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ABSTRACT

This paper develops a framework for buildings-to-
distribution network (BtDN) integration. BtDN couples
buildings, photovoltaic (PV) generation, and battery
energy storage systems (BESS) to the power distribution
network, using model predictive control to solve a joint
optimization problem which minimizes building energy
use while implementing reactive power control of PV
and BESS inverters to maintain nodal voltage within
prescribed limits at all times. The framework is tested in
a pilot simulation study and improves upon a naive
control algorithm, showing 24% reduction in building
energy usage, 40% reduction in network losses, and a
complete elimination of voltage deviation.

INTRODUCTION

In the United States, buildings account for more than
70% of electricity use (DOE 2011). Within the building
sector, heating, ventilation, and air conditioning
(HVAC) accounts for approximately 50% of total
building energy consumption. If the thermal energy
storage capacity of buildings is properly managed,
buildings can provide an enormous amount of demand
response services to the distribution network in addition
to reducing their energy usage and associated costs (Liu
et al. 2018).

Due to the smart grid initiative, a large number of
buildings equipped with photovoltaic devices (PVs) and
battery energy storage systems (BESS) are connected to
distribution networks. The increasing penetration of such
distributed energy resources (DERs) and electric
vehicles in distribution networks causes frequent and
sizable voltage fluctuations. Maintaining voltages close
to their nominal values as set by the ANSI C84.1
standard (ANSI 2016) is, therefore, a challenge in
distribution networks. Thus more ancillary services are
required in networks to maintain nodal voltages close to
their nominal value (Smith et al. 2011). Also, due to the
uncertain and intermittent nature of DERs, the traditional

slow-responding voltage devices like auto transformers,
tap-changers, and shunt capacitors need to work harder
to regulate voltages (Farivar et al. 2011). Hence the
combined optimization of distribution networks and
smart buildings has been emphasized by the U.S.
Department of Energy in order to understand and take
advantage of the multiple benefits and opportunities that
such integration has to offer (DOE 2014).

There is a substantial body of work concerned with the
optimization of distribution networks in conjunction
with smart buildings. Many of these studies use a
demand response scheme to implement building actions
that also benefit the grid. For example, (Wei et al. 2016)
develops a proactive building demand response scheme
that integrates the actions of smart building HVAC
systems with the scheduling of the distribution network
so that buildings become a proactive participant in the
demand response event rather than reacting to grid
signals. This scheme achieved 10% reduction in
generation costs and 20% reduction in building operation
costs compared to a passive demand response scheme.
Razmara et al. (2018) use a bidirectional optimization
and control framework that exploits the flexibility of
HVAC systems, PV generators, and BESS to provide
demand response services to the grid in order to reduce
load ramp-rates. The bidirectional control framework
resulted in up to 26% reduction in monthly building
electricity costs and 30% ramp-rate reduction, with
probabilistic analyses showing similarly favorable
results. In (Olama et al. 2018), buildings’ load flexibility
is exploited to provide frequency regulation services to
the distribution network. Liu et al. (2019) develop a
transactive distributed energy management system for
community microgrids which schedules DERs and
BESSs through iterative communication between the
distribution network and individual buildings. This
interaction enabled the controller to take actions that
reduced voltage deviations by 2% and network losses by
9% even as building operating costs were reduced by up
to 16% in a simulation study.
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Recently there have been several studies that develop
frameworks for full coupling of buildings and grid, in
which buildings and the power grid are jointly
optimized. (Taha et al. 2019) develops an integrated
mathematical framework that explicitly couples
commercial building dynamics to the dynamics of the
power transmission network, using model predictive
control (MPC) to simultaneously optimize building
energy usage and grid frequency deviation. This
building-to-grid framework achieved up to 43% total
operational cost reduction, 17% HVAC consumption
reduction, and up to 75% grid operational cost reduction
in simulated case studies. (Liu et al. 2017) presents a
mixed integer conic program that integrates building
thermal dynamics into a network optimal power flow
problem, optimizing operating costs, voltage deviation,
network losses, and power factor at the point of common
coupling. This framework achieved up to 16%
operational cost reduction compared to autonomous
control and up to 25% reduction in network losses. Jiang
et al. (2018) develop an optimal scheduling method for
smart building HVAC systems and on-load tap changer
to optimize building energy costs and network losses and
voltage deviations. In simulation studies, the proposed
scheduling method resulted in up to 7% network loss
reduction and 1% voltage deviation reduction under high
building penetration and up to 5% network loss reduction
under low building penetration, compared to
conventional scheduling methods. Mirakhorli and Dong
(2018) introduce a novel load aggregation method for a
residential building-to-grid integrated system and use
MPC to control residential loads in order to reduce the
network’s generation cost, peak load, and voltage drop.
Case studies demonstrated a 21% reduction in generation
cost, 17% reduction in peak load, and 22% reduction in
building operational cost. The authors of (Badings et al.
2019) present a centralized MPC framework to model
explicitly the hierarchical interactions between the
transmission system operator, distribution system
operator, and building energy storage units, as an
extension of the work presented in (Taha et al. 2019).
Using this framework, building-side storage flexibility
was exploited to reduce grid frequency deviations by up
to 50% overall and 64% for the distribution system
operator alone.

