurations.

Recall that a transient leak is an event where an agent spuriously changes its state
according to some leak function `. For example, we denote by U → V the event that an
agent in state U transitions to state V due to a leak event, where the timing of such events
are dictated by the random scheduler and occur with probability β at each subsequent
interaction step. In both the DBAM and DBAM-C protocols, the only state changes that could
possibly take place due to leaks are X → B, Y → B, B → X, and B → Y because these
describe all possible state changes that could take place in the presence of an interacting
partner. However, our analysis considers an adversarial leak event X → Y , which maximally
decreases our progress measures and can be considered the “worst” possible leak. Though
this leak event is not chemically sound (because no normal interaction can cause an X agent
to transition to the Y state), our results demonstrate that both DBAM and DBAM-C protocols
are robust to this strong adversarial leak event. Thus in a more realistic chemically sound
setting, our results will also hold, as the set of transitions working against our progress
measures are weaker.

Leak Robustness of the DBAM Protocol

We start by showing the leak-robustness of the DBAM protocol for approximate majority
in the original population protocol model. Recall that in the standard model, all agents
are susceptible to leaks. Our main result shows that when the leak rate β is sufficiently
small, the protocol still reaches a configuration with bounded sample error (the proportion
of agents in the non-initial-majority state) within O(n log n) total interactions with high
probability. Unlike the scenario without leak events, note that the protocol will never be able
to fully converge to a configuration where all agents remain in the majority opinion. However,
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reaching a configuration where despite leaks, nearly all agents hold the input majority value
state matches similar results of [3, 5, 7, 12]. Formally, we have the following Theorem, which
characterizes the eventual sample error of the protocol with respect to the magnitude of the
leak rate β.

I Theorem 8. There exists some constant α ≥ 1 such that, for a population with initial
input margin ε ≥ α

√
n log n and adversarial leak rate β ≤ (α

√
n log n)/12672n, an execution

of the DBAM protocol will reach a configuration with
1. sample error O(log n/n) when β ≤ O(log n/n)
2. sample error O(β) when ω(log n/n) ≤ β ≤ (α

√
n log n)/12672n

within O(n log n) total interactions with probability at least 1− n−c for any c ≥ 1 when n is
sufficiently large.

To prove Theorem 8, we again make modified use of the random walk tools from [12].
Using the progress measures ŷ = y + b/2 and P = x̂ − ŷ, observe that an X → Y leak
event incurs twice as much negative progress to both measures as opposed to X +B events.
Compared to the analysis from the non-leak setting, the analysis with adversarial leaks
must account for the stagnation (or potentially the reversal) of the protocol’s progress
toward reaching a high-sample-error configuration. Note that since the sample error of a
configuration is defined to be (y + b)/n (since we assume an initial x majority wlog), we will
use the value ŷ/n to approximate a configuration’s sample error.

We use a similar structure of phases and stages as in the previous section, and we list
these details formally in the full version of this work. In this leak-prone setting, we refer to
productive interactions as any of the non-null transitions found in Figure 1 in addition to a
leak event. The set of three non-null and non-leak transitions are referred to as non-leak
productive steps. For each phase and stage, we obtain high-probability estimates on the
number of productive and total steps needed to complete the phase/stage correctly in two
steps: first, we bound the number of leak events that can occur during a fixed interval of
productive events, and we then show that a smaller sub-sequence of non-leak productive
steps is sufficient to ensure that enough progress is made to offset the negative progress of
the leaks. We again rely on a combination of Chernoff concentration bounds and martingale
inequalities in order to show this progress at every phase and stage.

Theorem 8 also separates the behavior of the protocol into two classes: when β ≤
O(log n/n) (small leak rate), and when ω(log n/n) ≤ β ≤ O(

√
n log n/n) (large leak rate).

When the leak rate is large, the probability of a leak event conditioned on a productive step
becomes roughly equal to the conditional probability of a non-leak productive step when
ŷ = O(βn). Thus, we cannot expect the protocol to make further “progress” toward a lower
sample-error configuration with high probability beyond ŷ = O(βn). The same holds for
small leak rate when β = O(log n/n), and for even smaller values of β, our analysis tools only
allow for the high-probability guarantee that ŷ eventually drops to O(log n). the protocol
reaches a configuration with ŷ = O(log n). In the full version of the paper, we give additional
arguments showing that the protocol remains in a configuration with sample error O(log n/n)
for small leak rate, and with sample error O(

√
n log n/n) for large leak rate, for at least a

polynomial number of interactions with high probability.

Leak Robustness of the DBAM-C Protocol

The analysis of the previous subsection is adapted to show that the DBAM-C protocol also
exhibits a similar form of leak-robustness in the CI model, and in the following theorem we
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prove the case where m = Θ(n). Recall that in the CI model, only the non-catalytic worker
agents are susceptible to leak events.

