Evaluation of Clustering Techniques for GPS Phenotyping
Using Mobile Sensor Data

ZACHARY S. TSCHIRHART and KARL W. SCHULZ, Oden Institute for Computational Engineering and

Sciences, United States

With the ubiquitousness of mobile smart phones, health researchers are increasingly interested in leveraging these commonplace
devices as data collection instruments for near real-time data to aid in remote monitoring, and to support analysis and detection of
patterns associated with a variety of health-related outcomes. As such, this work focuses on the analysis of GPS data collected through
an open-source mobile platform over two months in support of a larger study being undertaken to develop a digital phenotype for
pregnancy using smart phone data.

An exploration of a variety of off-the-shelf clustering methods was completed to assess accuracy and runtime performance for
a modest time-series of 292K non-uniform samples on the Stampede2 system at TACC. Motivated by phenotyping needs to not-
only assess the physical coordinates of GPS clusters, but also the accumulated time spent at high-interest locations, two additional
approaches were implemented to facilitate cluster time accumulation using a pre-processing step that was also crucial in improving

clustering accuracy and scalability.
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1 INTRODUCTION

The significantly sharp increase in healthcare costs over the past decades has pushed the technological development of
more efficient and effective ways of decreasing these costs through innovation. While the United States has higher
health care costs than any other developed country in the world, the quality of service received is classified as marginal
by almost any metric [20]. The process of using digital phenotyping to aid in individualizing heathcare offers the
potential to lower costs by catering to specific trends and to avoid lumping people into generalized classes of care that
risk providing the wrong support.

Digital phenotyping is the collection and processing of data with the purpose of building an individual picture of a
participant to help study patterns and trends. Today, data generated passively by a single modern smartphone includes
time-stamped location coordinates, accelerometer data, attitude/pressure measurements, and phone usage activity to
name a few. While the larger scope of digital phenotyping is to apply the method onto any number of health trends, the

purpose of this work is in support of phenotyping observations sampled throughout a woman’s pregnancy.
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While many sensors are available for use, a significant data stream of interest to characterize a users mobility
effectively is their location as a function of time, typically inferred through a combination of GPS and cell phone signal
triangulation. The location of a person over time can be used to calculate data such as user mobility, time spent traveling,
and general location relative to points of interest. The location data passively generated by mobile phones is also one of
the most context aware, densely packed data streams provided. Accurately processing and classifying location data in a
scalable fashion is deemed a necessary step to support an ongoing research project targeting a mobile-health study
of pregnancy for 1,000 women in the central Texas area [4]. Consequently, the work detailed in this paper is focused
on the evaluation and development of analysis techniques for discerning spatial clusters derived from mobile sensor
location data from a two month period using the Beiwe Research Platform [1][29].

Since the focus is specifically on user location data, an exploration of clustering methods provided several challenges
that were ultimately overcome using a more context-sensitive approach. In order to ascertain time spent at statistically
generated high-frequency locations, which the use of off-the shelf clustering methods did not provide directly, a need to
relate time and space through some method manifested. General clustering methods motivated the use of pre-processing

which increased the quality and scalability of the clustering of user generated location data.

2 CHALLENGES

Location data collected passively from smart phones, from a variety of hardware and operating systems, has a large
variance in quality and time-to-log consistency. Determining high-frequency locations and time spent at those locations
will vary based on the inaccuracy of the data and whether it is processed or filtered in the final results. Location data
in general, and the specific data that was collected for this study, had sources of noises and challenges that can be

categorized as follows:

o The collected sample dataset includes international and domestic GPS points, resulting in large
errors in most clustering algorithms, especially when using standard normalizing methods.

e The application would stop collecting GPS data if there was not a geo-location refresh event,
causing periodic gaps in data collection.

e The number of samples in a time interval varied widely, which made using the number of
samples collected as a density function a challenge. The daily variation of sample frequency
may be seen in Figure 1.

e The location accuracy and precision varies between mobile devices, which was characterized
and captured for each sample, but the estimate of accuracy still varied and had to be taken into
account.

e When calculating the distance between two location coordinates, a simple Euclidean distance
metric can be used to approximate a flat earth model. Normalizing the raw coordinate data,
as is typically done with clustering algorithms, is a possible source of cluster accuracy error,

especially when the distance between points are large.

