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Abstract—The emergence of remote sensing technologies cou-
pled with local monitoring workstations enables us the un-
precedented ability to monitor the environment in large scale.
Information mining from multi-channel geo-spatiotemporal data
however poses great challenges to many computational sustain-
ability applications. Most existing approaches adopt various di-
mensionality reduction techniques without fully taking advantage
of the spatiotemporal nature of the data. In addition, the lack
of labeled training data raises another challenge for modeling
such data. In this work, we propose a novel semi-supervised
attention-based deep representation model that learns context-
aware spatiotemporal representations for prediction tasks. A
combination of convolutional neural networks with a hybrid
attention mechanism is adopted to extract spatial and tempo-
ral variations in the geo-spatiotemporal data. Recognizing the
importance of capturing more complete temporal dependencies,
we propose the hybrid attention mechanism which integrates a
learnable global query into the classic self-attention mechanism.
To overcome the data scarcity issue, sampled spatial and temporal
context that naturally reside in the largely-available unlabeled
geo-spatiotemporal data are exploited to aid meaningful rep-
resentation learning. We conduct experiments on a large-scale
real-world crop yield prediction task. The results show that our
methods significantly outperforms existing state-of-the-art yield
prediction methods, especially under the stress of training data
scarcity.

Index Terms—Spatiotemporal Prediction, Semi-supervised
Learning, Attention, Crop Yield Prediction

I. INTRODUCTION

Recent years have seen a proliferation of studies concern-
ing computational approaches that exploit geo-spatiotemporal
environmental monitoring data for sustainability applications.
These applications include crop yield prediction [1], soil mois-
ture downscaling [2], land cover classification [3], wildfire
prediction [4], and climate modeling [5]. The input data for
these applications are either multi-channel data from a single
source (e.g. multispectral remote sensing images) or conflated
geodata fused from various sources. Combining multi-feature
spatial data in time series results in a high-dimensional dataset.
It comprises the data features associated with each represented
point in the four-dimensional product space of temporal and
spatial coordinates. As an example, Figure 1 shows the avail-
able input of a midwestern county in the U.S. for the county-
level crop-yield prediction task, which consists of monthly
plant growth estimates from remote sensing satellites and
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Fig. 1. Up: County-level soybean yield of mid-western U.S. in 2017.
Down: At county Tama, Iowa, each channel of the monthly spatial images
represents one of the nine features. Features include monthly plant growth
estimates (including vegetation indices) and climate data (including land
surface temperature, precipitation, soil properties and elevation).

climate data from various sources collected during the growing
season.

Extracting information from the high-dimensional data re-
mains a challenge. Most previous studies have avoided dealing
with the full spatiotemporal data directly through various
dimensionality reduction techniques. The most common ap-
proach is to spatially average the input resulting in time series
scalar features [6]. In [1], spatial images are converted to
histograms with the assumption that spatial distributions of the
features do not contribute to the accuracy of the predictions.
These approaches ignore the spatially explicit heterogeneity
and interactions existing among the fused environmental fea-
tures. The ignored subgrid heterogeneous dynamics, however,
play an important role in many sustainability applications, such
as crop yield prediction [7] and soil moisture downscaling [2].
In addition, there are studies that generate predictions from
a one-time snapshot of the geo-spatiotemporal data [8], [9]
without taking advantage of the temporal information.

Another challenge that commonly exists in the applications
of spatiotemporal geographical data is the lack of labels
[3]. Many computational sustainability tasks rely on label
collection procedures that are either expensive or cumbersome
[10]. The scarcity of labeled training data becomes an even
severe issue for deep learning models that deal with high-



dimensional data [11].
To fully taking advantage of the spatiotemporal variations

contained in the data, we propose in this paper a novel
semi-supervised attention-based model that jointly learns a
prediction function and a spatiotemporal representation func-
tion. A hierarchical framework combining the convolutional
neural networks with a proposed hybrid attention mechanism
is adopted to handle the high-dimensional data. At each
time step, spatial information contained in the multi-channel
three-dimensional images is first extracted to a latent space
as representations through convolutional neural networks. A
hybrid attention model is then applied to temporally aggregate
the spatial representations at all time steps to generate spa-
tiotemporal representations, from which final predictions are
produced. The hybrid attention mechanism is proposed based
on the observation that many computational sustainability
tasks show task/data-specific temporal variation patterns. It is
thus of great importance to capture more complete temporal
dependencies among the sequential spatial representations. To
this end, we propose the hybrid attention mechanism, where
a learnable global query capturing temporal dependencies for
all training examples [12] is introduced to the self-attention
mechanism [13], resulting in more effective knowledge trans-
ferring among different time steps [14].

To overcome the scarcity of training data, we further intro-
duce the spatial and temporal coherence signals that naturally
reside in the largely-available unlabeled geo-spatiotemporal
data through a novel sampling procedure. Similar to the
proximity-based word embedding models in natural language,
we make an assumption that images that are spatially or
temporally close should have similar representation, and con-
versely. Under our semi-supervised training framework, this
newly introduced spatiotemporal context can aid meaningful
representation learning that adapts to the supervised prediction
task at the same time.

