Structure Learning with Side Information:
Sample Complexity

Saurabh Sihag Ali Tajer

Electrical, Computer, and Systems Engineering Department
Rensselaer Polytechnic Institute

Abstract

Graphical models encode the stochastic dependencies among random vari-
ables (RVs). The vertices represent the RVs, and the edges signify the conditional
dependencies among the RVs. Structure learning is the process of inferring the
edges by observing realizations of the RVs, and it has applications in a wide range
of technological, social, and biological networks. Learning the structure of graphs
when the vertices are treated in isolation from inferential information known about
them is well-investigated. In a wide range of domains, however, often there exist
additional inferred knowledge about the structure, which can serve as valuable side
information. For instance, the gene networks that represent different subtypes of
the same cancer share similar edges across all subtypes and also have exclusive
edges corresponding to each subtype, rendering partially similar graphical models
for gene expression in different cancer subtypes. Hence, an inferential decision
regarding a gene network can serve as side information for inferring other related
gene networks. When such side information is leveraged judiciously, it can translate
to significant improvement in structure learning. Leveraging such side informa-
tion can be abstracted as inferring structures of distinct graphical models that are
partially similar. This paper focuses on Ising graphical models, and considers the
problem of simultaneously learning the structures of two partially similar graphs,
where any inference about the structure of one graph offers side information for
the other graph. The bounded edge subclass of Ising models is considered, and
necessary conditions (information-theoretic ), as well as sufficient conditions (algo-
rithmic) for the sample complexity for achieving a bounded probability of error,
are established. Furthermore, specific regimes are identified in which the necessary
and sufficient conditions coincide, rendering the optimal sample complexity.

1 Introduction

Graphical models are widely used to compactly model the conditional interdependence among
multiple random variables Lauritzen [1996] and Pearl [2009]. The vertices of the graph represent
the random variables (RVs), while the edges encode the inter-dependence among the RVs. The
complete structure of the graph is analytically captured by the joint probability distribution of the
random variables. Graphical models offer effective and tractable solutions to various inferential
and decision-making solutions in different domains, e.g., computer vision Won and Derin [1992],
genetics Chen et al. [2013], Fang et al. [2016], Dobra et al. [2004], social networks Jacob et al.
[2014], and power systems Dvijotham et al. [2017]. In this paper, we focus on Ising models and
consider the problem of joint model selection of a pair of graphs with partially identical structures
using the samples from their joint distributions.

Graphical models with partially similar structures arise in the domains that consist of multiple layered
networks of information sources. In such an application, each layer shares some of its vertices
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and the data it generates with other layers that contain the same vertices. For example, the gene
networks that represent the subtypes of the same cancer share similar edges across all subtypes
and also have unique edges exclusive to each subtype of cancer Chen et al. [2013]. In a different
context, a similar problem emerges in analyzing the voting patterns of the members of the US Senate
Guo et al. [2015] for different categories of bills, where the statistical models reveal the common
dependency structure across the members affiliated to the same political party and other structures
unique to each class. Similarly, in the context of social networks, the relationships among a group
of individuals on different platforms (e.g., Twitter and Facebook) form two distinct, but potentially
partially similar graphical models. In such applications, learning one graph provides a significant
amount of information that can be used for learning other related graphs.

Due to the costs associated with collecting and processing data samples in large-scale graphical
models, it is of interest to study the sample complexity of learning multiple structures simultaneously,
where inference about each structure serves as side information for other structures.

1.1 Related Work

While the problem of graph structure learning is NP-hard Chickering [1996], it becomes feasible
under certain restrictions on the structure of the graph. For instance, the studies in Yuan and Lin
[2007], Rothman et al. [2008], Ravikumar et al. [2010], Banerjee et al. [2008] investigate recovering
the structure of the graphical model under sparsity. Such conditions on the structures of the graphical
models can be analyzed theoretically by considering certain restricted sub-classes of graphical models,
for e.g., graphs with a bounded degree or bounded number of edges.