3 EXPLORATION OF TRADITIONAL CLUSTERING METHODS

Over the course of the full study more than a thousand participants will be evaluated, and each user’s 10 months worth
of data will be collected with the goal of building a digital signature. The sample dataset used in this paper is a fraction
of what will be processed for the full study, roughly 5000 times smaller. Therefore, choosing a scalable clustering method
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Fig. 1. Location data points aggregated by day over the course of the experiment. The number of samples collected per day varies
greatly.

that used a resource-constrained model and kept accuracy errors to a minimum was a basic requirement. Accuracy
evaluation, described in more detail later, must take into account properly ranked frequented locations based on how
long is spent at the position. Performance and scalability were key, but the time to develop, continued maintenance,
and portability were all equally evaluated and weighted. A decision was made to use containers and develop software
using Jupyter notebooks for these reasons, which pushed for the use of high performance libraries developed in Python.
Several off-the-shelf clustering algorithms exist in the scikit-learn package for python[24], and makes for efficient
exploration and benchmarking on chosen datasets, while meeting many of the requirements listed above. In order to
test performance and scalability on the relevant data patterns, a basic approach of simply feeding the location data into
the clustering methods provided by scikit-learn produces cluster information immediately and provides guidance on
which is likely to meet the rest of the requirements for the study. A brief description of the clustering methods used in

this exploration, including their frequently cited benefits and drawbacks, are found in the following list.

Mini Batch K-Means - A variant of K-Means, with the addition of using batches of sub-sampled data to decrease
the computation time and memory overhead by reducing distance between points. Using the batch scheme typically
converges faster than K-Means, but at a cost of the cluster quality. Another downside to this algorithm, for our purposes,
is that it requires a number of clusters to be provided beforehand. The implementation of Mini Batch K-Means in the
scikit-learn package also restricts the process to a single process/thread, which may not scale.

Affinity Propagation - A method that clusters by placing points into categories and then updating the central
cluster point (and the relationship others) as the algorithm progresses. The time and memory complexity of this
algorithm proves to be a challenge for larger data sets, along with the restriction to a sequential process.

Mean-Shift - An iterative sliding-window centroid finding algorithm, where a calculated center point is evaluated
and updated. Also, guaranteed to converge to a solution, in addition the number of iterations are typically reduced
using a tolerance threshold. Although, the Mean-Shift implementation in scikit-learn also allows for multiple processes
to be created which, in theory, will be scalable, but the time complexity is a significant issue to overcome.

Spectral Clustering - The method applies a K-Means clustering method to a projected normalized Laplacian after
finding the restricted domain eigenvectors. Since this algorithm uses K-Means, it requires the number of clusters to
be provided as input, which is a challenge. Unlike Mini Batch K-Means, the method has a large time and memory

complexity, but does allow for parallel tasks be initiated.
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Ward Hierarchical Clustering - Is part of a general family of algorithms that build trees of clusters by merging
or splitting based on the function criteria. Specifically, Ward minimizes the sum of squares between points within
the cluster. The method also does not allow for parallel tasking, which reduces an easy implementation of a scalable
function.

Average Agglomerative Clustering - Like the Ward Hierarchical method, it is part of a hierarchical class of
algorithms. The Average linkage minimizes the average distance between points within the cluster. Unfortunately,
this method also requires that the number of clusters as input. As with Ward, the Average Agglomerative Clustering
method also does not allow for parallel tasking.

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) - Similar to Mean-Shift in the way
that it picks a point in the data and finds the nearest neighbors, and if there are enough points to be considered a cluster,
it will start to accumulate densely packed points nearby. While some DBSCAN implementations claim to have a linear
memory complexity, the version contained in the version of scikit-learn used in this experiment shows strong quadratic
scaling in most cases. Fortunately, the scikit-learn version of DBSCAN does have the ability to parallelize tasks.