We evaluate our approach through a large-scale real-world
crop yield prediction task. Experimental results show that
our semi-supervised hybrid attention model outperforms ex-
isting state-of-the-art crop yield prediction methods and its
counterparts, the supervised-only hybrid attention model and
semi-supervised self-attention model, especially when there
are less labeled training data. The contributions of this work
are summarized as follows:

• We propose a novel semi-supervised hybrid attention
model which learns spatiotemporal representations for
prediction tasks. This model takes full advantage of the
multi-channel geo-spatiotemporal data with both spatial
and temporal variations captured.

• We propose a hybrid attention mechanism where a
trainable global query is introduced to the classic self-
attention mechanism. The hybrid attention mechanism
captures more complete temporal dependencies that adapt
to specific learning task.

• We aid the representation learning with spatial and tem-
poral context sampled from largely-available unlabeled
geo-spatiotemporal data. Under the semi-supervised train-

ing framework, context-aware representations that adapt
to the supervised prediction task are learned.

• We conduct extensive experiments on a challenging large-
scale real-world crop yield prediction task. Experimen-
tal results demonstrate the effectiveness of our semi-
supervised hybrid attention model over existing state-
of-the-art yield prediction methods, especially under the
stress of scarce labeled data.

II. RELATED WORK

With the emergence of environmental monitoring in the past
decade, much progress has been made in many computational
sustainability tasks through the use of geo-spatiotemporal data
[15]. The most common approach to prediction in this area,
either as regression or classification, is to incorporate multiple
features from various sources with the consideration of domain
knowledge. Specifically, much research [2], [6], [16] take
time series scalar features as input to generate predictions
for ground-truth labels within a predefined spatial unit. Input
features with higher resolutions than the labels are aver-
aged without considering the subgrid heterogeneous dynamics.
However, it has been studied and well acknowledged in many
environmental sustainability domains that the spatially explicit
dynamics and interactions among environmental factors play
a great role determining the characteristics of environmental
factors at larger spatial scales [7], [17]. Ignoring these subgrid
spatial heterogeneity results in unnecessary information loss.
In [1], multispectral remote sensing images with spatial dis-
tributions are converted to histograms with the assumption of
permutation invariance. Their assumption is less appropriate
when conflated geodata with spatially explicit dynamics and
interactions are used as inputs. In addition, several studies only
incorporates static spatially distributed data without consider-
ing the temporal patterns in the geo-spatiotemporal data, such
as land cover prediction [18], poverty mapping [3]. There
is however valuable information contained in the temporal
variations that can aid the predictions [7], [16].

The temporal attention-based representation learning model
proposed in this paper, instead, adopts a hierarchical frame-
work where spatial representations at each time step are
learned first, followed by a temporal aggregation through a
hybrid attention model. It extracts both spatial and temporal
variations in the data with spatiotemporal representations
learned for the prediction task.

Recurrent convolutional networks (CNN-LSTM) [19] shares
a similar architecture with our proposed model, but processes
latent output at each time step in a temporally explicit order.
While the self-attention model has demonstrated its superiority
in capturing global information and handling sequential data at
longer lengths in many fields [20], [21], there are few studies
to demonstrate its ability to mine spatiotemporal patterns from
geographical data. Geo-spatiotemporal data normally show
distinct but relatively consistent temporal patterns [7]. The
knowledge transferring among different time steps enabled
by the self-attention model can aid the generation of more
meaningful aggregated representations. The hybrid attention



model we proposed in this paper introduces a global query to
the self-attention model resulting in more effective temporal
pattern extractions. The 3d convolutional neural networks
(C3D) [22] also aims at spatiotemporal feature learning. They
apply 3d convolutions across both the spatial and temporal
dimensions.

Another remaining challenge for learning spatiotemporal
environmental monitoring data is the lack of labels. In addition
to dimensionality reduction [1], data augmentation [18] and
transfer learning [23] that have been proposed to alleviate this
issue, there have been attempts to introduce spatial context to
aid model learning [3], [24]. In [24], weighted representations
of all spatial neighbors within a predefined region are consid-
ered. However, their settings are not practical when dealing
with high-dimensional spatiotemporal data. An existing study
[3] introduces the spatial context through sampling from the
neighboring region to aid their unsupervised representation
learning, and learn representations independently from down-
stream tasks. In this research, we sample spatial and temporal
context from the largely-available unlabeled data. Information
from the sampled context is learned together with a supervised
prediction task under the semi-supervised training framework.
Context-aware representations that adapt to the prediction task
at the same time can thus be learned.