Information-theoretic analysis of structure learning establishes the algorithm-independent difficulty
of recovering the structure of different classes of graphs. The studies in Santhanam and Wainwright
[2012], Tandon et al. [2014], Scarlett and Cevher [2016] characterize the necessary conditions
on the sample complexity of selecting the model of a given graph in various sub-classes of Ising
models. In Santhanam and Wainwright [2012], the necessary and sufficient conditions on the sample
complexity for the exact recovery of the graph are established for the class of Ising models under
restrictions on the maximum degree and the maximum number of edges in the graph. The results
in Santhanam and Wainwright [2012] are extended to a set based graphical model selection in Vats and
Moura [2011], where the graph estimator outputs a set of potentially true graphs instead of a unique
graph. Similarly, necessary conditions on the sample complexity are established for girth-bounded
graphs and path restricted graphs in Tandon et al. [2014]. In Scarlett and Cevher [2016], the problem
of graphical model selection is studied for various sub-classes of Ising models under the criterion of
approximate recovery. In Das et al. [2012], approximate recovery bounds on the sample complexity
are characterized for Ising and Gaussian models without considering the effect of edge weights. The
information-theoretic bounds on the sample complexity for structure recovery in Gaussian models
are established in Wang et al. [2010], and the information-theoretic bounds for structure learning in
power-law graph class are characterized in Tandon and Ravikumar [2013].

Algorithm-independent bounds on the sample complexity have also been investigated for other
inference tasks besides model selection from the samples. In Gangrade et al. [2017], the problem of
detecting whether two Markov network structures are identical or different is studied, and sample
complexity is characterized. The problem of property testing for Ising models is investigated
in Neykov and Liu [2017], and information-theoretic limits for testing graph properties such as
connectivity, cycle presence, and maximum clique size are established. In Devroye et al. [2018],
the problem of density estimation using the samples from the Ising model, is investigated, and the
minimax rate of estimation is analyzed.

Joint inference of multiple graphical models, even though recognized as an inference problem that
arises in various domains, is primarily studied only algorithmically in Chen et al. [2013], Fang et al.
[2016], Guo et al. [2011], Danaher et al. [2014], Mohan et al. [2014], Yang et al. [2015], Peterson
et al. [2015], Guo et al. [2015], Qiu et al. [2016]. In Chen et al. [2013], an empirical Bayes method,
is deployed to identify interactions that are unique to each class and that are shared across all classes.
In Fang et al. [2016], Guo et al. [2011], Danaher et al. [2014], Mohan et al. [2014], Yang et al. [2015]
graphical Lasso-based algorithms are designed for joint inference of Gaussian graphical models. An
optimization framework is used in Guo et al. [2015] for joint estimation of the graph structures based
on discrete data. Similarly, Peterson et al. [2015] investigates the problem of joint estimation of



G = (V,Ey)

Figure 1: Partially similar structures. Yellow nodes in both graphs have identical structures (p = 8, ¢ = 3).

Gaussian graphical models using a Bayesian approach, where the data groups are used to identify
partially similar models, and their similarity is leveraged.

1.2 Contributions

All the studies above on joint graphical model inference propose empirical or algorithmic model-
based frameworks. In this paper, in sharp contrast, we provide an information-theoretic perspective
for jointly learning the structures of a pair of similar Ising models. Such analysis offers algorithm-
independent necessary conditions on the sample complexity for achieving any arbitrary level of
reliability in the inference decision. In our previous work in Sihag and Tajer [2019] we considered
a sparsely connected, path-restricted sub-class in the context of Ising models and established the
algorithm-independent necessary conditions on the sample complexity. In this paper, we consider
a more general sub-class of edge bounded Ising models and provide the necessary conditions for
all feasible values of the number of edges in the graphs. Furthermore, we also analyze a maximum
likelihood (ML)-based graph decoder to establish sufficient conditions on the sample complexity.