I Theorem 9. There exist constants α, d ≥ 1 such that, for a population with m = cn for
c ≥ 1 and input margin ε ≥ α

√
N logN , the DBAM-C protocol will reach a configuration with

1. sample error O(logN/N) when β ≤ O(logN/N)
2. sample error O(β) when ω(logN/N) ≤ β ≤ (α

√
N logN)/dN

within O(N logN) total interactions with probability at least 1−N−a for a ≥ 1 when N is
sufficiently large.

The proof of the theorem uses the same progress measures and phase and stage structure
introduced in the non-leak setting in Section 4, and the final sample-error guarantee of the
protocol is again defined with respect to the magnitude of the leak rate. The behavior of
the protocol between the two classes of leak rate is similar as in the DBAM analysis, and the
formal details can be found in the full version of the paper. Note that as the upper bound on
the leak rate β is a decreasing function in N , the sample error guarantees of both protocols
increase with population size. This relationship is shown across various simulations of the
DBAM-C protocol in Figure 3. Moreover, Figure 4a depicts aggregate sample data over many
executions of the DBAM-C protocol for varying values of N , and Figure 4b illustrates the
logarithmic parallel time needed to reach convergence in the non-leak setting.

Figure 3 Simulations of the DBAM-C protocol, where each subplot shows the proportion of X, Y
and B worker agents evolve over the course of an execution. All simulations are for m = n, input
margin ε =

√
N logN (with an IX majority), and varying values of leak rate β over 4N logN total

interactions. Note that these plots are of single executions and thus provide a qualitative illustration
of behavior, rather than statistically significant data. However, we can see that for larger values of
m = n and smaller values of β, the number of X worker agents reaches a larger count more quickly.
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(a) Sample success rate (y-axis) averaged over 3000
executions of DBAM-C for n = 600, ∆0 =

√
N logN ,

and β = 1/N , and varying values of m (x-axis).
Samples were drawn uniformly from the worker
population after 4N logN total interactions.

(b) Parallel time (y-axis) for DBAM-C without leaks
to reach consensus for varying population sizes (x-
axis) where m = 2n. Data points represent a single
execution. The solid black line is 3

4 log2(N), show-
ing that convergence takes O(N logN) interactions.

Figure 4 Success rate and running time of DBAM-C over various executions of the protocol.

6 Leaks Versus Byzantine agents

The original third-state dynamics approximate majority protocol [7] is robust to a bounded
number of Byzantine agents, and as shown in the previous sections, both the DBAM protocol
and the DBAM-C protocol in the CI model are robust to a bounded leak rate. In this section,
we consider the connection between these two types of faulty behavior. While leaks can
occur at any agent with fixed probability throughout an execution, Byzantine agents are
a fixed subset of the population, and while a leak event does not change the subsequent
behavior of an agent, Byzantine agents may continue to misbehave forever. However, there
are parallels between these two models of adversarial behavior. A leak at one agent can
cause additional agents to deviate from a convergent configuration; similarly, interactions
among non-Byzantine agents, some of which have deviated from a convergent configuration
by interacting with a Byzantine agent, can cause additional non-Byzantine agents to diverge.

We prove that for the DBAM and DBAM-C protocols, introducing a leak rate of β has the
same asymptotic effect as introducing O(βN) Byzantine agents to the population, which
demonstrates an equivalence between these two notions of adversarial behavior among the
class of third-state dynamics protocols. Although the results of the previous section assumed
leaks that do not follow the laws of chemistry, the following result considers weak leaks,
which cause the selected agent to decrease its confidence in the majority value by one degree
(i.e. a leak causes an agent in state X to transition to B and an agent in state B to
transition to Y , matching the X + Y and Y +B transitions). For our purposes, we define
two adversarial modelsM1 andM2 to be equivalent for some protocol P if P converges to
the same asymptotic sample error rate in the same asymptotic running time in both models.
We then have the following equivalence result:

I Theorem 10. A population of N agents running DBAM (or DBAM-C) with weak leak rate
O(β) is equivalent to a population of N +B agents, where B = O(Nβ) agents are Byzantine,
running DBAM (or DBAM-C) without leaks, where in either setting the protocol converges in
O(N logN) interactions with error probability O(β).
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7 Conclusion and Open Problems

We have shown that third-state dynamics can be used to solve approximate majority with
high probability in O(n log n) steps up to leak rate β = O(

√
n log n/n), both in the standard

population protocol model as well as the CI model when m = Θ(n). While we showed a
separation between the CI and original population models, it remains an open question what
other problems (similar to approximate majority) can be computed quickly in the CI model.
Additionally, identifying which families of protocols are naturally robust to leak events in the
original population model (similar to third-state dynamics) also remains an open question.
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