III. METHOD

A. Problem Definition

In this section, we present the formulation for the geo-
spatiotemporal unit-wise prediction task. Specifically, given
the multi-channel geo-spatiotemporal data as input, the goal
is to predict labels for each geographical unit. Given a unit
i, there are T different multi-channel spatial images centered
at the unit. Different images represent the geo-spatiotemporal
data at different time steps. We denote the time series spatial
images as Ai = (A1

i , ...,A
T
i ) where At

i ∈ Rh×w×d and Ai ∈
RT×h×w×d. Note that h and w denote the height and width
of the image, and d is the number of features incorporated
from either a single dataset or a conflated dataset fused from
various sources. To utilize the spatial and temporal context
information, for each unit i, we obtain three context-aware
images, known as the spatial neighbor SNi, spatial distant
SDi, and temporal neighbor TNi through a novel sampling
procedure, which is introduced in Section III-C. These context-
aware images share the same dimensions T × h× w × d as
Ai.

Our objective is to learn a predictive model to predict the
label for unit i from the time series spatial image quadruplets.
Formally, it can be written as

yi = F
(
{A1

i ,SN
1
i ,SD

1
i ,TN1

i }, · · · ,
{AT

i ,SN
T
i ,SD

T
i ,TNT

i }
)
,

(1)

where yi denotes the prediction for the geographical unit i.
Hereinafter we omit the subscript index i when it causes no
ambiguity.

B. Framework Overview

The architecture of the proposed framework is presented
in Figure 2. The framework consists of three parts. First,
at each time step t ∈ (1, ..., T ), we employ convolutional
neural networks (CNNs) to extract its spatial representations
from the image quadruplets {At,SNt,SDt,TNt}. Since
CNNs have demonstrated its superior ability to extract spatial
information in computer vision field [25], we adopt CNNs
to extract spatially explicit dynamics and interactions ex-
isting among the fused environmental features. Specifically,
we use a modified ResNet-18 architecture [26] where the
final classification layer is removed. Formally, for each image
in the quadruplets, the CNNs map it to an m-dimensional
embedding, denoted as g(·) ∈ Rm. Then we denote the
resulted context-aware spatial representations at time step
t as {g(At), g(SNt), g(SDt), g(TNt)}. Note that for all
different time steps and images, the same CNNs are shared.
Second, a hybrid attention model is applied to temporally
aggregate the spatial representations (g(A1), ..., g(AT )) at the
labeled regions. Spatiotemporal representations that capture
both the spatial and temporal variations are produced from the
hybrid attention model. Finally, a prediction layer composed
of a fully-connected neural network is deployed to generate
predictions from the extracted spatiotemporal representations.

The objective function of our model is composed of four
parts:

L := LS + α(LUS + βLUT + γLR), (2)

where LS denotes the supervised loss for the prediction task.
LUS and LUT denote unsupervised losses for spatial and
temporal context respectively. LR is added here to regular-
ize the learned representations to a meaningful hypersphere.
α, β, γ are trade-off weights. We first explain how we produce
spatial and temporal context-aware representations through
unsupervised learning and a novel sampling procedure in
Section III-C. Descriptions of the hybrid attention model
for generating spatiotemporal representations are presented in
Section III-D.

C. Context-aware Representation Learning

The widely explored proximity-based word embedding
models [27] assume that “a word is characterized by the
company it keeps”; thus words that appear in similar contexts
should have similar representations. Extending this idea to
our spatiotemporal distributed geographical data, we make
an assumption that spatial images that are close spatially or
temporally should have similar representations than those that
are far apart.

To constrain the closeness in spatiotemporal space, we
introduce the concepts of spatial neighborhood and temporal
neighborhood. First, we denote the regions where labels are
obtained and predictions ought to be produced as anchor
regions. The spatial neighborhood is then defined as a larger
spatial region that is within a predefined spatial distance of an
anchor region and appears at the same time step. An example
of a spatial neighborhood region is shown in Figure 3. The



Fig. 2. Architecture overview of the semi-supervised context-aware attentive representation learning model.

Fig. 3. An example of spatial neighborhood region and spatial distant region
corresponding to an anchor image A. Spatial neighbor SN is sampled from
the spatial neighborhood region. Spatial distant SD is sampled from the
spatial distant region. A conflated geodata that fuse various environmental
features, such as vegetation indices, temperature, soil properties, etc., are
plotted in background.

temporal neighborhood, instead, is defined as the same spatial
region of the anchor region but appears at a time step within
a predefined temporal distance. Spatial neighbor image SN,
spatial distant image SD, and temporal neighbor image TN
can be obtained in the context of the spatial neighborhood and
temporal neighborhood through a sampling procedure, which
will be introduced in Section III-C2.

1) Learning Objective: Now suppose that
we have time series spatial representations
{g(At), g(SNt), g(SDt), g(TNt)} generated from the
CNNs with {At,SNt,SDt,TNt} as input. At each time
step t ∈ (1 · · ·T ), we seek to minimize the Euclidean distance
between the representation vectors of the anchor image and
spatial/temporal neighbor image, while maximize the distance
between the representation vectors of the anchor image and
spatial distant image. The unsupervised loss for the spatial
and temporal context can be calculated by

LtUS = max(0, ||g(At)−g(SNt)||2−||g(At)−g(SDt)||2+p)
(3)

and

LtUT = ||g(At)− g(TNt)||2, (4)

respectively. Following existing work [3], a rectifier with
margin p is introduced here to control the extent how the
representations of the spatial distant image are pushed away
compared to the representation of the spatial neighbor image.