Based on these bounds, we also provide the asymptotic scaling behavior of these conditions in
different regimes. These analyses, as a by-product, also recover the existing relevant results on the
recovery of single graphs in Scarlett and Cevher [2016]. Finally, we provide numerical evaluations of
ML-based decoder to study the effect of structural similarity on its performance.

A structurally similar pair of graphs are assumed to have identical connectivities in a subgraph formed
by a known cluster of nodes. Such settings have been analyzed extensively in the context of seeded
graph matching and alignment problems Fishkind et al. [2019], Lyzinski et al. [2014], where in
contrast to this paper, the focus is on aligning the vertices of a partially aligned pair of graphs.

2 Graph Model

Consider two' undirected graphs G; = (V, E1) and G, = (V, E3), such that the graphs are formed
by the same set of vertices V = {1,...,p} but have distinct sets of edges, denoted by E; C V x V
and F5, C V x V. When there exists an edge between nodes u,v € V in graph G;, we denote it
by (u,v) € E;. Since the graphs are undirected, we have (u,v) = (v,u). We also define the set
N;(u) € V as the neighborhood of node v in graph G;, i.e.,

Ni(u) 2 {w eV : (u,w) € E;} . (1)

It is assumed that a pre-specified cluster of ¢ nodes denoted by V. C V have identical internal graph
structures in both G; and G>. An example of two such graphical models is illustrated in Fig. 1.

We assume Ising models for both graphs G; and Gy, where we define X € X £ {—1,1} as the
random variable associated with the node j € V' in graph G;, for ¢ € {1, 2}. Accordingly, one sample

from graph G; is given by the random vector X; £ [X}, ..., XP]. The joint probability density
function (pdf) of X; associated with the graph G; is given by

1
fi(X) = ZeXP Zev ANUXPXD ()

!The results in this paper can be generalized to settings with more than two graphs. For clarity, we analyze
the setting with two graphs.



where

A, if (u,v) € E;
)\'l'L'U — i K 3
! { 0, otherwise )
and Z; is the partition function, given by
Zi= Y ew| X amxexy) . @

X;e{-1,1}» u,vEV

Throughout the rest of the paper, we refer to X; as one graph sample. The parameter A € R™ defined
in (3) captures the interdependency among the random variables associated with the vertices. We
remark that as \ grows or diminishes, i.e., in the asymptote of large or small values of ), it becomes
increasingly difficult to distinguish the two distinct Ising models Santhanam and Wainwright [2012].
Finally, corresponding to graph G;, we also define the maximum neighborhood weight according to

GEmax A 5)
weEN; (w)

3 Joint Structure Learning with Side Information

In this section, we formalize the notation of similar graphical models with partially identical structures,
the recovery criterion, and the associated performance measures.

3.1 Graph Similarity Model

Definition 1. Two graphs G, and G5 with identical subgraphs with q nodes are said to be n—similar,
wheren = 4.

P
For given G; and G-, the edges between a pair of nodes with at least one node not in V. are assumed
to be structurally independent of each other. We denote the class of Ising models by Z, and the class
of —similar pairs of Ising models by Z,,. In this paper, we focus on an edge-bounded sub-class of
Ising models defined next.

Definition 2. This edge-bounded class of all the n—similar pair of graphs Gy and G5 is specified by
parameters k € N and v € (0, 1). The maximum number of edges in each graph is k and the number
of edges in the identical subgraphs is k.

Note that in the definitions above the choices of v and 7 are not independent. Clearly, for any
combination of k and p, y should satisfy vk < (g)

For convenience in notations, we also define § £ p — g and ¥ £ 1 — ~. It is also assumed that
the maximum neighborhood weight, defined in (5), is upper bounded by log ¢, i.e., (; < logd,
for ¢ € {1,2}. Finally, we remark that all the results provided for the edge-bounded class have
counterparts for the degree-bounded class as well, which due to space limitations are omitted.

