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ABSTRACT

We propose a novel algorithm for unsupervised seg-
mentation of hyperspectral imagery (HSI). Represen-
tative cluster modes are learned through the diffusion
geometry of the HSI, which is highly invariant to non-
linearities present in HSI clusters. Mode detection is
followed by partial least squares regression to project
the data onto a low-dimensional space that discrimi-
nates between the learned modes and to assign labels
in the low-dimensional space. We evaluate this method
for unsupervised chemical plume segmentation in HSI,
showing it performs competitively versus benchmark
and state-of-the-art unsupervised learning techniques.

Index Terms— Hyperspectral images, machine
learning, unsupervised learning, image segmentation,
diffusion geometry, spectral graph theory

1 INTRODUCTION

As the volume of data collected by remote sensors con-
tinues to grow, human capacity for generating labeled
training sets is outpaced by the sheer volume of data.
Many state-of-the-art machine learning methods for hy-
perspectral images (HSI) are based on support vector
machines [1] or deep neural networks [2], both of which
are supervised and require large training data sets. In
contexts where the creation of training sets is impracti-
cal, new, unsupervised methods are required.

We propose a new method for unsupervised segmen-
tation of HSI, consisting of two steps. First, modes—
high-density representative elements of distinct classes—
of the high-dimensional HSI are learned through diffu-
sion geometry. Then, partial least squares regression
(PLSR) is performed to identify a low-dimensional sub-
space that discriminates between the learned modes. La-
bels are assigned in this discriminative low-dimensional
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space. After reviewing some background in Sec.2, we
describe the method in Sec.3 and evaluate it in Sec.4
before concluding in Sec. 5.

2 BACKGROUND

The goal of unsupervised HSI segmentation is to pro-
vide an HSI dataset {x;}7_, C RP with labels {y;}" |,
yi € {1,...,K}, without access to any labeled train-
ing pairs (x;,y;). The number of clusters K may be
unknown a priori and may need to be estimated. A
range of techniques for this task has been proposed, in-
cluding centroid-based methods, density methods, and
graph theoretic methods [3]. Classical approaches may
fail to accurately cluster HSI due to high dimensional-
ity, nonlinear geometry, and low signal-to-noise level.
Fortunately, HSI typically consist of classes that are
parametrized, often in a nonlinear fashion, by a small
number latent variables. Methods which exploit this
intrinsic geometry improve over methods based simply
on Euclidean distances, which may be insufficient to
capture underlying nonlinearities [4, 5].

Diffusion distances [6, 7] have been proposed as
a metric for HSI that respects the underlying data ge-
ometry [4]. Consider the HSI data as a point cloud
{x;}_, C RP, where n is the number of pixels and D
the number of spectral bands. Let G be a graph with
vertices corresponding to {x;}”_, and edges stored in a
(symmetric) weight matrix W;; = exp(—|lx; — x;||3/0%)
if x; is among the k-nearest neighbors of x; or vice versa
and G is a scaling parameter. Let P = D~!W be a cor-
responding Markov transition matrix on the data, with
D the diagonal degree matrix where D;; = '}:1Wi -
Diffusion distances are derived from P as d;(x;,x;) =
VYi_(P(i,0)—P(j,€))2. P admits an eigendecom-
position {(A;,¢;)}?, which may be used to compute

dy(xi,5j) = \/ 1y A2 (0u(i) — 0¢(j)).  Diffusion dis-

tances capture the geometry as learned by the random




diffusion process P: d;(x;,x;) is small for points x;,x;
well-connected according to P', and large otherwise.
Diffusion Distances for HSI Analysis. Recently, diffu-
sion distances have been combined with density estima-
tion to label HSI with high empirical accuracy and prov-
able performance guarantees [4, 8, 9, 10]. The learning
by unsupervised nonlinear diffusion (LUND) algorithm
first learns modes {x}}X | in data X = {x;}_, by finding
high density points, as quantified by a kernel density es-
timator p(x), that are far in diffusion distance from other
high density points, as quantified by

min  d,(x;,x;), x;#argmax,p(x;),
{P(Xj)zp(x,»)}’( ) # argmax, p(x¢)

maxy; d; (xi,x;),

Pi(xi) =

x; = argmax, p(x¢);

see Algorithm 1. LUND then orders HSI pixels by den-
sity and assigns them sequentially to their d;-nearest la-
beled point of higher density: see [4] for details and a
discussion on how K may be automatically learned.

Algorithm 1: Mode Detection Algorithm
Input: X, K;t.
1: Compute {p(x;) }i . {p:(xi) Hey-
2: Compute {x}}X |, the K maximizers of
Dy (xi) = p(xi)pe (%)
Output: {x; }X  {p(x) Vi, {p:(x1) }1 -

3 PROPOSED HSI SEGMENTATION AL-
GORITHM

Motivated by the success of PLSR for anomaly detec-
tion in hyperspectral movies [11], we propose to incor-
porate the learned diffusion modes into PLSR. PLSR is
a supervised linear dimension reduction technique that
reduces the dimension in such a way that not just vari-
ance (as in principal component analysis), but also dis-
crimination between training data of different classes,
is maximized in the low-dimensional embedding. To
make use of PLSR in the unsupervised setting, we as-
sociate the modes learned with diffusion distances to a
core C; of points, consisting of the kj-nearest neighbors
of a mode x] in diffusion distance'. Note that by con-
struction C7 is far from C7, i = j, since these are the
points near the modes of separate classes. Each core is
a set of points that, with high confidence, should have

10n all the data sets we considered, the method is robust to the
choice of k;; in what follows we will use k; = [.02-n].

the same class label: we assign to each an arbitrary la-
bel, and then use these labels of the cores {C}}X | for
PLSR. To map these cores to numerical labels needed by
PLSR and in order to avoid imposing an artificial one-
dimensional structure on the labels, we assign the label
of C; to the vertex of a K-simplex, and perform vector-
valued regression with PLSR. In formulas: the points in
C; are labeled as 1; = (0,0,...,0,1,0,...0), with 1 in
the i’* coordinate. This generates a set of training pairs
for the i"" class: T; = {(x,y) | x € C},y = 1;}.