To constrain the learned embeddings within a hypersphere
where better representations with meaningful relative distance
can be learned, we further introduce a L2 regularization with
loss LtR:

LtR = ||g(At)||2 + ||g(SNt)||2 + ||g(SDt)||2 + ||g(TNt)||2.
(5)

Finally, for given a dataset of N geographical regions with T
time steps, the unsupervised loss is given as

min
θ

1

T

N∑
i=1

T∑
t=1

(LtUS(i) + βLtUT (i) + γ
LtR(i)√
m

) (6)

where m is the dimension of the embedding vectors and θ is
the parameters of the CNNs. This unsupervised loss is jointly
trained with the supervised prediction task to generate context-
aware representations that are suitable for the prediction task.

2) Quadruplet Sampling: We adopt the following proce-
dure to generate times-series image quadruplets with spatial
and temporal context. First, anchor images A are collected as
images that cover the area of interest with fixed image size.
Second, spatial neighbor SN and spatial distant SD images
are sampled with respect to the anchor images based on spatial
distance. We adopt a similar sampling procedure as in [3] with
the spatial neighborhood introduced to constrain the sampling
of spatial neighbor images. Specifically, the center of the
spatial neighbor images must be within a predefined number
of pixels of the anchor image center both vertically and
horizontally. Different from the pure-unsupervised learning
in [3] where the size of spatial neighborhood is relatively
more flexible, we find in our setting that the size of spatial
neighborhood should adapt to the supervised task. In practice,
we find that choosing the spatial neighborhood similar to
the size of the anchor images produces better supervised
predictions.



As computational sustainability tasks normally conduct
experiments in large-scale, e.g. the county-level crop yield
prediction across the United States [1], we further constrain
the distant region from which the spatial distant images can
be sampled. As shown in Figure 3, in addition to the spatial
neighborhood region colored in blue, there is a spatial distant
region colored in red around the anchor image A. The image
NSD in the black rectangle, while is also far away from A
as the sampled distant image SD, will not be considered as
spatial distant in this setting. This is similar to the “hard neg-
ative” idea introduced to the temporal embedding learning in
[28]. We find in practice that this newly added constraint help
us learn better representations with the prediction accuracy
improved. Finally, the temporal neighbor images are sampled
from a fixed temporal window as temporal context for each
anchor image. The sampling procedure is applied at all time
steps separately to enrich the spatial and temporal proximity
signals the model sees.

D. Hybrid Attention Model

We present here a hybrid attention model used for the
generation of spatiotemporal representations. As output from
the CNNs, we have the time series context-aware spatial
representations (g(A1), g(A2), · · · , g(AT )) for the labeled
regions. As these representations are generated independently
at each time step, there is no order information learned to
aid networks in later stage understanding the relative distance
of these embeddings. To incorporate order of sequence in-
formation, we add “positional embedding” [13] to the spatial
representations through position-wise summation. Specifically,
we use the positional encoding in a sinusoidal form. The
encoding added to a spatial representation at time step t is
given as:

PE(t, 2i) = sin(t/100002i/m)

PE(t, 2i+ 1) = cos(t/100002i/m)
(7)

where m is the length of the representation embedding and
i ∈ [0,m/2]. The added parameter-free position-dependent
embeddings can help followed networks incorporate the tem-
poral order of the spatial representations without incurring
extra computation burden.

After adding the positional encoding, we first reformulate
the time series position-dependent spatial representations in
a matrix form Z ∈ RT×m. Following the self-attention
model [13], this representation matrix is then linearly projected
to three matrices, queries (Q), keys (K), and values (V),
independently. The three projected matrices share the same
dimensions as Z. Note that as Z contains the time-series
spatial representations for each training example separately,
the linearly projected query matrix Q also serves as high
level representations of queries “how other time steps should
attend to this time step” for time steps of each specific training
example.

Recognizing the importance of capturing more complete
temporal dependencies in analyzing geo-spatiotemporal data,

Fig. 4. Conceptual graph showing the generations of hybrid query matrix
H, key matrix K and value matrix V for the hybrid attention model. For
simplicity, positional encoding is omitted here.

we propose to introduce a global trainable query G with the
full hybrid query matrix being expressed as

H = Q+G, (8)

as shown in Figure 4. G ∈ RT×m denotes the query rep-
resentations for each time step separately and is shared by
all training examples. G is jointly learned during the training
process from randomly initialized values.

To empower learning in different representation subspaces,
we further split the hybrid query matrix H, key matrix K and
value matrix V into h parts and attended by h parallel heads
separately. For each head i ∈ h, we have its attention score
calculated through the scaled dot-product attention:

Si = softmax(
HiK

T
i√

m/h
), (9)

where Si ∈ RT×T is the attention score matrix which
denotes how information contained in representation subspace
Vi can transfer to each other. The scale factor 1/

√
m/h is

added to prevent the gradient vanishing problem [29]. The
updated spatial representations of i-th head is then obtained by
multiplying the attention score matrix with the values matrix
Vi:

Zui = SiVi (10)

where Zui ∈ RT×m/h is the refined subspace representations.
With this update, spatial representation (zti)

u ∈ Rm/h at a time
step t can incorporate information contained in other times
steps resulting in meaningful knowledge transferring.