3.2 Recovery Criterion and Figure of Merit

The objective is to jointly estimate the structures of graphs G; and G, based on a collection of n
independent samples generated by each graph. The collection of n graph samples from the graph G,
is denoted by X € A™*P. We define the graph decoder

b XTP X X T (6)

as a function that maps the collection of samples to the graphs in class Z,,. We assume that in
each recovered graph we can tolerate erroneous decisions about at most d number of edges, where
d is pre-specified. To capture the accuracy of such decisions, we define P(Z,), d) as the maximal
probability of error over the class Z,, i.e.,

P(Z,.d) 2 P EAE;|} > d 7
(Z,,d) o mx igg}{\ I} >d| , (7)



where |E1AE1| is the edit distance between F; and the estimated edge structure EZ- given by
|EiAE;| £ [(BA\E;) U (E\E;)| . (8)

Therefore, ElAEl| represents the number of edges to be inserted or deleted to transform E; to EZ
Also, d represents the distortion level of the estimated graphs with respect to the true graphs.

4 Sample Complexity: Main Results

In this section, we provide the sufficient and necessary conditions on the sample size n for any graph
decoder to recover a pair of graphs with bounded probabilities of error. The necessary conditions
established are algorithm-independent and characterize the performance benchmarks on the sample
complexity for any designed algorithm. The sufficient conditions determine the feasibility of graph
recovery under the proposed recover algorithm (ML decoding) under given decision reliability
constraints.

A summary of some of the main observations is provided in Table 1.

Table 1: Summary of the main results for recovering Ising models of class Z,,.

Parameters Approx. recovery (d > 0) | Approx. recovery (d > 0) | Exactrecovery (d = 0)
(Necessary conditions) (Sufficient conditions) (Necessary conditions)
A=0 (-1
(‘/E) Q(klog p) Q(k2 log p) Q(klog p)
k= 0(p)
A=0(-L
(ﬁ) 4 Q(k) Q(k? log p) Q(klog p)
k=Q(p)andk = O(p3)
A=0 (-1
= (%) o(22) QK 1og p) Q(klog p)
k=Q(p3)and k = O(p?)
A=0 (%
(”) Q(p® log p) Q(p® log p) Q(p® log p)
kfixedand k < p/4

4.1 Sufficient Conditions

In order to establish sufficient conditions, we adopt the ML graph decoder defined as
5 5 A
, Za a 1.6, (X1, XT) . 9
(G1,G2) Tg(gngl))éznfg 6. (X7, X3) ©)

1,92
The ML decoder is optimal under the exact recovery criterion, i.e., when d = 0 Santhanam and
Wainwright [2012]. Under approximate recovery, however, no error is declared if the estimates
of the two graphs using the ML decoder lie within d distortion level of the true graphs. We use
large deviations analysis of the probability of error of (9) under approximate recovery to analyze its
performance.

Theorem 1 (Class Z,)). Consider a pair of n—similar graphs G, and G in class ZL,. If the sample
size n satisfies

n > rmax{A;,245}, (10)
where we have defined
2
. L (1)
sinh*(\/4)
A2 [(Qk/ + k) + log(2k" — d) +2(k' + 1) logp + log ﬂ , (12)
2
Ay & [(Qk’ + k) +log(2vk — d) +2(vk + 1) log g + log 6} , (13)
K émin{k, 761("2_ o) +qq} : (14)

then there exists a graph decoder 1) : X™*P x X™*P — 1, that achieves P(Z,,d) < é.



Note that k" defined in (14) counts the maximum number of edges that can exist in the graphs after
excluding those in the shared identical subgraphs.

In order to gain more insight into the sufficient condition in (10), we evaluate the scaling behavior of
the sufficient conditions for n in terms of parameters A (parameter of Ising model in (3)), ¢ (controls
maximum neighborhood bound), and k& (maximum number of edges in each graph). In all these
regimes, it is assumed that k is increasing with the graph size p. Furthermore, it can be readily
verified that d, i.e., the number of errors tolerated by the decoder for the structure of each graph, does
not affect the asymptotic scaling behavior of the sample complexity.

