
Adaptive Shrinkage Estimation for Streaming Graphs

Nesreen K. Ahmed
Intel Labs

Santa Clara, CA 95054
nesreen.k.ahmed@intel.com

Nick Duffield
Texas A&M University

College Station, TX 77843
duffieldng@tamu.edu

Abstract
Networks are a natural representation of complex systems across the sciences,
and higher-order dependencies are central to the understanding and modeling of
these systems. However, in many practical applications such as online social
networks, networks are massive, dynamic, and naturally streaming, where pairwise
interactions among vertices become available one at a time in some arbitrary
order. The massive size and streaming nature of these networks allow only partial
observation, since it is infeasible to analyze the entire network. Under such
scenarios, it is challenging to study the higher-order structural and connectivity
patterns of streaming networks. In this work, we consider the fundamental problem
of estimating the higher-order dependencies using adaptive sampling. We propose
a novel adaptive, single-pass sampling framework and unbiased estimators for
higher-order network analysis of large streaming networks. Our algorithms exploit
adaptive techniques to identify edges that are highly informative for efficiently
estimating the higher-order structure of streaming networks from small sample
data. We also introduce a novel James-Stein shrinkage estimator to reduce the
estimation error. Our approach is fully analytic, computationally efficient, and can
be incrementally updated in a streaming setting. Numerical experiments on large
networks show that our approach is superior to baseline methods.

1 Introduction
Network analysis has been central to the understanding and modeling of large complex systems in
various domains, e.g., social, biological, neural, and technological systems [7, 37]. These complex
systems are usually represented as a network (graph) where vertices represent the components of the
system, and edges represent their direct (observed) interactions over time. The success of network
analysis throughout the sciences rests on the ability to describe the complex structure and dynamics of
arbitrary systems using only observed pairwise interaction data among the components of the system.
Many networked systems exhibit rich structural and connectivity patterns that can be captured at
the level of pairwise links (edges) or individual vertices. However, higher-order dependencies that
capture complex forms of interactions remain largely unknown, since they are beyond the reach
of methods that focus primarily on pairwise links. Recently, there has been a surge of studies on
higher-order network analysis [4, 9, 52, 43, 20]. These methods focus on generalizing the analysis
and modeling of network data from pairwise relationships (e.g., edges) to more complex forms of
relationships such as multi-node (many-body) relationships (e.g., motif patterns, hypergraphs) and
higher-order network paths that depend on more history [46]. Higher-order connectivity patterns
were shown to change node rankings [46, 57], reshape the community structure [52, 9, 56], reveal the
hub structure [4], learn more accurate embeddings [42, 41], and generative network models [16].

Many networks are massive, dynamic, and naturally streaming over time [33, 44, 3], with pairwise
interactions (i.e., edges that represent communication in the form of user-to-user, user-to-product
interactions) are becoming available one at a time in some arbitrary order (e.g., online social networks,
Emails, Twitter data, recommendation engines). The massive size and streaming nature of these
networks allow only partial observation, since it is infeasible to analyze the entire network. Under

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

such scenarios, the question of how to study and reveal the higher-order connectivity structure and
patterns of streaming networks has remained a challenge. This work is motivated by large-scale
streaming network data that are generated by measurement processes (i.e., from online social media,
sensors, and communication devices), and we study how to estimate the higher-order connectivity
structure of streaming networks under the constraints of partial observation and limited memory. We
particularly focus on the estimation of higher-order network patterns captured by small subgraphs,
also called network motifs (e.g., triangles or small cliques) [34, 6].

Randomization and sampling techniques are fundamental in the context of graph and matrix ap-
proximations in both static and streaming settings; see [33, 29, 26, 5]. The general problem is
setup as follows: given a graph G = (V,K) and a budget m, find a sampled graph Ĝ such that the
(expected) number of edges (non-zero entries) is at most m and Ĝ is a good proxy for G. In the
data streaming model, the input graph G is a stream of edges K = {k1 = (u, v), k2 = (v, w) . . . }
and is partially observed as the edges stream and become available to the algorithm one at a time in
some arbitrary order. The streaming model is fundamental to applications of online social networks,
social media, and recommendation systems where network data become available one at a time (e.g.,
friendship links, emails, Twitter feeds, user-item preferences, purchase transactions, etc). Moreover,
the streaming model is also crucial where network data is streaming from disk storage and random
accesses of edges are too expensive. However, the theory and algorithms of current graph sampling
techniques are mostly well developed for sampling individual edges to estimate global network
properties (e.g., total number of edges in a graph) [25, 50]. Here, we consider instead sampling
techniques that can capture how edges connect locally to form small network substructures (i.e.,
network motifs). Designing new sampling algorithms to estimate the local higher-order connectivity
patterns of streaming networks has the potential to improve accuracy and efficiency of sampling and
knowledge discovery in streaming networks.

Contributions. We propose a novel topologically adaptive, single-pass priority sampling framework
for unbiased estimation of higher-order network connectivity structure of large streaming networks,
where edges become available one at a time in some arbitrary order. Specifically, we propose unbiased
estimators for local counts of subgraphs or motifs containing each edge (Theorem 1) and show how
to compute them efficiently for streaming networks (Theorem 2). These estimators are embodied in
our proposed adaptive sampling framework (see Algorithm 1).

Figure 1: Bias-Variance Trade-off in Graph Sampling

Our proposed adaptive sampling preferen-
tially selects edges to include in the sample
based on their importance weight relative
to the variable of interest (i.e., higher-order
graph properties), then adapts their weights
to allow edges to gain importance during
stream processing leading to reduction in es-
timation variance as compared with static
and/or uniform weights.

We also propose a novel shrinkage estimator
which we formulate as a convex combina-
tion estimator to reduce the mean squared
error (MSE) (as shown in Figure 1), and we
discuss its computation during stream pro-
cessing (Section 3). Our approach is fully
analytic, computationally efficient, and can be incrementally updated as the edges become available
one at a time during stream processing. The proposed methods are also generally applicable to a wide
variety of networks, including directed, undirected, weighted, and heterogeneous networks.

2 Adaptive Sampling Framework
2.1 Notation and Problem Definition
Consider an arriving stream K of unique graph edges labelled by the edge identifiers k ∈ [|K|].
Let G = (V,K) denote the undirected graph formed by the edges, where V is the vertex set and
K is the edge set. Assume M is a motif (subgraph) pattern of interest, let H denote the class of
subgraphs in G that are isomorphic to M (e.g., all triangles or cliques of a given size that appear
in G). We define the H-weighted graph of G as the weighted graph GH = (V,K,N) with edge

2

weights N = {nk : k ∈ K}, such that for each edge k ∈ K, nk is the number of subgraphs in H
that are isomorphic to motif M and incident to k, i.e., nk = |{h ∈ H : h 3 k, h ∼= M}|. We refer
to this graph as the motif-weighted graph, and we denote A as its motif adjacency matrix [9]. For
brevity we will identify a subgraph h ∈ H with its edge set. Table 3 in the supplementary materials
provides a summary of notation. Suppose the edges of G are labelled in some arbitrary order based
on their arrival in the stream. Let Gt = (Vt,Kt) denote the subgraph of G formed by the first t
edges in this order, Ht = {h ∈ H : h ⊂ Kt} be the set of subgraphs in H all of whose edges
have arrived by t, and (Vt,Kt, Nt) be the corresponding H-weighted graph of Gt (with weights
Nt = {nk,t : k ∈ Kt}). This paper studies two questions: (1) how to maintain a reservoir sample K̂
of m edges from the unweighted edge stream K, and (2) how to obtain an unbiased estimate of the
H-weighted graph GH = (Vt,Kt, Nt) at any time t ∈ [|K|]. We propose a variable-weight adaptive
sampling framework for streaming network/graph data, called adaptive priority sampling. Our
proposed framework preferentially selects edges to include in the sample based on their importance
weight, where the weights are relative to the role of these edges in the formation of motifs and general
subgraphs of interest (e.g., triangles or small cliques) and can adapt to the changing topology during
streaming. Next, we describe the proposed framework (Alg. 1), and discuss its theoretical foundation.

2.2 Algorithm Description and Key Intuition

We consider a generic reservoir sample K̂ selected progressively from the edge stream labelled
K = [|K|] = {1, 2, . . . , |K|}. We assume edges are unique, and therefore they can be identified by
their arrival positions (i.e., edge ids); nevertheless we will sometimes emphasize their graph or time
aspects, denoting by kt the edge arriving at time slot t, and by tk the arrival time slot of edge k. In
Alg. 1, the first m edges are admitted to the sample: K̂t = [t] for t ≤ m. Then, each subsequent edge
t is provisionally included in the current sample to form K̂ ′t = K̂t−1 ∪ {t} (see line 6), from which
an edge is discarded to produce the sample K̂t, and maintain the sample size m = |K̂t| at any time t.

Algorithm 1 Adaptive Priority Sampling (APS)

Input: Edge stream, sample size m, Motif pattern M
Output: Reservoir Sample K̂
1: K̂ ← ∅, z∗ ← 0 . Initialize
2: for a new edge k do
3: Generate u(k) ∼ Uni(0, 1]
4: w(k)← φ . Initial Weight
5: p(k)← 1 . Initial probability
6: K̂ ← K̂ ∪ {k} . Add k to the sample
7: // Set of motifs contain k and isomorphic to M
8: ∆← {h ⊂ K̂ : h 3 k, h ∼= M}
9: for h ∈ ∆ and ∀j ∈ h do

10: if z∗ > 0 then
11: p(j)← min{p(j), w(j)/z∗}, if j 6= k

12: w(j)← w(j) + 1 . Update weight for j
13: p(h)←

∏
j∈h p(j)

14: n(j)← n(j) + 1/p(h) . Update count for j
15: r(j)← w(j)/u(j), if j 6= k . Update Rank for j
16: r(k)← w(k)/u(k) . Rank variable for new edge
17: if |K̂| > m then
18: k∗ ← arg minj∈K̂ r(j)

19: z∗ ← max{z∗, r(k∗)} . Update threshold
20: Remove k∗ from K̂ . Discard min rank edge

In Algorithm 1, each edge i ∈ K̂ ′t is as-
signed a priority rank variable defined
as ri,t = wi,t/ui, where wi,t is the
edge weight at time t, and ui is a uni-
formly distributed random variable on
(0, 1] assigned to the edge on its first
arrival. Then, the edge with minimum
rank zt = minj∈K̂′

t
rj,t is discarded

from K̂ ′t to obtain the sample K̂t (see
lines 17–20). For each edge i ∈ K̂ ′t, we
compute the weight wi,t > 0 as a func-
tion of its previous weight wi,t−1 and
the sample set K̂ ′t.