OPTICS (Ordering Points To Identify the Clustering Structure) - A generalization of DBSCAN and instead of
a full distance matrix, a reachability graph is used to order points. OPTICS is commonly recommended to be used
instead of DBSCAN if the sample size is large, as the worst case memory usage is linear since the method only loads in
a fraction of the data set at a time. As an aside, HDBSCAN is another alternative to OPTICS and DBSCAN, but displays
similar memory complexity as DBSCAN, which is unscalable.

BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) - A Clustering Feature Tree is built
by capturing characteristics of the data distribution of the clusters such as number of points in the cluster, linear
sum of data points, and the square sum of all points within the cluster. A commonly sited downside to BIRCH is the
computational complexity scaling with the number of clusters. BIRCH also requires an input of the number of clusters.

Gaussian Mixture Model - The scikit-learn implementation uses the expectation-maximization algorithm to fit
the Gaussian Mixture Model input data set. A known issue with this method is that it diverges in some situations
and requires a certain level of heuristics to properly converge. Since GMM models generalize K-means, the number of

clusters are a priori knowledge. As well, GMM does not allow for easy parallelism.

3.1 Theoretical Complexity of Standard Clustering Methods

Since clustering arbitrary points is inherently NP-hard, the methods used to solve this problem are complex and
performance will be based on many variables found in the context of the input data. Certain datasets will cause memory
or time complexity variation, which is outside of the scope of this experiment as we focus on a single salient dataset
related to future experiments. As such, a simple study and rough characterization of the theoretical complexities for
these common algorithms can be found in Table 1. Note, that the average evaluation for memory and time complexity in

the table is more closely related to an average over general datasets, not an average evaluated on location coordinates.

3.2 Normalization of Location Data

In many clustering algorithms, and machine learning methods in general, a normalization of the input data takes
place beforehand. By using a standard scaling function, such as z = (x — u)/s, where u is the mean and s is the
standard deviation, the data can be transformed to use standard clustering techniques applied to many general sets
of data. A comparison of using raw versus normalized coordinates was performed, but a normalization method to

significantly improve either accuracy or runtimes for the location data provided could not be found. All reported results
4
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Table 1. Clustering Methods

Clustering Method Memory Memory Compute Compute
Complexity  Complexity =~ Complexity =~ Complexity
(Worst) (Average) (Worst) (Average)
Mini Batch K-Means[10] O(const) O(const) OK=+«N=I) O =N =I)
Affinity Propagation[14] O(N?) O(N?) O(N? 1) O(N? = 1)
Mean-Shift [33] O(const) O(const) O(N? 1) O(N? 1)
Spectral Clustering[32][16] O(N?) O(N % M) O(N?) O(N?)
Ward Hierarchical Clustering[36] O(N?) O(N?) O(N?) O(N?)
Agglomerative Clustering[36] O(N?) O(N?) O(N?) O(N?)
DBSCAN [8] [27] O(N?) O(N D) O(N?) O(N = log(N))
OPTICS [23] O(N) O(N) O(N?) O(N x log(N))
BIRCH[36][35] O(const) O(const) O(N %K) O(N %K)
Gaussian Mixtures[17][19] O(N?) O(N % G) ON*G+I) O(N *G)

1. D represents the average number of neighbors, K represents the number of clusters, I represents the number of iterations,
M represents the subset of sampled columns, G represents the number of Gaussian bases.

2. The Mini batch version of K-Means will load a constant subset of data for each batch.

3. The BIRCH algorithm can work with an arbitrary size of memory (within limit), although run time may be affected for
smaller memory.

are specifically created using raw coordinates and a geodesic distance measurement when available, since this provided

the best results.

4 USE OF TIME LOCALIZATION

All of the methods described so far had issues producing accurate results in a timely and scalable manner, although each
method was restricted to only two dimensions. An attempt to build a custom distance metric, which included time as a
weighted input to replace the standard metric for each off-the-shelf clustering algorithm, never improved accuracy or
computational performance. Since there was no theory found in literature review to build this monotonically increasing
metric based on time and space, while also accounting for challenges listed in section 2, a heuristic pre-processing
approach was pursued. Two methods, Hierarchical Segmentation and Intertwined Time and Space Pre-processing,
were developed to associate time and space in the context of discrete location data collection. Both methods improved
scalability, but section 4.2 covers the algorithm that also increased accuracy on general location datasets drastically. The
Intertwined Time and Space pre-Processing method also provided an excellent estimate of accumulated time, without
additional computation. The estimate on time spent at a particular location provides an extra level of stability for the

proper ranking of frequently visited location.