1. A = ©(1): When the size of identical subgraphs dominates the sizes of non-identical parts
such that g < 1and vk > (g) + qq, the sample complexity is dominated by 2r A5, which

scales according to ((?klog p). Also, when we have k' = k, the bound on the sample
complexity scales according to ©(¢%k log p). Therefore, in this regime, under fixed J, the
bound on sample complexity is always dominated by a term that has a scaling behavior
given by Q(¢%klog p).

2. A = O(Vk~1): By noting that sinh(\/4) = Q()), in this regime, Theorem 1 implies that
there exists a constant ¢ > 0 such that when n > ¢ - (2k? log p, there always exists a graph
decoder that achieves P(Z,,d) < § . If ( = O(exp(AVk)), then the bound on sample
complexity scales as (k2 log p) for fixed 4.

3.0 = 9(\/%): In this regime, when both A and k are increasing with p, the bound
on the sample complexity scales as ©(¢%logp). When we have ¢ > exp(\/k) and
Mk = w(log(log p)), the bound on sample complexity scales exponentially according to

exp(AWEk).

4.2 Necessary Conditions

For describing the results in this subsection, we denote the binary entropy function by
h(0) & —0logf — (1 —0)log(1 — @), forf € (0,1). 15)

Theorem 2 (Class Z,, with k < p/4). Consider a pair of n—similar graphs G, and G, in the class
T, such that, k < p/4 and ~y < 3. For any graph decoder +) : X™*P x X"*P — T, that achieves

P(Zy,d) <6, (16)
Sor d = 0k, for some 6 € (0, %), the sample size n should satisfy
n > max {By, B2} (1 —d§ —o(1)) , (17)
where we have defined

2(1 —)logg+ ylogq — 20logp
Atanh A ’
(1 —~/2)1og2 — h(H)

30k (72 exp(=A(VAR) — 1)/2) + 72 exp(-A(VTE ~1)/2))

(1>

By (18)

(1>

By (19)

Next, we discuss the different scaling behavior of the necessary conditions on sample complexity
from Theorem 2. Note that By and B5 have different scaling behavior in terms of A, k£ and p. In all
the following regimes, we assume that & is increasing with p.

1. A = O(1): In this regime, B; scales as log p and By scales as eVF, Clearly, B2 dominates
the lower bound on the sample complexity if & = w(log(log p)).

2. A = O(Vk~1): By noting that tanh(A) = O(\) we find that B; scales as Q(klogp). By
scales as 1/k. Clearly, the sample complexity is dominated by Bj.

3. X\ = ©(Vk) : In this regime, By scales as O(51252+) and By scales as LT TN U
we have k = w(log(logp)), B2 dominates the sample complexity and scales exponentially
in k5.




Theorem 3 (Class Z,, with k = Q(p)). Consider a pair of n— similar graphs Gi and Go in the class
T, such that, k = |cp*™*| for given constants ¢ > 0 and p € [0,1), and v < min{n, %}. For
any graph decoder 1) : X"*P x X"*P — If; that achieves

P(Z,,d) <94, (20)
for d = 0k where 0 € (0, 1), the sample size n should satisfy
n > max{Bs, B2} (1 = —o(1)), 21
where we have defined Bs in (19), and

By & [(1—~/2)log2 — h(9)] - Aflexp(2)\) cosh(4Acp*) + 1 22)

exp(2A) cosh(4Aept) — 17

To analyze the asymptotic scaling behavior of the necessary condition, we note that By depends on
A and k, and B3 depends on A and p. Therefore, depending on the variations of A with respect to
p and k, we characterize the scaling behavior of the sufficient condition in terms of &k and p. In the
following regimes, we assume that & is increasing with p.

1. A = ©O(1): In this regime, B, scales as exp(v/k). On the other hand, we have
ex cos cpt)—
exgg;g cos}ﬁgjiczug-s-i = O(1) and therefore, B3 = (1) as p — oo. Clearly, By dom-
inates the bound on sample complexity.