Upon its arrival, a new edge k is as-
signed an IID edge random variable
uk uniformly distributed on (0, 1], and
an initial (constant) weight φ (lines 3–
5), plus the number of target sub-
graphs/motifs in K̂ ′t that contains k (see
lines 9–15). An edge i ∈ K̂ ′t survives
the sampling at time t, if and only if
there is another edge in K̂ ′t that has the
minimum rank, i.e., ri,t > zt.

Conditional on zt, the effective sampling probability of an edge i ∈ K̂t is: P{ri,t > zt} = P{ui <
wi,t/zt} = min{1, wi,t/zt}. We note that in the experiments of Section 4, we choose the initial edge
weight φ = 1 to be comparable with the edge weight increments due to subgraphs incident to each
edge (see line 4). This procedure allows edges to have a chance to be included in the sample with
a non-zero probability, regardless of the number of subgraphs incident to them, but not so large as
to damp out their topological weight. Next, we discuss how the approach in Algorithm 1 leads to
unbiased estimators of general subgraphs/motifs.

3

2.3 Unbiased Estimators of General Subgraphs
Let Si,t denote the arrival of an edge i, i.e., Si,t = I(i ≤ t). For any subgraph J ⊂ K, where
J is a subset of edges (or edge ids), let SJ,t =

∏
i∈J Si,t indicates whether all edges i ∈ J have

arrived by time t, i.e., SJ,t = 1 if J ⊂ Kt and 0 otherwise. We observe the local edge count
ni,t =

∑
J∈Hi,t

SJ,t, and Hi,t = {h ∈ Ht : h 3 i} is the set of subgraphs (motifs) incident to edge
i whose edges have arrived by time t.

Theorem 1 establishes unbiased inverse probability estimators [23] for SJ,t in the form ŜJ,t = I(J ⊂
K̂t)/PJ,t when t ≥ τJ := maxi∈J ti (i.e., all edges in J have arrived by time t), and PJ,t is the
sampling probability for the subgraph J . For any subgraph J ⊂ K with |J | ≤ m ≤ t, let Jt = J∩ [t],
and define the conditional minimum edge rank over the sample K̂ ′t as zJ,t = minj∈K̂′

t\Jt
rj,t. Hence,

zt = z∅,t is the unrestricted minimum rank over K̂ ′t. For i ∈ J , we define the edge probabilities
pi,t,J to be 1 when t < i and min{1,mini≤s≤t wi,s/zJ,t} otherwise. This can be expressed in an
iterative form as follows,

pi,t,J =

{
1, if t < i

min{pi,t−1,J , wi,t/zJ,t}, if t ≥ i (1)

We distinguish between P̃J,t and PJ,t. We use P̃J,t =
∏
i∈Jt pi,t,J to denote the sampling probability

of subgraph J at time t, conditional on the ranks of edges not in J (i.e., using the conditional min
rank zJ,t). We also use PJ,t =

∏
i∈Jt pi,t, where pi,t := pi,t,∅, to denote the sampling probability of

subgraph J that employs the threshold zt = z∅,t, i.e., zt is the unrestricted minimum rank over K̂ ′t.

Set tJ = mini∈J ti, then define S̃Jt = I(Jt ∈ K̂t)/P̃J,t and the set of variables ZJ,t = {zJ,s : tJ ≤
s ≤ t}. In Theorem 1, we establish first that S̃J,t is an unbiased estimator of SJ,t, but that estimates
can be computed using ŜJ,t. This is preferable since PJ,t is computed using the unrestricted threshold
zt, independent of the subgraph J to be estimated.

Theorem 1 (Unbiased Subgraph Estimation1).
(I) The distributions of the edge random variables {ui : i ∈ J}, conditional on Jt ⊂ K̂t and ZJ,t,

are independent, with each ui being uniformly distributed on (0, pi,J,t].

(II) E[I(Jt ⊂ Kt)|ZJ,t, Jt−1 ⊂ K̂t−1] = P̃J,t/P̃J,t−1

(III) E[S̃J,t|ZJ,t−1, Jt−1 ⊂ K̂t−1] = S̃J,t−1, and hence E[S̃J,t] = 1, for t > tJ .

(IV) P̃J,t = PJ,t when Jt ∈ K̂t and hence E[ŜJ,t] = SJ,t, for all t.

Using Theorem 1, it is straightforward to show that for any edge i ∈ K̂t, n̂i,t =
∑
J∈Hi,t

ŜJ,t is an
unbiased estimator of ni,t, i.e. E[n̂i,t] = ni,t.

Unbiased Estimation from the Last Arriving Edge. Recall that τJ = maxi∈J ti denotes the
time of the last arriving edge kτJ of the subgraph J ⊂ K. Set J (0) = J \ {kτJ}, and define
Ŝ′J,t = ŜJ(0),τJ−1, where S′J,t indicates subgraph J right before the arrival of the last edge kτJ .

In Alg. 1, when a new edge arrives at time t = τJ , Algorithm 1 finds all subgraphs ∆ ⊂ Ht that are
completed by the arriving edge and whose edges are in the sample K̂ ′t (see line 8). For each subgraph
J ∈ ∆ and each edge i ∈ J , we increment the estimate n̂i,t by the inverse probability 1/PJ(0),t−1,
where PJ(0),t−1 =

∏
i∈J(0) pi,t−1 is the sampling probability for S′J,t (lines 13–14).

Corollary 1 results from Theorem 1 and establishes that E[Ŝ′J,t] = 1, hence, n̂i,t =
∑
J∈Hi,t

Ŝ′J,t
is an unbiased estimator for ni,t, for all i ∈ Kt. This allows us to update the estimates without
risking loss of some edge in J during subsequent sampling (i.e., when the edge with minimum rank
is discarded from the sample).

Corollary 1. E[Ŝ′J,t] = 1 and hence n̂i,t =
∑
J∈Hi,t

Ŝ′J,t is an unbiased estimator of the local
subgraph count ni,t for all i ∈ Kt.

1Proofs of all the theorems are discussed in the supplementary materials.

4

2.4 Special Case of Non-decreasing Sampling Weights

Computing the probabilities pi,t according to Equation 1 requires an update for each each edge i ∈ K̂t

at each time step t, i.e., O(m) for each arriving edge. We now show that this computational cost can
be reduced when wi,t is non-decreasing in t. Let dt ≤ t denote the edge discarded at time t > m,
i.e., {dt} = K̂ ′t \ K̂t (line 20 in Alg. 1). We define the sample threshold z∗t iteratively by z∗m = 0
and z∗t = max{z∗t−1, zt} , for t > m (see line 19 in Algorithm 1). Define p∗i,i = min{1, wi,i/z∗i }
and p∗i,t+1 = min{p∗i,t, wi,t+1/z

∗
t+1}, for t ≥ i, i.e., similar to Equation 1 but with zt replaced by z∗t

(as shown in line 11 in Alg. 1).

Theorem 2. When wi,t is non-decreasing in t then (I) dt 6= t implies z∗t = zt; and (II) p∗i,t = pi,t
for all t ≥ i.
We take advantage of Theorem 2 to reduce the number of updates to the probability p∗i,t, Since wi,t is
non-decreasing and z∗t is also non-decreasing, wi,t/z∗t can only increase when wi,t increases.

During the intervals of constant wi,t, wi,t/z∗t is non-increasing. Therefore, provided that we update
p∗i,t at times when wi,t increases, all other updates of p∗i,t can be deferred until needed for estimation
(see line 11 of Alg. 1).

Complexity Analysis. In Algorithm 1, the sampling reservoir is implemented as a min-heap. Any
insertion, deletion, update operation has O(logm) complexity in the worst case. Retrieving the edge
with minimum rank is done in constant time O(1). The complexity of the weight update depends on
the target subgraph class, being proportional to the number of edges in new subgraphs created by the
arriving edge. In the experiments reported in this paper, the target subgraphs are triangles. For an
arriving edge k = (v1, v2), the third vertex of any new triangle incident to k lies in the set intersection
of the sampled neighbors of v1 and v2 which can be computed in O(min{deg(v1), deg(v2)}), where
deg(v1) and deg(v2) are the sampled vertex degrees of v1 and v2 respectively. This complexity
can be achieved if a hash table (or Bloom filter) is used for storing and looping over the sampled
neighborhood of the vertex with minimum degree and querying the hash table of the other vertex.

3 James-Stein Shrinkage Estimator
It is common in graph sampling to seek unbiased estimators with minimum variance that perform
well, e.g., the estimator in Section 2. In this section, we also investigate another desirable estimator,
called shrinkage estimator [24, 21], that directly reduces the mean squared error (MSE), which is a
direct measure of estimation error. In Figure 1, we demonstrate the bias-variance trade-off in graph
sampling, which leads to both biased and unbiased estimators. Unbiased estimators of local subgraph
counts are subject to high relative variance when the motif counts are small, because in this case the
individual count estimates, scaled by the inverse probabilities, are smoothed less by aggregation.

More generally, James and Stein originated the observation that unbiased estimators do not necessarily
minimize the mean squared error [24]. In their study, unbiased estimates of high dimensional Gaussian
random variables are adjusted through scaling-based regularization and linear combination with
dimensional averages. Shrinkage estimation has been used in other settings such as covariance or
affinity matrix estimation [45, 55, 11, 28]. Here, we examine shrinkage for the estimated count n̂k
by convex combination with the observed and un-normalized count provided by the edge sampling
weight wk. By introducing bias through wk, we can obtain further reductions in mean squared error
(MSE), additional to the adaptive sampling technique discussed in Section 2.