Several of the works referenced above consider voltage
regulation of distribution networks, either through
control of DERs’ active power or grid-level devices such
as tap-changers and shunt capacitors. However, very few
consider the flexibility of the PV and BESS inverters and
the subsequent opportunity for reactive power support
for voltage control. In particular, (Liu et al. 2017) and
(Liu et al. 2019) considers reactive power support from
BESS and distributed generators (other than PV) only.

Recent amendments of the IEEE 1547-2018 Standard
(IEEE 2018) have allowed PV inverters to operate at
non-unity power factor to provide reactive power
support for voltage regulation in distribution networks;
the benefits of PV inverter reactive power support are
described in (Turitsyn et al. 2011). Therefore, it is
important to understand the flexibility of PV inverters
and BESS to provide reactive power support services for
voltage regulation in a building-to-distribution network
(BtDN) setup. Since these “smart” inverters can be
operated at fast time-scales (less than 1 second), the
lifetime of the conventional, slower-responding voltage
regulation assets can be extended. Furthermore, enabling
reactive power control of smart PV inverters can help to
mitigate so-called “duck curve” issues caused by high
penetration of renewable energy resources (Torabi et al.
2018).

In an effort to address the gaps in the relevant research,
this paper proposes a framework to optimize building
energy consumption, thermal set-point deviations, and
network losses in a BtDN setup using MPC. Particularly,
the objective of this paper is to investigate the benefits of
reactive power support by PV and BESS inverters for
nodal voltage regulation in a fully coupled BtDN
integrated scheme. The framework proposed in this
paper is fully flexible. Specifically, residential and
commercial buildings as well as PV and BESS can be
incorporated; in addition, the percentage of buildings
which are equipped with DERs can be varied between
zero and one hundred.

The rest of the paper is structured as follows. First, we
present the mathematical models of building thermal
dynamics, BESS and PV inverters, and the distribution
network, and we describe their integration. Next, we
formulate the joint optimization problem and detail the
MPC algorithm that will be implemented in its solution.
Then we present the results of a pilot simulation study
and discuss their implications. We conclude the paper by
discussing the study’s limitations and outlining future
research directions.

MATHEMATICAL MODELLING

In this section we develop mathematical models for
buildings, PV inverters, battery energy storage systems,
and the distribution network.

Building dynamics

A typical three-resistance and two-capacitance reduced-
order thermal model, such as the one shown in Figure 1
(Taha et al. 2019), is considered for both the residential
and commercial buildings in this integration framework.
Typically, model parameters are tuned using an
EnergyPlus building simulation model (DOE 2019); in
this study, mean parameters were obtained from (Taha et
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al. 2019) and (Lin et al. 2012) and validated using
EnergyPlus. The mean parameters were then sampled to
generate more buildings.

The dynamics of a building with temperature states T,,
and T, can be written in state space representation:

Xp,1 (1) = ApXp () + By, 1up (1) + By iWi () (1)
where

° xb,l(t) = [Twall(t)’ Tzone(t) ]’lr is the state
vector of building 1 at time t;

® Uy (t) = Phyacy(t) is the control input
(specifically, power delivered to the HVAC
system) associated with building 1 at time t;

o Woi(® = [Tamp®, Quor(®, QO] s the
disturbance vector of building | at time t, which
includes ambient temperature, building heat
gains due to solar radiation, and internal heat
gains due to occupants, lights, and equipment;

e Ay, By, 1, and B, ; are the system, input, and
disturbance matrices associated with building 1;
these are time-invariant and depend on the

physical characteristics of the individual
building.
o thac(t)
Tumb(t) Tzom:(t)

Twall(t)
Ry R

Qsol (t) @T C CzoneT o Qint(t)

Figure 1 Reduced order building thermal model

The system represented in equation (1) can be converted
to a discrete time system with appropriate sampling time
T, (60 sec); the discrete time dynamics are given by

Xp1(t + 1) = Ay 1xp (D) + By, jup,; ()

+Byy, 1,1 (D) (2

where

o A, =(I- stAb,l)_la with I, being the

identity matrix of dimension 2;

o B, =T,A, By,

e B, =T,Ap By,
The building states and inputs are constrained by upper
and lower limits:

Battery energy storage system

The battery energy storage system associated with
building 1 is modeled linearly according to its state of
charge (SOC) as follows:

Xpat 1 (E + 1) = Xpar 1 () + KgPpar,1 () Q)
where
®  Xpay (1) is the SOC of battery 1 at time-step t;

® Dy, (t) is the active power drawn by the
battery (Ppari(t) > 0 denotes charging and
Pbat1(t) < 0 denotes discharging);

e Kk, is the duration of the time-step (it is
convenient to choose kg equal to Ty, .