To generate a unifying representation from all subspaces,
the updated matrices from h parallel heads are concatenated
and once again projected to have:

Zu = concat(Z1, · · · ,Zh)W (11)

where Zu ∈ RT×m and W ∈ Rm×m is a projection matrix
for the concatenated unifying matrix. Following [13], we
use a residual connection [26] to add the original spatial
representations to the refined representations to enable the
propagation of useful features learned at low-level to deeper
levels:

Zu = Zu + Z. (12)

To further increase the length of the representations, and
thus improve the model’s expressive capability [30], we add



position-wise feed-forward network as in [13] to process the
updated representations position-wisely. Finally, the refined
spatial representations at all time steps are temporally averaged
through a pooling layer to generate a global spatiotemporal
representation, after which a fully-connected neural network
is deployed to generate the final prediction. For a regression
task, as an example, the supervised loss for the predictions
can be calculated through the mean squared error:

LS =
1

N

N∑
i=1

(yi − ŷi)2 (13)

where ŷi denotes the prediction from the model for region
i. We find in practice that this temporal hybrid attention
model is easy to train and less prone to overfitting compared
with previously studied models for geo-spatiotemporal data,
especially when the training data is scarce. It becomes even
more powerful when accompanied with the context-aware
unsupervised representation learning.

IV. EXPERIMENTS

To validate the effectiveness of our proposed approaches,
we conduct experiments over a large-scale real-world dataset
for the crop yield prediction task. The dataset consist of
conflated geospatiotemporal data from various sources. In this
section, we first introduce the dataset, including the crop
yield dataset and the input datasets. Then we describe the
evaluation metrics and baseline methods. Results of model
performance are presented last. Codes for the models and data
pre-processing are available online1.

A. Dataset

County-level soybean yield prediction has been an important
task and actively researched in previous studies [1], [31]. The
ground-truth of the task is average county-level soybean yields
harvested in every October and November. We collect the
data from the USDA National Agricultural Statistics Service
(NASS) Quick Stats Database [32] for years between 2003 to
2018. 13 states of the midwestern United States are selected
which account for over 80% national soybean production.
There are around 850 data points per year.

We fuse plant growth estimates from remote sensing and
environmental factors from various sources as inputs. Specif-
ically, a pair of monthly vegetation indices, the Normalized
Difference Vegetation Index (NDVI) and the Enhanced Veg-
etation Index (EVI), are collected from the MODIS satellite
product MOD13A3 [33] at 1 km resolution. These two veg-
etation indices complement each other and have been widely
used to monitor plant growth in previous studies [6]. For
environmental factors, we consider precipitation and surface
temperature to reflect the water and heat stress, to which the
crop growing processes were observed to be highly sensitive
[34]. Monthly precipitation data at 4 km resolution are from
the Parameter-elevation Relationships on Independent Slopes

1https://github.com/facebookresearch/Context-Aware-Representation-Crop-
Yield-Prediction

Model (PRISM) dataset where precipitation data are derived
from nearly 13,000 stations using climate-based interpolation
[35]. Daily surface temperature data during the day and
night are collected from the 1 km MODIS satellite product
MOD11A1 [36]. They are aggregated to a monthly time step
through taking averaged. Additionally, We introduce geograph-
ically localized and time-invariant factors such as elevation and
soil properties, e.g., soil sand, silt, and clay fractions. They
are also important environmental factors to be considered, as
they determine how stresses like water and heat influence crop
growth. The elevation data is obtained from the NASA Shuttle
Radar Topography Mission Global 30 m product [37] while the
soil properties data are collected from 1 km Soil Geographic
(STATSGO) Data Base [38]. We map all the inputs from
various sources to the MODIS product grid at 1 km resolution
through averaging or nearest-neighbor search.

Once the data preprocessing steps are finished, anchor
images are cropped as 50 × 50 pixels centering at the counties
which have soybean yields, considering that the average size
of counties in the U.S. is around 2500 km2. MODIS landcover
product MCD12Q1 is further introduced in this step to decide
the center of croplands at each county. Fixing the image size
as 50 × 50 for all the counties might not be optimal but is
practical as we are conducting the prediction task in large
scale. Spatial and temporal contextual images are sampled
corresponding to the anchor image with the same spatial size.
We collect before-harvest input data from March to September,
resulting in a feature space X ∈ {A,SN,SD,TN}with four
dimensions, X ∈ R7×50×50×9. The number of time steps is
7, and the number of features is 9.

Note that we do not apply masks to differentiate the land
cover types or crop types inside the geographical regions.
Instead, we rely on the model itself to extract necessary
information from the sequences of raw images to make
accurate crop yield prediction. Another caveat is that the
fused heterogeneous geographic data originally have different
spatial/temporal resolutions, noise sources (e.g., cloud, urban
agglomerations, etc.) and data acquisition errors. This also
poses challenges to our model to extract meaningful spatiotem-
poral signals for the prediction task.