3.1 Optimizing Shrinkage Coefficients
We define a family of shrinkage estimators η = λn̂+ λw, where the shrinkage coefficient λ ∈ [0, 1]
specifies η as a convex combination of the unbiased estimator n̂ = n̂k and the un-normalized edge
weight w = wk, for any edge k. Let λ denote 1− λ. The loss L(λ) associated with the shrinkage
coefficient λ is the mean squared error:

L(λ) = Var(η̂) + (E[η̂]− n)2 = λ2 Var(n̂) + λ
2

Var(w) + 2λλCov(n̂, w) + λ
2E[n̂− w]2 (2)

since E[η̂ − n] = E[η̂ − n̂] = E[λn̂+ λw − n̂] = λE[w − n̂].

L is convex with derivative L′ specified by,

L′(λ)/2 = λVar(n̂)− λVar(w) + (1− 2λ) Cov(n̂, w)− λ(E[n̂− w])2 (3)

5

We seek the minimum of L when L′(λ) = 0, i.e., when

λ = 1− Cov(n̂− w, n̂)

E[(n̂− w)2]
= 1− Var(n̂)− Cov(n̂, w)

E[(n̂− w)2]
(4)

We truncate λ at 1 so that the constraint λ ≤ 1 always holds. Since the optimal λ is a function of
the unknown true covariances, we follow the practice of [12] by employing a plug-in estimator λ̂
for λ by substituting (n̂− w)2 in the denominator, and an unbiased estimate for Cov(n̂− w, n̂) =
Var(n̂k)− Cov(n̂k, wk), whose computation we describe next.

3.2 Unbiased Estimation of the Variance Var(n̂)

Let ∆j,t = Hj,t \Hj,t−1 denote the set of subgraphs in Kt that contain an edge j and are completed
by the new edge arrival at time t. Similarly, let ∆̂j,t denote the (possibly empty) set of subgraphs
in K̂ ′t that contain an edge j ∈ K ′t and are completed by the new edge arrival at time t. Thus, the
estimated count n̂j,t can be decomposed as: n̂j,t = n̂j,t−1 +

∑
J∈∆j,t

Ŝ′J,t.

For any pair of subgraphs J, L ∈ Hj,t, the variance of n̂j,t is specified by:

Var(n̂j,t) =
∑

J,L∈Hj,t

Cov(Ŝ′J,t, Ŝ
′
L,t) (5)

where Cov(Ŝ′J,t, Ŝ
′
L,t) is the covariance between two subgraph estimators. Furthermore, the variance

Var(n̂j,t) can also be computed incrementally at each time t as follows,

Var(n̂j,t) = Var(n̂j,t−1)+
∑

J∈∆j,t

[
Var(Ŝ′J,t)+2 Cov(n̂j,t−1, Ŝ

′
J,t)+

∑
L∈∆j,t

L 6=J

Cov(Ŝ′J,t, Ŝ
′
L,t)
]

(6)

where the term Cov(n̂j,t−1, Ŝ
′
J,t) =

∑
s<t

∑
L∈∆j,s

Cov(Ŝ′J,t, Ŝ
′
L,s), for s < t.

Theorem 3 is used to establish an unbiased estimator for Cov(Ŝ′J,t, Ŝ
′
L,s) in the form,

CJ,t1;L,t2 = Ŝ′J,t1 Ŝ
′
L,t2 − Ŝ

′
J\L,t1 Ŝ

′
L\J,t2 Ŝ

′
J∩L,t1∨t2 (7)

where t1 ≥ t2, and t1 ∨ t2 = max{t1, t2}.

Theorem 3. CJ,t1;L,t2 is an unbiased estimator of Cov(Ŝ′J,t1 , Ŝ
′
L,t2

), for some time t1 ≥ t2.

A special case of Theorem 3 happens when J = L and t1 = t2 = t, which leads to V (Ŝ′J,t) =

Ŝ′J,t(Ŝ
′
J,t − 1), where V (Ŝ′J,t) is an unbiased estimator of Var(Ŝ′J,t).

3.3 Unbiased Estimation of the Covariance Cov(n̂, w)

Following the notation in Section 3.2, for each edge j, the weight wj,t is a random quantity incre-
mented by 1 for each subgraph J ∈ ∆j,t completed by the new edge arrival at time t. Thus, wj,t can
be written as a sum of random counts, i.e., un-normalized indicator functions analogous to how n̂j,t is
written as a sum of inverse probability estimators. Let IJ,t = I(J ⊂ K̂t) be the indicator of subgraph
J , and recall that J (0) is the subgraph J without the last arriving edge kτJ . Define I ′J,t = IJ0,τJ−1,
i.e., the indicator that all edges but the final edge are present in the sample K̂t−1 immediately before
the arrival of the final edge (kτJ of J). When the new edge kτJ arrives at time t = τJ , each edge in
J (0) has its weight incremented; see line 12 of Algorithm 1. Thus, we can write wj,t =

∑
J∈Hj,t

I ′J,t,
analogous to Corollary 1, and decompose wj,t = wj,t−1 +

∑
J∈∆j,t

I ′J,t.

Computing the optimal skrinkage λ estimator in Equation 4 requires estimates of the covariance
Cov(n̂j,t, wj,t) for each edge j ∈ K̂t, which is estimated in turn and follow by linearity from the
estimates of the covariance Cov(Ŝ′J,t, I

′
J,t). Theorem 4 establishes an unbiased estimator for the

6

general case of Cov(Ŝ′J1,t1 , I
′
J2,t2

), when t1 ≥ t2. Lemma 1 is central to both the proof of Theorem 4
and the computation of covariance estimates2.

Lemma 1. For J1 ∩ J2 = ∅ and t1 ≥ t2, then E[Ŝ′J1,t1I
′
J2,t2

] = E[I ′J2,t2] and hence
Cov(Ŝ′J1,t1 , I

′
J2,t2

) = 0.

Theorem 4 (Unbiased Subgraph Covariance Estimation).
(I) When t1 ≥ t2, Cov(Ŝ′J1,t1 , I

′
J2,t2

) has unbiased estimator DJ1,t1;J2,t2 = Ŝ′J1,t1I
′
J2,t2

−
Ŝ′J1\J2,t1 Ŝ

′
J1∩J2,t1∨t2PJ1∩J2,t2I

′
J2\J1,t2 .

(II) DJ1,t1;J2,t2 > 0 iff Ŝ′J1,t1 > 0 and I ′J2,t2 > 0. Hence DJ1,t1;J2,t2 can be computed from
samples that have been taken.

(III) For the special case J1 = J2 = J and t1 = t2 = t then DJ,t;J,t = Ŝ′J,tP J,t = I ′J,t(P
−1
J,t − 1).

4 Experiments & Discussion

Table 1: Summary of Graph Statistics

graph |V | |K| T Tmax

SOC-FLICKR 514K 3.2M 58.8M 2236
SOC-LIVEJOURNAL 4.03M 27.9M 83.6M 586
SOC-YOUTUBE 1.13M 2.98M 3.05M 4034
WIKI-TALK 2.4M 4.7M 9.2M 1631
WEB-BERKSTAN-DIR 685K 6.7M 64.7M 45057
CIT-PATENTS 3.8M 16.5M 7.5M 591
SOC-ORKUT-DIR 3.07M 117.2M 627.6M 9145

Experimental Setup. We test on graphs
from different domains and with different
characteristics; see [40] for data down-
loads. Table 1 provides a summary of
dataset characteristics, where |V | is the
number of vertcies, |K| is the number
of edges, T is the number of triangles,
and Tmax is the maximum triangle count
per edge. For all graph datasets, we con-
sider an undirected, unweighted, simpli-
fied graph without self loops.

Edge streams are obtained by randomly permuting the edges in each graph, and the same edge order
is used for all the methods. We repeat the experiment ten different times with sample fractions
f = {0.10, 0.20, 0.40, 0.50}. All experiments were performed using a server with two Intel Xeon
E5-2687W 3.1GHz CPUs, 256GB of memory. The experiments are executed independently for each
sample fraction. Additional results and ablation studies are discussed in the supplementary materials.
Our experimental setup is summarized as follows:

• For each sample fraction, we use Algorithm 1 to collect a sample K̂, from edge stream K.
• The experiments in this section use triangles as an example of the motif patternM . However,

the approach itself is general and applicable to any motif patterns.
• During stream processing, we compute unbiased estimators and James-Stein shrinkage

estimators of the local triangle counts for the sampled edges, as discussed in Sections 2–3.
• Given a sample K̂ ⊂ K, we compute the mean squared error (MSE), and the relative spectral

norm [1], ‖A− Â‖2/‖A‖2, where A is the exact triangle-weighted adjacency matrix of the
input graph, Â is the average estimated triangle-weighted adjacency matrix of the sampled
graph, and ‖A‖2 is the spectral norm of A.

• We compare the results of Algorithm 1 with uniform sampling (i.e., reservoir sampling [53])
using the Horvitz-Thompson estimator, and we also compare with Triest sampling [48]. All
baseline methods use the same experimental setup as the proposed method.

4.1 Comparison to Baseline Methods

We collect a sample of edges K̂ ⊂ K from the edge stream K in a single pass, which we use to
construct the motif-weighted graph, where M is the triangle motif and A is adjacency matrix of
the triangle-weighted graph. We use Â to denote the estimator of A obtained by sampling. We
compute the shrinkage estimator as discussed in Section 3. And, we report the MSE at sample fraction
f = 0.20 in Table 2, which demonstrates the following insight: the shrinkage estimator applied to
adaptive priority (APS) sampling significantly improves the performance of the vanilla APS which

2The computational details and proofs for shrinkage estimation are discussed with examples in the supple-
mentary materials

7

Table 2: MSE and Relative Spectral Norm at sampling fraction f = 0.2. APS: Adaptive Sampling,
APS JS: APS with shrinkage Estimation, UNIF: Uniform Sampling, TRIEST: Triest Sampling.