4.1 Hierarchical Segmentation

Using the assumption that people will follow a daily cycle of movement, one could group samples together by day or
week and cluster on that time period. Then using weighted centroids based on number of samples per day or week, an
end level clustering algorithm would be used to find clusters on the pre-processed data while accumulating the number

of samples and centroids of centroids into the final results. The procedure is shown in Algorithm 1.



PEARC ’20, July 26-30, 2020, Portland, OR, USA

Zachary S. Tschirhart and Karl W. Schulz

Algorithm 1 Hierachical Segmentation

procedure HIERARCHICALSEGMENTATION
main:

grouped locations < SplitByTime(locations)
goto loop.

labels < Cluster(accumulated centroids)

a « accumulated centroids

b « accumulated samples

x, y « CalcCentroids(label, a, b)

close;

loop:

labels « Cluster(grouped locations(i))

x, y < CalcCentroids(labels, grouped locations(i))
accumulated centroids < append(x)

accumulated samples < append(y)

i—i+1

if i != EOF then return

else goto loop.

4.2

Intertwined Time and Space Pre-processing

Intertwined Time and Space (ITS) pre-processing was approached from the idea of perfect data. If location data col-

lection over time was continuous and without error, a simple difference over any portion of the time parameterized

line function would provide the total time for that segment. Since the function provides a surjective map from time

onto location, one could also integrate over a restricted space domain to find how much time was spent within that

region. Using this theoretical concept, with the addition of realistic heuristics to reduce incorrect data accumulation

from imperfect sources, the ITS pre-process procedure achieves scalable and sophisticated clustering accuracy. Since

the pre-processing method also calculates the time difference for each segment, an additional metric is available besides

sample accumulation, which proves to be a useful and robust method to accurately rank high-frequency locations. An

overview of this approach is shown in Algorithm 2 and an illustration of the theory can be seen in Figure 2a and a

discretization view in Figure 2b.

(a) A theoretical continuous line representing the
true location of a user, split into segments that
are within an arbitrary radius R.

(b) A representation of a discontinuous sampled
set of the estimated position of a user, again
split into segments within a radius.

Fig. 2. Theoretical versus discontinuous representation of position estimation.
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Algorithm 2 Intertwined Time and Space Pre-processing

procedure ITSPREPROCESS
main:
sorted locations < SortByTime(locations)
current < 0
begin «— 0
prev <0
goto loop.
labels < Cluster(relevant locations)
a « relevant locations
b «— number of samples
¢ « total time
x, y < CalcCentroids(label, a, b, cn)
close;
loop:
x « sorted locations(current)
y « sorted locations(begin)
z « sorted locations(prev)
pxy < Distance(y, x) < MaxPrecision(x, y)
md < Distance(y, x) < max allowable distance gap
mt < TimeDiff(x, z) < max allowable time gap
mtd «— TimeDiff(z, y) > min time difference
mns « prev - begin > min number of samples
if pxy or md or mt then
if mtd or mns then
start time < GetTime(y)
total time < TimeDiff(y, z)
number of samples « prev - begin
relevant locations « sorted locations (prev, begin)
centroid < CalcCentroid(relevantlocations)
begin « current
prev « current
current «— current + 1
if current == EOF then return
else goto loop.