The data X is pre-processed so that the columns of
X, the n x D matrix representing the data, have mean
0. This training data T = (JX | 7; is used in PLSR to
acquire a regression coefficient ﬁ The regression coef-
ficient ﬁ is a D x K matrix that is derived only from the
learned cores. Multivariate regression on all of X is per-
formed by computing ¥ = Xf; ¥ is an n x K matrix with
rows corresponding to points and columns correspond-
ing to responses of each point. The columns of ¥ may
be interpreted as affinity for each class. Class labels are

.....

Algorithm 2: HSI Segmentation with Diffu-

sion Cores and PLSR

1 Input: X K;1t.

2 Learn modes {x}}X | of X by Algorithm 1.

3 Generate, from each x7, a core C; by computing
the kj-nearest neighbors of x! in diffusion
distance.

4 Learn PLSR coefficient B using {(C}, 1;) K as
training data (e.g., using the SIMPLS
algorithm [12]).

5 Regress Y on X as ¥ :Xﬁ.

6 Assign labels to all points:

.....

7 Output: {9;}",.

Computational Complexity. The total cost of Algo-
rithm 1 is O(C;Dnlogn) [4], where d is the intrinsic di-
mension of the data (usually < 10 in HSI), and C; is
exponential in d. PLSR is implemented with the SIM-
PLS algorithm [12], which has computational complex-
ity O(Dnm + Dm? +m?), where m is the number of par-
tial least squares components used. In our algorithm,
this is equal to the number of classes, either known or
determined by studying the decay of the sorted D (x;)
curve [4], and may be assumed to be O(1) and indepen-



dent of n,D. Thus, the overall complexity of the pro-
posed algorithm is near linearly in n: O(C;Dnlogn).

4 EXPERIMENTAL RESULTS

Experimental Data. An HSI capturing a faint chemical
plume released into an otherwise homogeneous back-
ground, courtesy of the Johns Hopkins Applied Physics
Lab (APL), appears in Fig. 1.

Fig. 1. A chemical plume HSI dataset of spatial dimensions 110 x
140. There are n = 110 - 140 = 15400 pixels and D = 129 spectral
bands. The bands shown (11,16, 18, 29) indicate the visibility of the
chemical plume in certain bands, but not in others.

The goal is to efficiently segment the plume without
supervision, and without using spatial information nor
the fact that the camera, in this particular data set, is still
(and so is the background). Several pixels are highly
corrupted by noise. No labeled ground truth is available
for this image, so we evaluate with only visual quality of
the image segmentation. In order to determine the num-
ber of clusters, K, used by our clustering algorithms, we
examine the plot of sorted D, (x;) = p(x;)p;(x;) values.
We look for “kinks” in this plot, which correspond to a
major drop in 2 (x;) values (see Fig. 2). Under a flexible
non-parametric data model, this heuristic for estimating
the number of clusters is provably accurate [10].
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Fig. 2. Plot of sorted D (x;) values for APL chemical plume HSI
and a plot of the finite differences between successive values. The
extrema of the difference curve were used to estimate the number of
clusters K = 6 to use for plume segmentation.

Results. We consider a variety of benchmark and state-
of-the-art methods of HSI clustering for comparison, see
Fig.3. Each method is run on the data with K = 6 clus-
ters; other parameters were chosen to optimize visual
performance. Only the proposed method achieves rea-

Fig. 3. Results for APL chemical plume dataset. Comparison
method are: (a) K-means; (b) K-means combined with principal
component analysis (PCA); (c) K-means combined with indepen-
dent component analysis (ICA) [13]; (d) K-means combined with
Gaussian random projections [14]; (e) spectral clustering [15]; (f)
Gaussian mixture models (GMM) [16]; (g) sparse manifold cluster-
ing and embedding (SMCE) [17]; (h) hierarchical clustering with
non-negative matrix factorization (HNMF) [18]; (i) fast search and
find of density peaks clustering (FSFDPC) algorithm [19]; (j) LUND
[4]; (k) proposed method with modes learned with Euclidean dis-
tance; (1) proposed method.

sonable plume segmentation (see Fig.3). PLSR with
cores learned with Euclidean distances is unable to cor-
rectly segment horizontally, resulting in a plume that is
spread too far. However, it correctly ascertains that the
plume diffuses somewhat far in the vertical direction.
PLSR with diffusion cores correctly segments in both
the horizontal and vertical directions, and gives the best
visual result. Several of the other methods were unable
to detect anomalous pixels effectively, resulting in clus-
ters of very small sizes. Spectral clustering and SMCE
reasonably segment the bottom half of the plume, but
fail completely for the top half.

S CONCLUSIONS & FUTURE WORK

Using diffusion geometry yields robustness to differ-
ent data geometries [10], but the subsequent PLSR
linear projection places statistical assumptions on the
data that may not always hold. In order to improve
robustness to more complicated data geometries, devel-
oping a fully nonlinear partial least squares regression
method is of interest. This approach has some simi-
larities with the Schrodinger eigenmaps approach [20],
though Schrodinger eigenmaps separates only a prior-



itized class (often thought of as a background class),
while we propose to develop a method that can handle
many classes, possibly of very different sizes.
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