Mean Squared Error (MSE) ‖A− Â‖2/‖A‖2
graph APS APS JS UNIF TRIEST APS APS JS UNIF TRIEST

SOC-FLICKR 22.30K 295.13 6.3K 7.46K 0.5793 0.0478 0.4321 0.5149
SOC-LIVEJOURNAL 214.80 16.11 257.60 293.67 0.0269 0.0089 0.429 0.5092
SOC-YOUTUBE-SNAP 11.35 6.68 119.79 145.87 0.0455 0.079 0.4159 0.4982
WIKI-TALK 7.70 5.32 589.92 680.67 0.0105 0.0359 0.4315 0.5109
WEB-BERKSTAN-DIR 7.32K 561.20 10.70K 14.03K 0.1169 0.0557 0.4381 0.6163
CIT-PATENTS 6.02 3.03 10.59 10.91 0.0187 0.0428 0.4325 0.4914
SOC-ORKUT-DIR 2.08K 70.79 467.90 613.89 0.1086 0.0726 0.4385 0.4241

0.1 0.2 0.3 0.4 0.5

Sampling Fraction

0

0.2

0.4

0.6

0.8

1

S
p
e
c
tr

a
l
N

o
rm

 E
rr

o
r

web-BerkStan-dir

Adaptive Sampling

Adaptive Sampling (Shrinkage)

Uniform Sampling

Triest Sampling

0.1 0.2 0.3 0.4 0.5

Sampling Fraction

0

0.2

0.4

0.6

0.8

1

S
p
e
c
tr

a
l
N

o
rm

 E
rr

o
r

soc-livejournal

Adaptive Sampling

Adaptive Sampling (Shrinkage)

Uniform Sampling

Triest Sampling

0.1 0.2 0.3 0.4 0.5

Sampling Fraction

0

1

2

3

4

S
p

e
c
tr

a
l
N

o
rm

 E
rr

o
r

soc-flickr

Adaptive Sampling

Adaptive Sampling (Shrinkage)

Uniform Sampling

Triest Sampling

0.1 0.2 0.3 0.4 0.5

Sampling Fraction

0

0.2

0.4

0.6

0.8

1

S
p
e
c
tr

a
l
N

o
rm

 E
rr

o
r

soc-orkut-dir

Adaptive Sampling

Adaptive Sampling (Shrinkage)

Uniform Sampling

Triest Sampling

Figure 2: Relative spectral norm ‖A − Â‖2/‖A‖2 versus the sampling fraction using all sampling methods.
Notably, APS and APS with shrinkage converge faster than uniform and Triest sampling

uses Horvitz-Thompson estimator for all graphs. This is particularly clear for soc-flickr and soc-orkut
for which the APS shrinkage (APS JS) significantly outperforms all the other methods.
We also consider the spectral norm as another measure of approximation quality in addition to MSE.
The spectral norm ‖A− Â‖2 was previously used for matrix approximation [1]. ‖A− Â‖2 measures
the strongest linear trend of A that is not captured by the estimator Â. This is different from the mean
squared error which focused on the magnitude of the estimates.
We report the relative spectral norm (i.e., ‖A− Â‖2/‖A‖2) at sample fraction f = 0.20 for various
graphs in Table 2. The experiments demonstrate that for all of the example graphs, both APS and
APS with shrinkage significantly outperform uniform reservoir sampling and Triest sampling. One
observed exception is the soc-flickr graph, where the estimates using APS is significantly high due to
the high variance of Horvitz-Thompson estimation for edges with small counts. Under such scenarios,
the APS with shrinkage significantly helps and improves the original APS estimates. We also notice
the difference between how the MSE ranks the best methods versus the relative spectral norm. A good
example of this is the soc-orkut graph, for which APS performs worse than the baselines. However,
APS is superior to uniform sampling and Triest sampling for the relative spectral norm. Thus, despite
of the large mean squared error, APS (even without shrinkage) captures the linear trend and structure
of the data better than uniform reservoir sampling and Triest sampling. Finally, Figure 2 shows the
convergence performance of relative spectral norm as a function of the sampling fraction. Notably,
APS and APS with shrinkage converge faster than uniform and Triest sampling, and we observe that
shrinkage estimation significantly improves the vanilla APS.

4.2 Analysis of the Estimated Distribution

We take the top-k non-zero edge weights of the exact triangle-weighted adjacency matrix A, and
we compare them against their corresponding estimates obtained by sampling. Figures 3 shows the
top-1M weights for APS with shrinkage estimation. Similar figures for uniform sampling and Triest
sampling are reported in Section D of the supplementary materials (Fig 8 and Fig 9 respectively).
The results demonstrate the more accurate performance of APS with shrinkage estimation compared
to the baseline methods; more specifically, APS with shrinkage estimation preserves the distribution
and ranks of the top-k edge weights compared to uniform and Triest sampling. We report the analysis
for two sampling fractions f = {0.20, 0.40}.

8

10
0

10
1

10
2

10
3

10
4

10
5

10
6

top-k edges

0

500

1000

1500

2000

2500

lo
c
a
l
e
d
g
e
 t
ri
a
n
g
le

 c
o
u
n
t

soc-flickr

Exact

APS f=0.20

APS f=0.40

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

top-k edges

0

100

200

300

400

500

600

700

lo
c
a
l
e
d
g
e
 t
ri
a
n
g
le

 c
o
u
n
t

soc-livejournal

Exact

APS f=0.20

APS f=0.40

10
0

10
1

10
2

10
3

10
4

10
5

10
6

top-k edges

0

100

200

300

400

500

600

lo
c
a
l
e
d
g
e
 t
ri
a
n
g
le

 c
o
u
n
t

cit-Patents

Exact

APS f=0.20

APS f=0.40

10
0

10
1

10
2

10
3

10
4

10
5

10
6

top-k edges

0

500

1000

1500

2000

lo
c
a
l
e
d
g
e
 t
ri
a
n
g
le

 c
o
u
n
t

wiki-Talk

Exact

APS f=0.20

APS f=0.40

Figure 3: Each Plot corresponds to one graph at sampling fractions f = {0.20, 0.40}, and shows the estimated
weight of the top-1M edges using APS with Shrinkage Estimation vs the exact edge weight. The top-1M edges
are ranked based on their true triangle counts.

In Figure 4, we compare APS against APS with shrinkage estimation for the soc-livejournal graph.
The results show how the shrinkage estimator reduces the variance of APS, in particular for small
local counts with high variance (i.e., as observed in the tail of the edge weight distribution). In
Section C in the supplementary materials, we discuss an ablation study of Algorithm 1.

5 Related Work

Figure 4: Distribution of the soc-livejournal graph using sampling
fraction f = 0.4. Left: APS estimated vs exact distribution.
Right: APS with Shrinkage estimator (James-Stein JS) vs exact
distribution. UB: upper bound, LB: lower bound.

Here, we categorize the related work in
three research areas: (1) Higher-order
Network Analysis, (2) Graph Approxi-
mation, and (3) IID Stream Sampling.

Higher-order Network Analysis. There
has been an increasing interest in higher-
order network analysis and modeling in
particular to generalize pairwise links to
many-body relationships with arbitrary
node sets and motifs; see [34, 9, 52, 56,
4, 54, 43, 20, 41, 16]. The majority of
these methods focus on small static net-
works that fit in memory.

Graph Approximation. Randomization in the context of graph approximation is a well-studied
topic; see [13, 22, 29, 49] and [33, 3] for a survey. Much work was devoted for triangle count
approximation and other motifs for static graphs (see [10, 51, 47, 50, 17, 38]) and for streaming
graphs (see [8, 48, 5, 25, 32, 2]). In the streaming setting, most work focused on estimating point
statistics using fixed probabilities, e.g., the global triangle or motif count using reservoir based
sampling approaches; see [53]. In this paper, we focus instead on estimating the motif-weighted
graph from a stream of unweighted edges, and propose a general novel methodology for adaptive
priority sampling with shrinkage estimation. We compare against the state-of-the-art approach, Triest
sampling [48] and we obtain significant improvement over their method. Triest sampling maintains a
sample of edges from the stream using reservoir sampling [53] and random pairing [18] to exploit the
available memory as much as possible. However, our approach provides a sampling framework in
which edges are included in the reservoir sample based on their importance and topological relevance
in the formation of local motifs and subgraphs of interest, and edge weights are allowed to adapt to
the changing topology of the reservoir sample.

IID Stream Sampling. Prior work focused on IID streams (e.g., IP networks, DB transactions, etc),
e.g., single-pass reservoir sampling ([27, 36, 53]), order and threshold sampling ([14, 39, 15]), and
probability proportional to size sampling (IPPS). These methods were designed for sampling IID
data streams (e.g., IP networks, DB transactions, etc). Here, we focus instead on streaming graphs
(non-iid data). Thus, the prior work on IID streams cannot be directly applied in this setting where
the focus is on higher-order subgraphs, and extending these methods to non-IID streams is subject to
further research.

9

Broader Impact
There is a burgeoning recent literature of statistical estimation and adaptive data analysis of the
higher-order structural properties of graphs in both the streaming and non streaming context that
reflect the importance and interest of this topic for the graph algorithms and relational learning
research community. On the other hand, shrinkage estimators are an established technique from
more general statistics. This paper is the first to apply shrinkage based methods in the context of
graph approximation. The expected broader impact is as a proof of concept that shows the way for
other researchers in this area to improve estimation quality. Moreover, this work fits under statistical
inference for temporal relational/network data, which would enable statistical analysis and learning
for network data that appear in streaming settings, in particular when exact solutions are not feasible
(similar to the important literature on randomization algorithms for data matrices [1]).
Furthermore, there are many applications where the data has a pronounced temporal, relational, and
spatial structure (e.g., relational data). Examples of Non-IID streams include (i) non-independence
due to temporal clustering in communication graphs on internet, online social networks, physical
contact networks, and social media such as flash crowds and coordinated botnet activity; (ii) non-
identical distributions in activity on these networks due to diurnal and other seasonal variations,
synchronization of user network activity e.g., searches stimulated by hourly news reports. The
proposed framework is suitable for these applications, because it makes no statistical assumptions
concerning the arrival stream and the order of the arriving edges.

Acknowledgments
Nick Duffield is supported by the National Science Foundation under awards ENG-1839816, IIS-
1848596 and CCF-1934904.