2. A = O(VEk™1): In this regime, By scales as 1/k. The analysis of B3 shows that

Eggi;gg;ﬁgjiigf;: = O(max{1/vk,k/p*}). Therefore, Bs scales according to

Q(min{k,p?/vk). Note that when we have k = Q(p) and k = O(p*/?), we have
min{k, p?>/vk} = k and therefore, the bound on sample complexity scales as (k). When
k = Q(p*/?), the bound on the sample complexity scales as Q(p?/v/k) asymptotically.

3. 0= @(\/E): In this regime, B5 scales as eF" and Bs — 0 as k — oo. Therefore, the
lower bound on sample complexity scales exponentially in k!5

The analysis of the results in Theorem 1 and Theorem 2 reveals that the sufficient and the necessary
bounds on the sample complexity scale at the same rate (non-exponential) for the class Z,, under a
particular regime, as described in Corollary 1.

Corollary 1 (Optimal Sample Complexity). When the maximum number of edges is fixed and satisfies
k < p/4, and we have

a n’p
< min<{ — d A=0(1 23
TR -
Theorem 1 indicates that when n. > cyp® log p, for a constant cs, there exists a graph decoder that
recovers both graphs with P(Zn, d) < 4. On the other hand, in this regime, Theorem 2 indicates that
for any graph decoder to achieve P(Z,,d) < & we should have n > c3p? log p, for some constant
c3 > 0. Therefore, in this regime, the graph decoder that satisfies Theorem 1 achieves the optimal
sample complexity up to constant factors.

Furthermore, we comment that the extreme case of 7 = 0 corresponds to recovering two independent
graphs the other extreme case of 7 = 1 corresponds to recovering two identical graphs. In both these
extreme cases, the problem analyzed in this paper simplifies to the problem of structure learning
of one graph studied in Scarlett and Cevher [2016] (for approximate recovery) and in Santhanam
and Wainwright [2012] (for exact recovery, i.e., d = 0). In general, however, when we depart from
these special cases, the analysis techniques in the context of single graphs in existing literature do not
extend directly to the context of recovering a pair of graphs with structural similarity. Specifically,
we use novel ensemble constructions for a pair of graphs that accommodate structural similarity in
different regimes of k and analyze the pairwise KL divergences for the graph pairs to recover the
necessary conditions in Theorems 2 and 3. Moreover, our analysis of an ML decoder also recovers
the hitherto uninvestigated sufficient conditions for the sample complexity under the approximate
recovery criterion. Hence, the results provided in this paper are completely different. This observation
is formalized in the following corollary.



Corollary 2 (Special Cases). The necessary and sufficient conditions on sample complexity in the
extreme cases of 1 = 0 and ) = 1 subsume the existing results for structure learning in single graphs.

In the context of the asymptotic scaling behaviors summarized in Table 1, we comment that the
necessary condition bounds for approximate recovery are not any looser with respect to that for exact
recovery than those in the context of single-graph recovery. Also, in some regimes the gap between
the necessary conditions and the sufficient conditions on the sample complexity is tighter than others.
For instance, when & = O(p) the mismatch is only a factor k. The mismatch between the necessary
conditions and sufficient conditions is more profound in denser graphs, i.e., when k = Q(p).

Furthermore, the analysis of the necessary conditions in Theorems 2 an 3 and sufficient conditions in
Theorem 1 reveals that d does not affect the asymptotic scaling rate of their respective bounds even
when d scales as fast as linearly with k. For instance, in Theorem 1, d appears only in a logarithmic
factor scaling at most at the rate of log k which is dominated by klogp in A; and As. Therefore, the
results in Table 1 do not depend on d.