B. Baseline Methods

The baseline methods that are compared with can be clas-
sified into three categories based on the dimensions of the
input data. The first category includes ridge regression (LR)
[6], random forest (RF) [39], and multilayer perceptron (MLP)
[9]. These are conventional machine learning models that have
been widely used in crop yield prediction tasks. The inputs
they take are scalar features in time series which can be
obtained by spatially averaging the features at each time step.

The second category includes two deep learning models
introduced in [1], LSTM+GP and CNN+GP. Instead of taking
average of features in spatial space, they convert the spatial
image to histogram to keep the frequency distribution which
results in a three-dimensional input space. The input is then fed
into a LSTM or CNN for information extraction. Additionally,



they adopt a Gaussian process (GP) after the prediction of deep
models to alleviate the spatial correlations in the prediction
errors. The Gaussian process was found to be able to boost
model performances in [1].

The third category includes two more advanced deep learn-
ing models, 3d convolutional neural networks (C3D) [22],
[40] and recurrent convolutional networks (CNN-LSTM) [19]
that recognize the spatiotemporal nature of the input as our
proposed methods. We adopt a similar architecture for the
3d convolutional neural networks as in [40], with minor
modifications to adapt to the height and width of our input.
CNN-LSTM deploys the same convolutional networks as our
proposed models, but uses the LSTM model, instead of the
hybrid attention model, for temporal information extraction.
Both C3D and CNN-LSTM take the four-dimensional features
as input.

Additional feature standardization processes, including sub-
traction of mean and division of standard deviation, are applied
to the input data of LR and MLP. As for the deep models,
LSTM+GP and CNN+GP, raw features are fed to generate
histograms, after which subtraction of mean is applied as in
[1]. The same standardization process as our proposed models
is applied to the input taken by CNN-LSTM and C3D, which
will be introduced in Section IV-C.

C. Our Approaches

In addition to the proposed semi-supervised hybrid atten-
tion model (SEMI-HA), we evaluate two other models, a
supervised-only hybrid attention model (S-HA) and a semi-
supervised self-attention model (SEMI-SA). S-HA shares a
similar architecture as the proposed SEMI-HA with an ex-
ception that no sampled spatial neighbor/distant and temporal
neighbor data are provided to constrain the unsupervised
representation learning. Evaluations of S-HA is to demonstrate
the potential advantage of introducing sampled unlabeled
spatial and temporal context, especially under the stress of
data scarcity. Comparisons with SEMI-SA instead can be used
to show how adding global query impacts the temporal infor-
mation extraction of the attention model. All three attention
models take four-dimensional data as input.

We standardize the input by subtracting from it per-channel
mean and dividing it by per-channel standard deviation. The
standardization process is applied to each month separately
as we observe that there are monthly variations in the mean
and standard deviation of all the features. Monthly per-channel
mean and per-channel standard deviation are obtained through
using input data from the year 2003 to 2013.

D. Evaluation Approach and Metrics

To evaluate the generalization ability of the baseline meth-
ods and our proposed approaches to unseen data in future
years, we adopt a temporal nested validation approach. We
conduct prediction experiments for 5 years between 2014 and
2018 independently. When a year y is selected to collect the
test data, data from year y − 1 are used for validation, while
data collected from year y − Ny − 1 to y − 2 are used for

training. Ny here can be used to control the size of training
data and test the performance of a model under the stress of
data scarcity.

We report Root Mean Square Error (RMSE) and R2 as the
evaluation metrics. Both RMSE and R2 have been widely
used to evaluate the crop yield prediction performances in
previous studies [1], [6], [7]. RMSE measures the consistency
of prediction results and ground-truth values. R2 measures
the fraction of variance in ground-truth values that can be
explained by predictions. R2 is not as scale-dependent as
RMSE.

E. Hyperparameter Tuning

We tune the hyperparameters of the baseline methods and
the proposed approaches based on the performance of the
validation dataset. For all the deep models, including our
attention models, 50 epochs are run with the best model saved
based on validation performance. Grid search from reasonable
hyper-parameter combinations is adopted for LR, RF, and
MLP.

Generally, we find our attention models easy to tune and
less prone to overfitting. Weights for the unsupervised loss,
temporal unsupervised loss, and regularization (α, β, and γ
as in Equation (2)) are set as 0.2, 0.001, 0.2, respectively. An
exception is made for 2016 where we find through validation
that it is more sensitive to unsupervised training part than
other years. The unsupervised loss weight α is changed from
0.2 to 0.1. Radius to sample spatial neighbor and spatial
distant are set as 25 and 100, respectively. As the time step
granularity of our feature is relatively coarse, i.e., monthly, we
fixed the temporal neighborhood as the region that appears at
one time step early. It can be easily adjusted for other tasks
that have more sensitive time granularity though. For all the
results of our proposed approaches reported in this paper, the
aforementioned hyperparameters are adopted.