References
[1] D. Achlioptas, Z. S. Karnin, and E. Liberty. Near-optimal entrywise sampling for data matrices. In

NeurIPS, pages 1565–1573, 2013.

[2] N. K. Ahmed, N. Duffield, J. Neville, and R. Kompella. Graph sample and hold: A framework for big-graph
analytics. In SIGKDD, pages 1446–1455. ACM, 2014.

[3] N. K. Ahmed, J. Neville, and R. Kompella. Network sampling: From static to streaming graphs. TKDD, 8
(2):7, 2014.

[4] N. K. Ahmed, J. Neville, R. A. Rossi, and N. Duffield. Efficient graphlet counting for large networks. In
ICDM, pages 1–10. IEEE, 2015.

[5] N. K. Ahmed, N. Duffield, T. L. Willke, and R. A. Rossi. On sampling from massive graph streams. VLDB,
10(11):1430–1441, 2017.

[6] N. K. Ahmed, J. Neville, R. A. Rossi, N. G. Duffield, and T. L. Willke. Graphlet decomposition: Framework,
algorithms, and applications. Knowledge and Information Systems, 50(3):689–722, 2017.

[7] R. Albert and A.-L. Barabási. Statistical mechanics of complex networks. Reviews of modern physics, 74
(1):47, 2002.

[8] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis. Efficient semi-streaming algorithms for local triangle
counting in massive graphs. In SIGKDD, pages 16–24. ACM, 2008.

[9] A. R. Benson, D. F. Gleich, and J. Leskovec. Higher-order organization of complex networks. Science,
353(6295):163–166, 2016.

[10] L. S. Buriol, G. Frahling, S. Leonardi, A. Marchetti-Spaccamela, and C. Sohler. Counting triangles in data
streams. In SIGMOD-SIGACT-SIGART, pages 253–262. ACM, 2006.

[11] Y. Chen, A. Wiesel, Y. C. Eldar, and A. O. Hero. Shrinkage algorithms for mmse covariance estimation.
IEEE Transactions on Signal Processing, 58(10):5016–5029, 2010.

[12] Y. Chen, A. Wiesel, and A. O. Hero. Robust shrinkage estimation of high-dimensional covariance matrices.
Trans. Sig. Proc., 59(9):4097–4107, 2011.

[13] D. Cohen-Steiner, W. Kong, C. Sohler, and G. Valiant. Approximating the spectrum of a graph. In SIGKDD,
pages 1263–1271. ACM, 2018.

10

[14] N. Duffield, C. Lund, and M. Thorup. Priority sampling for estimation of arbitrary subset sums. JACM, 54
(6):32, 2007.

[15] P. S. Efraimidis and P. G. Spirakis. Weighted random sampling with a reservoir. Information Processing
Letters, 97(5):181–185, 2006.

[16] N. Eikmeier, A. Ramani, and D. Gleich. The hyperkron graph model for higher-order features. In ICDM,
pages 941–946. IEEE, 2018.

[17] E. R. Elenberg, K. Shanmugam, M. Borokhovich, and A. G. Dimakis. Beyond triangles: A distributed
framework for estimating 3-profiles of large graphs. In SIGKDD, pages 229–238. ACM, 2015.

[18] R. Gemulla, W. Lehner, and P. J. Haas. Maintaining bounded-size sample synopses of evolving datasets.
The VLDB Journal, 17(2):173–201, 2008.

[19] D. F. Gleich. Graph of flickr photo-sharing social network crawled in may 2006, Feb 2012. URL
https://purr.purdue.edu/publications/1002/2.

[20] J. Grilli, G. Barabás, M. J. Michalska-Smith, and S. Allesina. Higher-order interactions stabilize dynamics
in competitive network models. Nature, 548(7666):210, 2017.

[21] M. Gruber. Improving Efficiency by Shrinkage: The James–Stein and Ridge Regression Estimators.
Routledge, 2017.

[22] S. Guha, A. McGregor, and D. Tench. Vertex and hyperedge connectivity in dynamic graph streams. In
SIGMOD-SIGACT-SIGAI, pages 241–247. ACM, 2015.

[23] D. G. Horvitz and D. J. Thompson. A generalization of sampling without replacement from a finite
universe. Journal of the American statistical Association, 47(260):663–685, 1952.

[24] W. James and C. Stein. Estimation with quadratic loss. In Breakthroughs in statistics, pages 443–460.
Springer, 1992.

[25] M. Jha, C. Seshadhri, and A. Pinar. A space efficient streaming algorithm for triangle counting using the
birthday paradox. In SIGKDD, pages 589–597. ACM, 2013.

[26] A. Khetan and S. Oh. Matrix norm estimation from a few entries. In NeurIPS, pages 6424–6433, 2017.

[27] D. E. Knuth. Art of computer programming, volume 2: Seminumerical algorithms. Addison-Wesley
Professional, 2014.

[28] O. Ledoit and M. Wolf. Improved estimation of the covariance matrix of stock returns with an application
to portfolio selection. Journal of empirical finance, 10(5):603–621, 2003.

[29] J. Leskovec and C. Faloutsos. Sampling from large graphs. In SIGKDD, pages 631–636. ACM, 2006.

[30] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Community structure in large networks:
Natural cluster sizes and the absence of large well-defined clusters. Internet Mathematics, 6(1):29–123,
2009.

[31] J. Leskovec, D. Huttenlocher, and J. Kleinberg. Signed networks in social media. In Proceedings of the
SIGCHI conference on human factors in computing systems, pages 1361–1370. ACM, 2010.

[32] Y. Lim and U. Kang. Mascot: Memory-efficient and accurate sampling for counting local triangles in
graph streams. In SIGKDD, pages 685–694. ACM, 2015.

[33] A. McGregor. Graph stream algorithms: a survey. ACM SIGMOD Record, 43(1):9–20, 2014.

[34] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network motifs: simple
building blocks of complex networks. Science, 298(5594):824–827, 2002.

[35] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee. Measurement and Analysis
of Online Social Networks. In Proceedings of the 5th ACM/Usenix Internet Measurement Conference
(IMC’07), San Diego, CA, October 2007.

[36] S. Muthukrishnan et al. Data streams: Algorithms and applications. Foundations and Trends® in
Theoretical Computer Science, 1(2):117–236, 2005.

[37] M. E. Newman. The structure and function of complex networks. SIAM review, 45(2):167–256, 2003.

11

https://purr.purdue.edu/publications/1002/2

[38] A. Pavan, K. Tangwongsan, S. Tirthapura, and K.-L. Wu. Counting and sampling triangles from a graph
stream. VLDB, 6(14), 2013.

[39] B. Rosén. Asymptotic theory for order sampling. Journal of Stat. Planning and Inference, 62(2):135–158,
1997.

[40] R. A. Rossi and N. K. Ahmed. The network data repository with interactive graph analytics and visualization.
In AAAI, 2015. URL http://networkrepository.com.

[41] R. A. Rossi, N. K. Ahmed, and E. Koh. Higher-order network representation learning. In Companion of
the The Web Conference 2018 on The Web Conference 2018, pages 3–4. International World Wide Web
Conferences Steering Committee, 2018.

[42] R. A. Rossi, N. K. Ahmed, E. Koh, S. Kim, A. Rao, and Y. Abbasi-Yadkori. A structural graph representa-
tion learning framework. In Proceedings of the 13th International Conference on Web Search and Data
Mining, pages 483–491, 2020.

[43] M. Rosvall, A. V. Esquivel, A. Lancichinetti, J. D. West, and R. Lambiotte. Memory in network flows and
its effects on spreading dynamics and community detection. Nature communications, 5:4630, 2014.

[44] A. D. Sarma, S. Gollapudi, and R. Panigrahy. Estimating pagerank on graph streams. JACM, 58(3):13,
2011.

[45] J. Schäfer and K. Strimmer. A shrinkage approach to large-scale covariance matrix estimation and
implications for functional genomics. Statistical applications in genetics and molecular biology, 4(1),
2005.

[46] I. Scholtes, N. Wider, and A. Garas. Higher-order aggregate networks in the analysis of temporal networks:
path structures and centralities. The Europ. Phys. Journal B, 89(3):61, 2016.

[47] C. Seshadhri, A. Pinar, and T. G. Kolda. Triadic measures on graphs: The power of wedge sampling. In
SDM, pages 10–18. SIAM, 2013.

[48] L. D. Stefani, A. Epasto, M. Riondato, and E. Upfal. Triest: Counting local and global triangles in fully
dynamic streams with fixed memory size. TKDD, 11(4):43, 2017.

[49] C. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic. Fennel: Streaming graph partitioning for
massive scale graphs. In WSDM, pages 333–342. ACM, 2014.

[50] C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos. Doulion: counting triangles in massive graphs
with a coin. In SIGKDD, pages 837–846. ACM, 2009.

[51] C. E. Tsourakakis, M. N. Kolountzakis, and G. L. Miller. Triangle sparsifiers. 2011.

[52] C. E. Tsourakakis, J. Pachocki, and M. Mitzenmacher. Scalable motif-aware graph clustering. In WWW,
pages 1451–1460, 2017.

[53] J. S. Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical Software (TOMS), 11
(1):37–57, 1985.

[54] J. Xu, T. L. Wickramarathne, and N. V. Chawla. Representing higher-order dependencies in networks.
Science advances, 2(5):e1600028, 2016.

[55] K. S. Xu, M. Kliger, and A. O. Hero Iii. Adaptive evolutionary clustering. Data Mining and Knowledge
Discovery, 28(2):304–336, 2014.

[56] H. Yin, A. R. Benson, J. Leskovec, and D. F. Gleich. Local higher-order graph clustering. In SIGKDD,
pages 555–564. ACM, 2017.

[57] H. Zhao, X. Xu, Y. Song, D. L. Lee, Z. Chen, and H. Gao. Ranking users in social networks with
higher-order structures. In AAAI, 2018.