5 RESULTS

Overall, the results vary in execution times and accuracy, with a limited number of off-the-shelf algorithms performing
well enough to be considered for future use. One major weakness found in most evaluated algorithms was seen in the
severe drop in accuracy across the board when clustering international data points as opposed to just domestic in the
small dataset. Based on the results, Mini Batch K-Means performed substantially better than any off-the-shelf algorithm,
but still suffered from the lack of a time aggregate when identifying high-frequency locations. The largest advantage
the ITS pre-process method provided was the estimated time spent at each location, instead of using the number of

samples as a weighting factor.
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5.1 Experimental Setup

Hardware to run experiments consisted of a single TACC Stampede2 node, using dual 24-core Intel Xeon Platinum 8160
processors and 192 GB of main memory. The operating system environment consisted of Centos 7, running Singularity
v2.1 and Jupyter v1.0. The original container file was created for Docker v2.2 and later converted to use Singularity.
The software used to run the experiments are Python v3.6.4, Scikit-learn v0.22.1, Pandas v1.0.1, NumPy v1.18.1, and
Matplotlib v3.1.3.

5.2 Clustering Methods Runtime

DBSCAN was unable to load the full dataset into memory to begin processing, while Affinity Propagation and Spectral
Clustering algorithms failed to produce results due to an execution time over an eight hour threshold, which was set
to limit large runtimes. There is a large range of variability in the execution time in Table 2. For instance, many of
the methods took over an hour to run on a relatively small dataset when compared to what the overall study will be
using, while some are under five seconds. The Mini Batch K-Means method also displayed significant variability when
presented the two datasets, one of which is a subset of the full dataset and processed for much longer than the full set.
The likely explanation of the significant non-linear performance is related to the iterative nature of K-Means and the
subsampling of the batch process. The execution times showing significant changes based on input data also encourage
the use of a pre-processing method to reduce the number and distance between points. As a note, in the case of the two
pre-processor methods, the final ranked locations could not be realized without the use of a clustering algorithms being
run on the pre-processed data. Therefore, the full execution time of both pre-processor and clustering method were

combined in the case of Hierarchical Segmentation and ITS algorithms.

Table 2. Clustering Methods Execution Time

Clustering Method Small Dataset  Full Dataset
(seconds) (seconds)
Mini Batch K-Means 10.13 0.79
Affinity Propagation 96.43 DNF
Mean-Shift 10.27 5134.53
Spectral 61.77 DNF
Ward Hierarchical 4.57 720.09
Agglomerative 2.42 437.78
DBSCAN 3.66 OOM
OPTICS 18.03 4181.17
BIRCH 0.27 4.77
Gaussian Mixtures 0.12 4.60
Hierarchical Seg 298.53 7564.12
ITS 35.25 692.87

1. Results are the reported Python runtimes.

2. Affinity Propagation and Spectral Clustering had runtimes larger than several hours when run on the full dataset.
3. DBSCAN was unable to load the full dataset into memory.

4. Bandwidth estimation for Mean-Shift was added into final time.

5. Connectivity matrix generation time for Ward Hierarchical Clustering method was added into final time.

6. 16000 records processed for the small dataset case and 292903 for the full dataset.
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5.3 Clustering Methods Accuracy

In order to judge accuracy for the particular dataset used in the experiment, a priori knowledge of three ranked
high-frequency coordinate locations are used to measure against all centroids produced by the cluster algorithms.
For the purposes of this experiment the rank of the locations, based on time spent, is as important as identifying the
correct locations. Location differences used a standard GeoPy geodesic conversion from coordinates to meters, and the
predicted location must be within a 650 meter radius from the center of the golden samples to be counted as a valid
point. The ITS pre-process method is split into two rows to highlight the advantages of using an estimate of time as a

metric instead of the number of samples. As an aside, the ITS method provided points within a 300 meter radius.

Table 3. Clustering Methods Precision and Accuracy

Clustering Method ‘ Small Dataset Full Dataset
Mini Batch K-Means 2/2 2/2
Affinity Propagation 2/1 DNF
Mean-Shift 2/2 0/0
Spectral 0/0 DNF
Ward Hierarchical 2/2 0/0
Agglomerative 2/2 0/0
DBSCAN 2/2 OOM
OPTICS 2/2 1/0
BIRCH 2/2 0/0
Gaussian Mixtures 2/2 1/1
Hierarchical Seg 3/3 0/0
ITS 3/3 2/2
ITS Time Sorted 3/3 3/3

1. The small dataset only includes domestic location records, while the full data set contains international coordinates.