F. Results of Model Performance

We first set Ny to 10 in comparing all the methods, which
means 10 years of past data are used for training. This size
of training data has been adopted widely in previous studies
[1], [39]. Table I and Table II show the empirical results for
the comparison with baselines in terms of RMSE and R2

respectively. It can be seen that our approaches consistently
outperform all the baseline methods with significant margins.
A 12.5% improvement in terms of RMSE and 15.1% improve-
ment in terms of R2 can be seen when comparing SEMI-HA
with the best-performing baseline C3D. In comparison with the
supervised-only model S-HA, a 3.6% and 3.2% improvements
in terms of RMSE and R2 are observed. Also, SEMI-HA
outperforms SEMI-SA by 2.1% in RMSE and 1.5% in R2. It
is worth noting that supervised-only model S-HA outperforms
CNN-LSTM with 12.8% improvement in RMSE and 21.0%
improvement in R2. This demonstrates the advantage of the
hybrid attention model over LSTM in capturing temporal
patterns on this crop yield prediction task.



TABLE I
RMSE COMPARISON OF VARIOUS METHODS WHEN 10-YEAR DATA ARE

USED FOR TRAINING.

Method Year Avg2014 2015 2016 2017 2018
LR 6.465 7.754 7.589 6.839 8.163 7.362
RF 5.332 6.69 8.134 6.352 7.692 6.840
MLP 5.236 6.076 6.752 6.025 8.242 6.466
LSTM+GP 5.013 5.553 6.761 5.134 5.522 5.597
CNN+GP 4.824 5.540 8.136 5.706 6.235 6.088
C3D 4.969 5.891 5.462 5.736 5.558 5.523
CNN-LSTM 4.948 5.698 6.688 5.596 5.83 5.752
S-HA 4.545 5.453 4.9 4.701 5.467 5.013
SEMI-SA 4.673 5.251 4.694 4.587 5.47 4.935
SEMI-HA 4.502 5.19 4.754 4.354 5.363 4.833

TABLE II
R2 COMPARISON OF VARIOUS METHODS WHEN 10-YEAR DATA ARE USED

FOR TRAINING.

Method Year Avg2014 2015 2016 2017 2018
LR 0.495 0.231 0.002 0.458 0.361 0.309
RF 0.657 0.428 -0.15 0.532 0.432 0.380
MLP 0.669 0.528 0.209 0.579 0.347 0.466
LSTM+GP 0.696 0.605 0.207 0.694 0.707 0.582
CNN+GP 0.719 0.607 -0.148 0.622 0.627 0.485
C3D 0.7 0.556 0.481 0.618 0.704 0.612
CNN-LSTM 0.701 0.582 0.224 0.637 0.674 0.564
S-HA 0.75 0.619 0.584 0.744 0.714 0.682
SEMI-SA 0.736 0.646 0.618 0.756 0.712 0.694
SEMI-HA 0.755 0.655 0.607 0.78 0.724 0.704

One thing that deserves to be mentioned is that all the
baseline methods perform poorly in the year 2016, i.e., the
RMSE values are significantly higher and R2 values are
significantly lower than other years. One potential reason for
this is that the year 2016 saw a record high yield across nearly
all the midwestern states [41]. The information extracted
through the baseline methods fails to catch the causes that lead
to such a disparate pattern. Our attention models, including the
semi-supervised ones and the supervised-only one, instead, are
able to extract necessary signals from past data to generalize
well in this case.

To further test the performances of all the approaches under
the stress of labeled data scarcity, we decrease the number of
years to be used as the training data from 10 to 7, then 4,
e.g., when Ny = 4, there are only 4 years of data used for
training, 1 year for validation, and 1 year for test. This is a
relatively extreme case but can shed some light on practical
cases where input labeled data are less available or expensive
to obtain, such as in developing counties or when a manual
survey has to be adopted to collect the data.

Figure 5 shows the results averaged from 2014 to 2018
with the x-axis representing the number of labeled training
instances. To have better readability, we separate the compar-
isons with the baseline methods based on the dimensionality of
the input data. It can be seen that our models again outperform
all the baseline methods with big margins consistently. To
better visualize the trends of the model performances with
the decreasing size of training data, we plot the averaged

RMSE and R2 from 2014 and 2018 for our attention models
and the top four baselines, C3D, CNN-LSTM, LSTM+GP
and CNN+GP, as shown in Figure 6. There are two obser-
vations that we would like to mention here. First is that the
advantage of the semi-supervised model over the supervised-
only model becomes more obvious when the size of training
data decreases. The improvements in terms of RMSE/R2 are
increased to 4.1%/4.3% when 7 years of data are used for
training and 4.5%/7.1% when 4 years of data are used for
training. The second observation is that the performance gap
between our models which take full advantage of the data
and the models with dimensionality reduction techniques still
remains when less data are used for training. While it was
claimed in [1] that the dimensionality reduction technique
adopted by LSTM+GP and CNN+GP was to alleviate the issue
of training data scarcity, we see a 14.5% RMSE and 40.6% R2

improvement comparing our SEMI-HA model with CNN+GP
when 4 years of labeled data are used for training.