12

http://networkrepository.com

A Theorem Proofs

Table 3: Summary of Notation

Notation Description

kt (or just t) Edge arriving at time t
K̂t Sample set after edge t processed
K̂ ′t Edges in reservoir prior to selection at time t
J Generic edge subset
Jt Edges from J that have arrived by t

SJ,t Indicator variable that indicates if all edges in J have arrived by t
ŜJ,t (Ŝ′J,t) Inverse probability estimator of SJ,t (estimator without last arriving edge)
IJ,t (I ′J,t) Un-normalized estimator of SJ,t (estimator not using last arriving edge)

wi,t Weight of edge i at time t ≥ i
ui IID uniform (0, 1] variable for edge i
ri,t Priority rank variable of edge i at time t ≥ i
zJ,t Minimum priority rank of non-J edges prior to t
zt z∅,t i.e., unrestricted minimum priority rank
z∗t Cumulative maximum of zt′ for t′ ≤ t

H (Ht) (Hk,t) Set of motifs (those with all their edges arrived by t) (also containing edge k)
nk,t Total number of members of Ht than contain k
n̂k,t Estimator of nk,t
η Generic James-Stein estimator for an edge count n
λ Mixture parameter (i.e., shrinkage coefficient) in η

pi,t Probability of inclusion of edge i ∈ K̂t at t ≥ i
PJ,t Probability of inclusion of edges from Jt in K̂t at time t ≥ i
tJ Minimum time over all edges in J , i.e. mini∈J ti
τJ Time of the last arriving edge in J , maxi∈J ti

Proof of Theorem 1.
Proof. Any subgraph J can be defined as a subset of edges from the set of all edges K. Suppose
Jt ⊂ K̂ ′t, then Jt survives the sampling at time t (i.e., Jt ⊂ K̂t), if and only if another edge j ∈ K̂ ′t\Jt
has minimum rank zJ,t = minj∈K̂′

t\Jt
rj,t, i.e., if ri,t > zJ,t, or equivalently, ui < wi,t/zJ,t for all

i ∈ Jt. Denote Ai,J,s = {ui < wi,s/zJ,s} as the event when i ∈ Js ∩ K̂s. Then for tJ ≤ τJ ≤ t,
the event {J ⊂ K̂t} decomposes as

⋂
tJ≤s≤tBJ,s where BJ,s =

⋂
i∈Js Ai,J,s.

(I) The proof is by induction on t. For t < tJ the conditioning is trivial and ui are IID on
(0, 1] = (0, pi,J,t]. The same property holds at general t for all i ∈ J which have not yet
arrived, i.e., for i ∈ J \Jt. Consider now t ≥ tJ and assume that the result holds for t−1. The
weightswi,t for i ∈ Jt∩K̂ ′t are fixed by the conditioning on the event {Jt−1 ⊂ K̂t−1}. Further
conditioning on zJ,t and Jt ⊂ K̂t requires ui < wi,t/zJ,t for all i ∈ Jt ⊂ K̂t. Imposing this
condition on the assumed independent uniform distributions of ui on (0, pi,J,t−1] results in
independent uniform distributions of ui on (0,min{pi,J,t−1, wi,t/zJ,t}] = (0, pi,J,t].

(II) The conditional expectation of the indicator I(Jt ⊂ K̂t) is,

E[I(Jt ⊂ K̂t)|ZJ,t, Jt−1 ⊂ K̂t−1]

= P[BJ,t|ZJ,t, Jt−1 ⊂ K̂t−1]

= P[∩i∈Jt{ui < wi,t/zJ,t}|ZJ,t, Jt−1 ⊂ K̂t−1]

= P̃J,t/P̃J,t−1 (8)
where in the last step we have used the statement of part (I) for the distribution of ui condition-
ing on ZJ,t and {Jt−1 ⊂ K̂t−1}, since wi,t is assumed determined given K̂t−1.

13

(III) By using (II), we find that the conditional expectation of S̃J,t is:

E[S̃J,t|ZJ,t, Jt−1 ⊂ K̂t−1] =
1

P̃J,t
E[I(Jt ⊂ K̂t)|ZJ,t, Jt−1 ⊂ K̂J,t−1]

= S̃J,t−1 (9)

which is independent of the conditioning on zJ,t and hence,

E[S̃J,t|ZJ,t−1, Jt−1 ⊂ K̂t−1] = S̃J,t−1 (10)

The initial value (for the first edge arrival at time tJ) is S̃J,tJ = I(tJ ∈ K̂tJ)/ptJ ,J,tJ =

I(utJ < wtJ ,tJ/zJ,tJ)/ptJ ,J,tJ . Clearly E[S̃J,tJ |zJ,tJ] = 1 and hence E[S̃J,tJ] = 1. Finally
E[S̃J,t] = 1 for all t ≥ tJ by chaining the conditional expectations.

(IV) Trivially ŜJ,t = SJ,t = 0 for t < τJ . Since zJ,t = zt when J ⊂ K̂t, PJ,t = P̃J,t and hence
ŜJ,t = S̃J,t for t ≥ τJ and E[ŜJ,t] = 1 by (III).

Proof of Theorem 2.
Proof. (I) If dt 6= t, t is admitted to the sample and hence

zt =
wdt,t
udt

≥ wdt,s
udt

> zs (11)

for all s ∈ [dt, t]. Since edge dt is discarded at time t, and dt 6= t, then the minimum rank
zt = rdt,t = wdt,t/udt .
The first inequality follows from the non-decreasing property of wdt,t. The second inequality
follows since edge dt survives the sampling from time dt until t and hence its rank cannot be
lower than the threshold zs for any s in that interval. But since the edge dt was admitted to the
sample at time, we have ddt 6= dt, where ddt is the discarded edge at time dt. Hence, we apply
the argument back recursively to the first sampling time. Hence, z∗t = max{z∗t−1, zt} = zt.

(II) By assumption if an edge i is admitted to K̂i, then i 6= di and so by (I) and Equation 1,
pi,i = min{1, wi,i/zi} = min{1, wi,i/z∗i } = p∗i,i. The general case is by induction. Assume
pi,s = p∗i,s for all times s ∈ [i, t], and zt+1 > z∗t , then z∗t+1 = zt+1 hence p∗i,t+1 = pi,t+1.
If zt+1 ≤ z∗t , then z∗t+1 = z∗t and hence

wi,t+1

zt+1
≥ wi,t+1

z∗t+1

≥ wi,t
z∗t+1

=
wi,t
z∗t

(12)

Thus we can replace zt+1 by z∗t+1 in (1) but use of either leaves the iterated value unchanged,
since by the induction hypothesis, both are greater than pi,t ≤ wi,t/z∗t

Proof of Theorem 3.
Proof.

Cov(Ŝ′J,t1 , Ŝ
′
L,t2) = E[Ŝ′J,t1 Ŝ

′
L,t2]− E[Ŝ′J,t1]E[Ŝ′L,t2]

= E[Ŝ′J,t1 Ŝ
′
L,t2]− 1 (13)

From Theorem 1, and since J \ L, L \ J , and J ∩ L are disjoint subsets, we have,

E[Ŝ′J\L,t1 Ŝ
′
L\J,t2 Ŝ

′
J∩L,t1∨t2] = 1 (14)

Thus, E[CJ,t1;L,t2] = Cov(Ŝ′J,t1 , Ŝ
′
L,t2

) = E[Ŝ′J,t1 Ŝ
′
L,t2

]− 1.

A special case of Theorem 3 happens when J = L and t1 = t2 = t, which leads to V (Ŝ′J,t) =

Ŝ′J,t(Ŝ
′
J,t − 1), where V (Ŝ′J,t) is an unbiased estimator of Var(Ŝ′J,t).

14

𝑖 =
(𝑢
, 𝑤
) 𝑗 =

(𝑣, 𝑤
)

𝑘 = (𝑢, 𝑣)

𝑤

𝑣𝑢

𝑖′
=
(𝑢
′, 𝑤
′) 𝑗′ =

(𝑣′, 𝑤′)

𝑘′ = (𝑢′, 𝑣′)

𝑤′

𝑣′𝑢′

Subgraph 𝐽 Subgraph 𝐿

𝑗′ = (𝑣, 𝑤′)

𝑖′ =
(𝑢,
𝑤′)

𝑤′

𝑣′
𝑢′

Subgraph 𝐽 Subgraph 𝐿

𝑖 = (𝑢, 𝑤)

𝑗 =
(𝑣,
𝑤)

𝑘
=
(𝑢
,𝑣
)

𝑤

𝑣

𝑢

(a) Two Disjoint Subgraphs (triangles) (b) Two Overlapping Subgraphs (triangles)

Figure 5: Illustrative Example of Disjoint and Overlapping Triangles

Proof of Lemma 1.
Proof. Let J = J1 ∪ J2. Chaining conditional expectations from Theorem 1(III)

E[Ŝ′J1,t1I
′
J2,t2 |ZJ,t2 , Jt2−1 ⊂ K̂t2−1]

= E[Ŝ′J1,t2I
′
J2,t2 |ZJ,t2 , Jt2−1 ⊂ K̂t2−1]

=
1

PJ1,t2
P[∩i∈J{ui < wi,t2/zJ,t2}|ZJ,t2 , Jt2−1 ⊂ K̂t2−1]

= P[∩i∈J2{ui < wi,t2/zJ,t2}|ZJ,t2 , Jt2−1 ⊂ K̂t2−1]

= E[I ′J2,t2 |ZJ,t2 , Jt2−1 ⊂ K̂t2−1] (15)

using Theorem 1(I). Hence E[Ŝ′J1,t1I
′
J2,t2

] = E[I ′J2,t2] and since E[Ŝ′J1,t1] = 1, then the
Cov(Ŝ′J1,t1 , I

′
J2,t2

) = E[Ŝ′J1,t1I
′
J2,t2

]− E[Ŝ′J1,t1]E[I ′J2,t2] = 0.