2. P/Q results may be interpreted as P representing the number of returning centroid coordinates within a 650 meter radius regardless
of ordering, while Q is the number of centroid coordinates within a 650 meter radius and predicting the correct time-spent priority
order.

3. Affinity Propagation and Spectral Clustering had runtimes larger than several hours when run on the full dataset.

4. DBSCAN was unable to load the full data set into memory.

5. 16000 records processed for the small dataset case and 292903 for the full dataset.

6. ITS Time Sorted ranks the results by the total time estimates instead of the number of samples.

5.4 Rank by Number of Samples or Estimated Time Accumulated

In Figure 3, the only methodology that achieved perfect accuracy on the full dataset was ITS, but only after the results
had been sorted based on the estimated time accumulated in that region. For reasons unknown, the number of samples
captured during international travel accounted for 4% of the total number of samples in the dataset, while the real time
spent at this particular location is estimated to be close to 2%. Compared with the third ranked location used to measure
accuracy, the number of samples came in at 4% with a real time of closer to 4%. The number of samples in this situation
caused a false prediction of a high-frequency location due to the variation of samples. The ITS pre-processing method
provides an accurate procedure in estimating the time spent at a location as a trivial operation, leading to accumulation
of time calculation for clustering methods post-processing and ranking.
9
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5.5 Parallelization

A small subset of clustering algorithms had the ability to easily parallelize the method using a parameter to enable
multi-processes, which included Mean-Shift, Spectral, Ward Hierarchical, Agglomerative, DBSCAN, and OPTICS
Clustering. As an aside, Spectral and OPTICS clustering methods were not included in parallel results since runtime
increased significantly when more than one process was used. The data in figure 3 shows none of these algorithms had
any noticeable speed-up, and in fact a few displayed a slowdown. Reasonable efforts were made to properly scale the
out-of-box solutions, but any attempt never resulted in a significant speedup. Thus, the motivation for the proposed
pre-processing ITS function as this scales while maintaining accuracy. As mentioned in section 5.2, the execution times

and speedup recorded for Hierarchical Segmented and ITS methods in Figure 4 and Table 4 include the final clustering

step time as well as pre-processing.

2 B Mean-Shift
[l Ward Hierarchical
Agglomerative
Il DBSCAN

Speedup

0
2-Threads 4-Threads 8-Threads 12-Threads 24-Threads 48-Threads

Fig. 3. Strong scaling of off-the-shelf algorithms that were trivial to add parallel functionality. Due to the extreme runtimes/memory

constraints, the small dataset was used to show speedup.

[ Hierarchical Segmentation Speedup
1 IPS Speedup

Speedup

2-threads 4-threads 6-threads 12-threads 24-threads 48-threads

Fig. 4. Strong scaling speedup of the total runtime, including sorting and post-clustering steps, for Hierarchical Segmented and ITS

using the full dataset.
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Table 4. Total Parallel Pre-processing with Final Cluster Runtimes

Processes | Hierarchical Segmented ITS
(seconds) (seconds)

1 7564.12 692.87
2 4482.26 419.15
4 2621.23 257.05
6 1950.88 191.32
12 1320.54 133.26
24 903.37 108.85
48 652.79 69.71

1. Results are the reported Python runtimes.

6 CONCLUSION

Testing several off-the-shelf clustering software solutions motivated the search for an alternative method for consistent
accuracy and scalability. By exploiting the temporal locality that is inherently structured within the captured location
data, the quality of the classification of high-frequency locations of particular users show increased performance by
using the ITS pre-processing method. A more accurate and robust algorithm for calculating ranked high-frequency
locations can be had by relying on the estimated time spent within a cluster, which is easily achieved using the ITS
pre-processing method, instead of the number of samples normally provided by all other clustering methods. The new
functionality does this while keeping a relatively small time complexity and at most O(N) memory consumption. Since
the pre-processing method lends itself well to parallelization, the application of using this on several thousand users is
possible by scaling the hardware. Future research will focus on adding more digital phenotyping data characterization,

with a requirement for scalable solutions.
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