5 Numerical Evaluations

In this section, we evaluate the tradeoffs between decision reliability captured by P(Z,, d) defined
in (7) and the necessary and sufficient conditions on the sample complexities established. We
evaluated these tradeoffs for different approximate recovery levels controlled by d as well as similarity
levels of the two graphs specified by 1. In general, the implementation of an ML decoder may become
infeasible as the size of the graphs grow. Therefore, to gain meaningful insights in the sample
complexity with increasing size of graphs, the evaluations were performed on an ensemble of graphs
that contains graphs with many isolated edges. In this ensemble, we set the size of the graphs to
p, with ¢ = |np| nodes in the shared subgraph. We assumed that each graph contains « isolated
edges, with |na| edges lying in the shared subgraph. Furthermore, the graphs in this ensemble were
constructed in the following manner. We grouped the non-shared cluster with size (p — ¢) vertices in
(p — q)/2 fixed pairs and randomly connected the vertices in (v — |n«]). Similarly, the ¢ vertices
of the shared subgraph were grouped into ¢/2 fixed pairs and |n«/| pairs were selected randomly
to be connected. For this ensemble, the implementation of ML decoder can be readily shown to be
equivalent to a counting scheme that counts the number of agreements in the states of different nodes
in the data. This allowed us to visualize the behavior of the sample complexity for ML decoder as the
size of the graphs was increased.
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Figure 3: Reliability (P(Z,, d)) versus graph size
Figure 2: Reliability (P(Z,,d)) versus sample  (p) for different values of d, where d represents
complexity (n) for different values of np and d.  the tolerance to distortion in the recovered graphs
Solid and dashed curves represent the sufficient ~ with respect to the true graphs.

number of samples (based on ML decoder) and

necessary number of samples, respectively.

We first considered a graph with p = 100 vertices and o = 20. Figure 2 depicts the variations of the
error probability P(Z,), d) versus n. For each value of P(Z,, d), the figure specifies the necessary
(shown by dashed curves) and sufficient conditions (shown by solid curves) on the number of samples
n. The sufficient conditions are obtained by simulations of the ML decoder. The figure shows



these variations for different levels of graph similarity n = 0.1, 0.3 and different values of recovery

approximation d = 1, 3. The probability of error was evaluated empirically over 6000 trials.
In Corollary 1, we have provided a regime in which the scaling behaviors of the necessary and

sufficient conditions on the sample complexity coincide, establishing the exact sample complexity. In
this regime, as a result, the ML decoder achieves an optimal structure learning rule. We used the ML
rule to characterize the variations of decision reliability P(Z,), d) as the size of the graph varied in the
range p € [50,500] for fixed number of edges. Figure 3 depicts these variations. For the results in
this figure we have fixed o = 20 and n = 0.5, and have evaluated the performance based on n = 40
samples from each graph.

In Fig. 3, we observe that the decision reliability measure P(Z,, d) achieves lower error rate with
increase in d for the same number of samples. It is important to note that increase in d signifies a
rise in tolerance to errors in the structure recovery by the graph decoder, and therefore, the decline in
quality of structure recovery decisions with respect to the ground truth. Also, as stated in Corollary 1,
we observe that graph recovery becomes more difficult as the graph size increases while k remains
fixed.

6 Conclusion

In this paper, we have considered the problem of structure learning in the presence of side information
about the structure. This is posed, naturally, as jointly recovering the structures of two graphs with
partial internal structural similarities. Specifically, it is assumed that both graphs share an identical
subgraph. Any inference about the structure of this subgraph from either of the graphs serves as
the side information for recovering the structure of the other graph. A general recovery criterion
that encompasses both exact and partial recovery of the graphs is considered. We have established
necessary (information-theoretic) and sufficient (algorithmic) bounds on the sample complexity
for achieving a bounded probability of error in structure recovery. The scaling behaviors of these
conditions are analyzed in different regimes. We have also identified a regime in which the necessary
and sufficient conditions coincide, establishing the optimal sample complexity. We have also provided
numerical evaluations to illustrate the interplay among the various parameters involved.

The setting studied in this paper has been motivated from applications in a broad range of domains
like social networks, genetics, and behavioral analysis. While the existing works have primarily
focused on context specific algorithmic frameworks for joint inference, our results have established
the information-theoretic benchmarks on the sample complexity in different regimes characterized by
the properties of the graph structures.
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