Proof of Theorem 4.
Proof. (I) Since E[Ŝ′J1,t1] = 1 it suffices to show that (the negative of) the second term in the

definition of DJ1,t1;J2,t2 in Theorem 4(i) has expectation E[I ′J2,t2]. When t1 ≥ t2 then
repeating the conditioning argument of Lemma 1, this term has conditional expectation

E[Ŝ′J1,t1PJ1∩J2,t2I
′
J2\J1,t2 |ZJ,t2 , Jt2−1 ⊂ K̂t2−1]

= E[Ŝ′J1,t2PJ1∩J2,t2I
′
J2\J1,t2 |ZJ,t2 , Jt2−1 ⊂ K̂t2−1]

= E[I ′J2,t2 |ZJ,t2 , Jt2−1 ⊂ K̂t2−1] (16)

and hence the stated property holds.
(II) Holds since Ŝ′J,t > 0 implies I ′J,t′ > 0 for t ≥ t′ ≥ tJ

(III) is a special case of (I).

B Example: Estimators for Local Triangle Counts
Assume the motif M is a triangle in the form J = (i, j, k), where the edges in the triangle are
ordered by their arrival times, i.e., i < j < k. Let k denote the new edge arriving at time t, and
∆̂t = {J = (i, j, k) ⊂ K̂ ′t} be the set of new triangles completed by k at time t. We now show how
the estimators can be incremented for each triangle. Note that edges i, j ∈ K̂ ′t can participate in only
one triangle at time t.

Unbiased estimator for n̂. By applying Theorem 1, each triangle J = (i, j, k) ∈ ∆̂t results in an
increment of Ŝ′J,t = 1/(pi,tpj,t) in the count estimator for each edge in the triangle as follows:

n̂i ← n̂i + 1/(pi,tpj,t)

n̂j ← n̂j + 1/(pi,tpj,t)

n̂k ← n̂k + 1/(pi,tpj,t)

15

Unbiased estimator for Var(n̂). By applying Theorem 3, each triangle J = (i, j, k) ∈ ∆̂t results
in an increment of Var(S′J,t) =

(
1/(pi,tpj,t)− 1

)
/(pi,tpj,t) in the variance estimator of the count

for each edge in the triangle as follows:

Var(n̂i)← Var(n̂i) +
(
1/(pi,tpj,t)− 1

)
/(pi,tpj,t)

Var(n̂j)← Var(n̂j) +
(
1/(pi,tpj,t)− 1

)
/(pi,tpj,t)

Var(n̂k)← Var(n̂k) +
(
1/(pi,tpj,t)− 1

)
/(pi,tpj,t)

Cov(Ŝ′
J,t, Ŝ

′
L,s). By applying Theorem 3, we detail all the possible cases for the computation of

the covariance Cov(Ŝ′J,t, Ŝ
′
L,s), where L = (i′, j′, k′) is another triangle, and L 6= J :

1. J ∩ L = ∅: if the two triangles are disjoint, then Cov(Ŝ′J,t, Ŝ
′
L,s) = 0, see Figure 5 for an

example.
2. s = t: assume L = (i′, j′, k) ∈ ∆̂t is another triangle completed by k, and L 6= J . This

means that J ∩ L = {k}, (see Figure 5), and Ŝ′J∩L,t∨S = 1. Then, the estimator of the
covariance Cov(Ŝ′J,t, Ŝ

′
L,s) = 0.

3. s < t: assume L = (i′, j′, ks) ∈ ∆̂s is another triangle completed by edge ks at time s, for
any s < t.
(a) If i = i′ andL = (i, j′, ks), then the two triangles overlap in the edge i, and Ŝ′J∩L,t∨S =

1/pi,t. Thus, the estimator of the covariance is,

Cov(Ŝ′J,t, Ŝ
′
L,s) = (pi,tpj,t)

−1
(
p−1
i,s − 1

)
p−1
j′,s

Thus, for all triangles L = (i, j′, ks), for s < t∑
s<t

Cov(Ŝ′J,t, Ŝ
′
L,s) = (pi,tpj,t)

−1
∑
s<t

(
p−1
i,s − 1

)
p−1
j′,s

= (pi,tpj,t)
−1 ∗ Ui,t

where Ui,t =
∑
s<t

(
p−1
i,s − 1

)
p−1
j′,s

(b) If j = j′ and L = (i′, j, ks), then similar to the previous case, then the estimator of the
covariance is,

Cov(Ŝ′J,t, Ŝ
′
L,s) = (pi,tpj,t)

−1
(
p−1
j,s − 1

)
p−1
i′,s

Thus, for all triangles L = (i′, j, ks), for any s < t∑
s<t

Cov(Ŝ′J,t, Ŝ
′
L,s) = (pi,tpj,t)

−1
∑
s<t

(
p−1
j,s − 1

)
p−1
i′,s

= (pi,tpj,t)
−1 ∗ Uj,t

where Uj,t =
∑
s<t

(
p−1
j,s − 1

)
p−1
i′,s.

(c) if ks = i or ks = j, then the estimator of the covariance is zero,

Cov(Ŝ′J,t, Ŝ
′
L,s) = (pi,tpj,t)

−1
(
(pi′,spj′,s)

−1 − (pi′,spj′,s)
−1
)

= 0

To facilitate incremental covariance computations for streaming data, we define Ui,t and Uj,t as the
cumulative sum variables for edges i and j respectively, to keep track of previously sampled triangle
estimators that contain i and j respectively, at any time s < t. Note that for the new arriving edge k,
we have Uk,t = 0. Now, we add the covariance increments to each edge as follows,

Var(n̂i)← Var(n̂i) + 2 ∗ Ui,t ∗ (pi,tpj,t)
−1

Var(n̂j)← Var(n̂j) + 2 ∗ Uj,t ∗ (pi,tpj,t)
−1

Then, to update the cumulative variables for edges i, j ∈ J = (i, j, k).

Ui,t ← Ui,t−1 +
(
p−1
i,t − 1

)
/pj,t

Uj,t ← Uj,t−1 +
(
p−1
j,t − 1

)
/pi,t

16

Unbiased Estimator for Cov(Ŝ′
J,t, Î

′
L,s). By applying Theorem 4, we detail the computation of

the covariance Cov(Ŝ′J,t, Î
′
L,s):

1. If J ∩ L = ∅, then from Lemma 1, the Cov(Ŝ′J,t, Î
′
L,s) = 0.

2. If s = t and J = L, then the Cov(Ŝ′J,t, Î
′
J,t) = (pi,tpj,t)

−1 − 1.

3. If s = t and J 6= L, then J ∩ L = {k}. And from Theorem 4 (I), the Cov(Ŝ′J,t, Î
′
L,t) = 0

4. If s < t, and L = (i′, j′, ks) is a triangle completed by edge ks at time s then,

(a) If i = i′ and L = (i, j′, ks), then J ∩ L = {i}, and the covariance estimator is,

Cov(Ŝ′J,t, Î
′
L,s) = (pi,tpj,t)

−1(1− pi,s)

And, for all triangles L = (i, j′, ks), for any s < t,∑
s<t

Cov(Ŝ′J,t, Î
′
L,s) = (pi,tpj,t)

−1
∑
s<t

(1− pi,s)

= (pi,tpj,t)
−1 ∗Di,t

where Di,t =
∑
s<t(1− pi,s).

(b) if j = j′ and L = (i′, j, ks), then J ∩ L = {j}, the covariance estimator is,
Cov(Ŝ′J,t, Î

′
L,s) = (pi,tpj,t)

−1(1− pj,s).

Cov(Ŝ′J,t, Î
′
L,s) = (pi,tpj,t)

−1(1− pj,s)

And, for all triangles L = (i′, j, ks), for any s < t,∑
s<t

Cov(Ŝ′J,t, Î
′
L,s) = (pi,tpj,t)

−1(1− pj,s)

= (pi,tpj,t)
−1 ∗Dj,t

where Dj,t =
∑
s<t(1− pj,s).

(c) If ks = i or ks = j, then the Cov(Ŝ′J,t, Î
′
L,s) = 0.

We define Di,t and Dj,t as the cumulative sum variables for edges i and j respectively, to keep track
of previously sampled triangle indicators, that contain i and j respectively, at any time s < t. Note
that for the new arriving edge k, we have Dk,t = 0.

Estimating the Cov(Ŝ′
L,s, Î

′
J,t). For s < t, the estimate of the Cov(Ŝ′L,s, Î

′
J,t) is similar to

the cases discussed previously. Thus, we adopt the same form in Theorem 4 (I). Note that while
Theorem 4 (I) does not treat this case, it is straightforward to show that the estimator is also unbiased
for the Cov(Ŝ′L,s, Î

′
J,t). Hence, if J ∩ L = {i}, the covariance estimator is,

Cov(Ŝ′L,s, Î
′
J,t) =

(
p−1
i,s − 1

)
p−1
j′,s

Thus, for all triangles L = (i, j′, ks) and s < t,∑
s<t

Cov(Ŝ′L,s, Î
′
J,t) =

∑
s<t

(
p−1
i,s − 1

)
p−1
j′,s = Ui,t

Similarly, if J ∩ L = {j}, the covariance estimator is,

Cov(Ŝ′L,s, Î
′
J,t) =

(
p−1
j,s − 1

)
p−1
i′,s

And, for all triangles L = (i′, j, ks) and s < t,∑
s<t

Cov(Ŝ′L,s, Î
′
J,t) =

∑
s<t

(
p−1
j,s − 1

)
p−1
i′,s = Uj,t

17

Now, we add all the covariance increments for each edge as follows,

Cov(n̂i, wi)← Cov(n̂i, wi) +
(
pi,tpj,t

)−1 − 1 +Di,t ∗
(
pi,tpj,t

)−1
+ Ui,t

Cov(n̂j , wj)← Cov(n̂j , wj) +
(
pi,tpj,t

)−1 − 1 +Dj,t ∗
(
pi,tpj,t

)−1
+ Uj,t

Cov(n̂k, wk)← Cov(n̂k, wk) +
(
pi,tpj,t

)−1 − 1

Then, to update the cumulative variables for edges i, j ∈ J = (i, j, k).

Di,t ← Di,t−1 +
(
1− pi,t

)
Dj,t ← Dj,t−1 +

(
1− pj,t

)
We summarize all the variance and covariance computations in Algorithm 2, which is a supplementary
to Algorithm 1 (in the case of triangle motifs).