G. Feature Importance Analysis

To understand how the proposed SEMI-HA model exploits
the geo-spatiotemporal data fused from various sources, we
provide a feature importance analysis here by excluding one
type of environmental factors at a time from the input. The
importance of a feature or a set of features can be demonstrated
through the performance drop when they are not included in
the input for training. The average performances from 2014
to 2018 of the semi-supervised model is shown in Figure
7. Ten years of training data are used here. Specifically, we
group the environmental features into five groups. Group VI
is for the input when two vegetation indices are excluded.
Group LST is for the land surface temperatures during the
day and night. Group PPT, SOIL, and ELE are for the
precipitation, soil properties and elevation, respectively. We
add group ALL for comparison which uses all available
factors. It can be seen from the figure that all groups see
performance drops to different extents, which means that
our model is capturing information from all environmental
factors. Another interesting observation is that our model can
still achieve satisfying performance when the two vegetation
indices are not included and only climate data are used (group
VI). It has been reported in previous studies [7], [42] that
either vegetation indices or the source of their data, i.e., the
multi-spectral remote sensing images, are necessary to achieve
a satisfying crop yield prediction performance. Our semi-
supervised hybrid attention model, however, is able to achieve
comparable performance solely using the climate data. (Note
that group VI even performs similar as the C3D model with
all features included.) This achievement is established because
our model is more capable of extracting spatiotemporal signals
in the climate data for producing more accurate predictions.

V. CONCLUSION

Machine learning approaches that exploit geo-
spatiotemporal data have played a crucial role in many
environmental sustainability applications. Unfortunately, the



Fig. 5. Model performance with varying numbers of labeled training instances. (a)-(b) Comparison between SEMI-HA and conventional machine learning
methods. (c)-(d) Comparison between SEMI-HA and deep learning models (with three/four-dimensional input). (e)-(f) Comparison between three attention
models, SEMI-HA, S-HA, and SEMI-SA. All numbers are averaged from 2014 to 2018.

Fig. 6. The trend of RMSE and R2 for top performing models with decreasing
numbers of labeled training instances. (a) RMSE and (b) R2. All numbers
are averaged from 2014 to 2018.

Fig. 7. The performance drop with one type of environmental factor excluded
from the input. The ALL group uses all available factors.

data heterogeneity and label scarcity often pose fundamental
challenges to such applications. To tackle these challenges,
we propose a novel semi-supervised hybrid attention model.
This model takes full advantage of the multi-channel
spatiotemporal data and is able to learn spatiotemporal
representations for downstream prediction tasks. The proposed
hybrid attention model improves the classic self-attention
model by integrating global trainable query. More complete
temporal dependencies adapted to training data/task can thus

be captured. To overcome the limitation in label scarcity,
we introduce unsupervised representation learning where
spatial and temporal context sampled from unlabeled data
are utilized. Our model jointly minimizes the unsupervised
loss along with the supervised loss for the learning tasks.
To evaluate the effectiveness of the proposed methods, we
compare its performance with many state-of-the-art baselines
in a regression task over large-scale real-world data. The
experimental results clearly demonstrate the advantages of the
proposed methods. We observe that the advantages become
more obvious when less data are utilized in the training
phase. To verify the impacts of this unsupervised loss, we
compare the performance of the model with vs. without the
unsupervised part. The results justify the positive impacts of
the unsupervised loss in improving the overall performance
of the proposed method.

ACKNOWLEDGEMENT

This work was supported in part by the National Science
Foundation under award CCF-1934904 granted to Texas AM
University, Texas AM University, the Texas Engineering Ex-
periment Station, and Texas AM AgriLife Research.

REFERENCES

[1] J. You, X. Li, M. Low, D. Lobell, and S. Ermon, “Deep gaussian process
for crop yield prediction based on remote sensing data,” in Thirty-First
AAAI Conference on Artificial Intelligence, 2017.

[2] H. Mao, D. Kathuria, N. Duffield, and B. P. Mohanty, “Gap filling of
high-resolution soil moisture for smap/sentinel-1: A two-layer machine
learning-based framework,” Water Resources Research, vol. 55, no. 8,
pp. 6986–7009, 2019.

[3] N. Jean, S. Wang, A. Samar, G. Azzari, D. Lobell, and S. Ermon,
“Tile2vec: Unsupervised representation learning for spatially distributed
data,” in Thirty-Third AAAI Conference on Artificial Intelligence, 2019,
pp. 3967–3974.



[4] S. G. Subramanian and M. Crowley, “Learning forest wildfire dynamics
from satellite images using reinforcement learning,” in Conference on
Reinforcement Learning and Decision Making, 2017.

[5] V. Masson, J.-L. Champeaux, F. Chauvin, C. Meriguet, and R. Lacaze,
“A global database of land surface parameters at 1-km resolution in
meteorological and climate models,” Journal of climate, vol. 16, no. 9,
pp. 1261–1282, 2003.

[6] A. Mateo-Sanchis, M. Piles, J. Muñoz-Marı́, J. E. Adsuara, A. Pérez-
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