Algorithm 2 Iterative Variance Computation Following Line 14 in Algorithm 1

Input: New edge k, current sample set K̂ 3 k, triangle h = (j1, j2, k) ⊂ K̂, p(h) = p(j1)p(j2)

for edge j ∈ h do
Var(j)← Var(j) +

(
p(h)−1 − 1

)
/p(h)

Cov(j)← Cov(j) + p(h)−1 − 1

for j ∈ h : j 6= k do
Var(j)← Var(j) + 2 ∗ U(j)/p(h)
Cov(j)← Cov(j) + U(j) +D(j)/p(h)
U(j)← U(j) +

(
p(j)−1 − 1

)
/p(j′), {j′} = h \ {j, k}

D(j)← D(j) + 1− p(j)

C Ablation Study
To understand the effects of the various design choices in the proposed framework APS with shrinkage
estimation, we conduct a thorough set of ablation study experiments. The proposed APS method
provides a sampling framework that consists of two major parts: (1) Adaptive sampling with
importance weights, and (2) James-Stein shrinkage estimation. Hence, there are several design
choices to make, e.g., we could choose to use adaptive sampling without shrinkage estimation.

Table 4: MSE for Non-Adaptive Sampling (f = 0.2)

graph Non-Adapt Non-Adapt (JS)

SOC-FLICKR 4907.21 2174.9
SOC-LIVEJOURNAL 94.46 69.97
SOC-YOUTUBE-SNAP 24.78 31.704
WIKI-TALK 78.69 98.765
WEB-BERKSTAN-DIR 1723.63 1236.3
CIT-PATENTS 6.45 5.67
SOC-ORKUT-DIR 405.86 227.65

Results in Table 2 clearly show that
shrinkage estimation significantly im-
proves the performance of APS sam-
pling. Another design choice is to use
non-adaptive priority sampling where
the edge weights/ranks are computed
once at the time of sampling, and fixed
during the rest of the streaming process.
We conducted this experiment on the
same datasets by using only the sam-
pling weights assigned at arrival time
(Line 12 in Alg 1) and fix it for the rest
of the stream. We summarize the results in Table 4. For some graphs (e.g., soc-flickr), we observed
that using non-adaptive weights in APS might perform better than using adaptive weights.

We conjecture this is due to the excessive variance of APS in the estimated count of the edges with
small triangle counts, and can be observed in the tail of the distribution (see Figure 7). However,
among all the design choices, the combination of (APS sampling + adaptive weights + shrinkage
estimation) has the strongest regularization effect on the performance of graph sampling. We also
observe that applying the shrinkage estimator to the non-adaptive sampling significantly improve
the performance. These effects are demonstrated in Figures 6 and 7 which show the distribution of
non-adaptive APS and adaptive APS respectively (with and without shrinkage estimation).
In summary, the results suggest that APS with shrinkage performs significantly better than related
methods in previous work, and each of the design choices contributes to the final performance.

18

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

top-k edges

0

100

200

300

400

500

600

700

lo
c
a
l
e
d
g
e
 t
ri
a
n
g
le

 c
o
u
n
t

soc-livejournal

Exact

Non-Adaptive f=0.40

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

top-k edges

0

100

200

300

400

500

600

700

lo
c
a
l
e
d
g
e
 t
ri
a
n
g
le

 c
o
u
n
t

soc-livejournal

Exact

Non-Adaptive JS f=0.40

10
0

10
1

10
2

10
3

10
4

10
5

10
6

top-k edges

0

500

1000

1500

2000

2500

lo
c
a
l
e
d
g
e
 t
ri
a
n
g
le

 c
o
u
n
t

soc-flickr

Exact

Non-Adaptive f=0.40

10
0

10
1

10
2

10
3

10
4

10
5

10
6

top-k edges

0

500

1000

1500

2000

2500

lo
c
a
l
e
d
g
e
 t
ri
a
n
g
le

 c
o
u
n
t

soc-flickr

Exact

Non-Adaptive JS f=0.40

Figure 6: Sample size f = 0.4. Left: Non-adaptive Priority Sampling, estimate vs exact. Right: Non-adaptive
Priority Sampling with Shrinkage estimator (James-Stein JS) vs exact.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

top-k edges

0

100

200

300

400

500

600

700

lo
c
a
l
e
d
g
e
 t
ri
a
n
g
le

 c
o
u
n
t

soc-livejournal

Exact

APS f=0.40

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

top-k edges

0

100

200

300

400

500

600

700

lo
c
a
l
e
d
g
e
 t
ri
a
n
g
le

 c
o
u
n
t

soc-livejournal

Exact

APS JS f=0.40

10
0

10
1

10
2

10
3

10
4

10
5

10
6

top-k edges

0

500

1000

1500

2000

2500

lo
c
a
l
e
d
g
e
 t
ri
a
n
g
le

 c
o
u
n
t

soc-flickr

Exact

APS f=0.40

10
0

10
1

10
2

10
3

10
4

10
5

10
6

top-k edges

0

500

1000

1500

2000

2500

lo
c
a
l
e
d
g
e
 t
ri
a
n
g
le

 c
o
u
n
t

soc-flickr

Exact

APS JS f=0.40

Figure 7: Sample size f = 0.4. Left: Adaptive Priority Sampling, estimate vs exact. Right: Adaptive Priority
Sampling with Shrinkage estimator (James-Stein JS) vs exact.

D Additional Plots

10
0

10
1

10
2

10
3

10
4

10
5

10
6

top-k edges

0

500

1000

1500

2000

2500

3000

3500

lo
c
a
l
e
d
g
e
 t
ri
a
n
g
le

 c
o
u
n
t

soc-flickr

Exact

Uniform Sampling f=0.20

Uniform Sampling f=0.40

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

top-k edges

0

500

1000

1500

2000

lo
c
a
l
e
d
g
e
 t
ri
a
n
g
le

 c
o
u
n
t

soc-livejournal

Exact

Uniform Sampling f=0.20

Uniform Sampling f=0.40

10
0

10
1

10
2

10
3

10
4

10
5

10
6

top-k edges

0

100

200

300

400

500

600

700

lo
c
a
l
e
d
g
e
 t
ri
a
n
g
le

 c
o
u
n
t

cit-Patents

Exact

Uniform Sampling f=0.20

Uniform Sampling f=0.40

10
0

10
1

10
2

10
3

10
4

10
5

10
6

top-k edges

0

500

1000

1500

lo
c
a
l
e
d
g
e
 t
ri
a
n
g
le

 c
o
u
n
t

wiki-Talk

Exact

Uniform Sampling f=0.20

Uniform Sampling f=0.40

Figure 8: Each Plot corresponds to one graph at sampling fractions f = {0.20, 0.40}, and shows the raw count
of the top-1M edges using Uniform Sampling [53] vs the actual count. The top-1M edges are ranked based on
their true counts. x-axis: the rank of top edges 1–1M in log10 scale, y-axis: weights.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

top-k edges

0

1000

2000

3000

4000

lo
c
a
l
e
d
g
e
 t
ri
a
n
g
le

 c
o
u
n
t

soc-flickr

Exact

Triest f=0.20

Triest f=0.40

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

top-k edges

0

500

1000

1500

2000

lo
c
a
l
e
d
g
e
 t
ri
a
n
g
le

 c
o
u
n
t

soc-livejournal

Exact

Triest f=0.20

Triest f=0.40

10
0

10
1

10
2

10
3

10
4

10
5

10
6

top-k edges

0

100

200

300

400

500

600

lo
c
a
l
e
d
g
e
 t
ri
a
n
g
le

 c
o
u
n
t

cit-Patents

Exact

Triest f=0.20

Triest f=0.40

10
0

10
1

10
2

10
3

10
4

10
5

10
6

top-k edges

0

500

1000

1500

lo
c
a
l
e
d
g
e
 t
ri
a
n
g
le

 c
o
u
n
t

wiki-Talk

Exact

Triest f=0.20

Triest f=0.40

Figure 9: Each Plot corresponds to one graph at sampling fractions f = {0.20, 0.40}, and shows the raw count
of the top-1M edges using Triest sampling [48] vs the actual count. The top-1M edges are ranked based on their
true counts. x-axis: the rank of top edges 1–1M in log10 scale, y-axis: weights (triangle count per edge).

Figure 10: Each Plot corresponds to one graph at sampling fractions f = {0.20, 0.40}, and shows the normalized
count of the top-10K edges using APS with Shrinkage Estimation vs the actual normalized count. The top-10K
edges are ranked based on their true normalized counts. The x-axis: the rank of top edges 1–10K in log10 scale,
the y-axis: normalized weights.

19

E Dataset Details
• soc-flickr: Crawl of the Flickr photo-sharing social network from May 2006. Nodes are

users and edges represent that a user added another user to their list of contacts [19].
• soc-livejournal: LiveJournal is an online social community publishing platform, Nodes are

users and edges are user-to-user links [35].
• soc-youtube: Youtube social network. Nodes are users and edges are user-to-user friendship

links [35].
• wiki-Talk: Wikipedia network of user discussions from the inception of Wikipedia till

January 2008. Nodes are Wikipedia users and edges are user-to-user edits of talk pages [31].
• web-BerkStan-dir: Web network where nodes represent webpages from Berkely and

Stanford and edges represent hyperlinks among them [30].
• cit-Patents: The citation graph of US Patents includes all citations made by patents granted

between 1975 and 1999 [29].
• soc-orkut-dir: Orkut online social network, where nodes represent users and edges represent

user-to-user friendship links [35].

20

	Introduction
	Adaptive Sampling Framework
	Notation and Problem Definition
	Algorithm Description and Key Intuition
	Unbiased Estimators of General Subgraphs
	Special Case of Non-decreasing Sampling Weights

	James-Stein Shrinkage Estimator
	Optimizing Shrinkage Coefficients
	Unbiased Estimation of the Variance Var(n"0362n)
	Unbiased Estimation of the Covariance Cov(n"0362n , w)

	Experiments & Discussion
	Comparison to Baseline Methods
	Analysis of the Estimated Distribution

	Related Work
	Theorem Proofs
	Example: Estimators for Local Triangle Counts
	Ablation Study
	Additional Plots
	Dataset Details