In addition to active power, the battery is capable of
charging and discharging reactive power. The active and
reactive power charged or discharged by the battery is
constrained at each time-step t by the following:
2
p%at,l(t) + q%at,l(t) < (Sg:tl,)i (6)
where

®  (pu(t) is the reactive power drawn by the
battery, which  follows  the same
charging/discharging convention as pp,q;(t);

® spup) is the maximum apparent power rating of

the battery inverter (this is a device operational
specification).
The battery’s operation is further constrained by limits
on its charging/discharging power and SOC. Constraint
(7) prolongs the life of the battery by preventing deep
charge and discharge.
Xbatl < Xpari () < Xpit) (7
Ppbatl < Pbati(t) < Ppary (®
PV inverter
Consider a PV inverter connected to building 1 with
active power generation ppy;(t) which also has the
capability to provide reactive power qp,,(t), respecting
its maximum apparent power rating sy, by curtailing
the active power generation by ratio apy,(t). The
reactive power of this PV inverter is constrained in a
similar manner to the BESS inverter:

2

2
((1 - apv,l(t)) ppv.l(t)> + qliv,l(t) s (Sg:’a}lx ©)
0< Apv,1 <1 (10)

Due to the intermittency of solar irradiance, ppy,;(t) is

Xpi" < Xp (1) < xpi™ (3) assumed to be an uncontrollable disturbance, whereas

up)" < up, () < upf™ ) the reactive power g,y (t) can be actively controlled. To

facilitate reactive power control, the PV and battery
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inverters are oversized to 105% of their rated apparent
power.

Radial distribution network

A single-feeder radial distribution grid consisting of N +
1 buses and the lines connecting these buses is modeled
by a tree graph as shown in Figure 2.

T =]
v, = fixed \'21 Vj Vi VN
— — — —
| (Plr Ql) (lji?_]) (Pkl Qk) (P_N_r_Q_N)
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Figure 2 Radial network

The substation bus (root node) is indexed as node 0; this
node connects to the external transmission network.
Each node k has a parent node my and a set of child
nodes, Cy. Node k is characterized by its squared
magnitude voltage vy, as well as the active and reactive
power injections to the node (pyx(t) and qx(t),
respectively). Line k, which delivers power from node
M, to node Kk, is characterized by resistance 1, and
reactance Xy, as well as active and reactive power flows
Pk(t) and Qk(t)

Using the simplified LinDistFlow approximation of the
power flow equations, developed in (Baran and Wu
1989) and (Kekatos et al. 2015), along with some
algebraic manipulations, the nodal voltages become a
linear function of power injections:

v(©) = Rp(D) + Xq(t) + ¥ an
where
o v(t) =[v;(t),..,vn(®)]T contains the squared
magnitude voltage of each node at time t;

e p) =[p;(®),..,.pn(®]T contains the net
active power injection to each node at time t;

e q(t) =[qi(0),..,qn®)]" contains the net
reactive power injection to each node at time t;

e R :=2Fdiag(r)FT, X:= 2Fdiag(x)FT with
1, X, F being determined by network parameters
as defined in (Kekatos et al. 2015); and

e ¥V = 1yv, where 1y is a vector of length N with
each element being unity and v, is the squared
magnitude voltage of the root node.

The per unit nodal voltages must satisfy the limits
dictated by ANSI C84.1 (ANSI 2016) at each time t:

0.952 = v™n <y, (1) < v = 1,052 vkt (12)

Building-to-distribution network integration

The buildings, PV generation devices, and battery
energy storage systems are integrated to the distribution
network through power balance equations (as illustrated
in Figure 3).
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Figure 3 Buildings integrated into distribution network

Each node’s active power injection py(t) is a balance
between the total power demand from all buildings
served by the node (with node k serving Ny, . buildings),
the power generated by their PV devices, the active
power charged or discharged by their battery devices,
and the uncontrollable active power base load at that
node. Similarly, the reactive power injection at node
k, qx(t), is a balance between the total reactive power
demand from all buildings, the reactive power charged
or discharged by their PV and battery inverters, and the
uncontrollable reactive power base load. These
relationships are modeled mathematically in equations
(13) and (14):

Pr(®) = T (Ppva () = Poara (©) —
Phvac(t) — pmisc,l(t)) — Par, (V) (13)

A® = T (Qpra(®) = dpara(®) =
qmisc,l(t)) — QBLy ® (14)

where Prisc1(t) and qpisc1(t) denote the miscellaneous
active and reactive power demand for building 1. These
miscellaneous loads can include lights, various devices,
and plug loads. The HVAC reactive power qpyac 1S not
considered in equation (14) because it is assumed that
each HVAC device incorporates a built-in capacitor to
supply its own reactive power, as is standard in the
industry.

PROBLEM FORMULATION

Model predictive control

Model predictive control (or receding horizon control)
relies on the system dynamic model. At a time step t, the
controller solves an optimization problem over a
prediction horizon T,, resulting in an optimal control
profile u* = {u(v),..,u(t+T,)} consisting of T,
control actions. The first step of u* is implemented, after
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which the horizon recedes by a time span Ty, the “current
time” t becomes t + Ty, and the process repeats. MPC’s
advantage lies in its ability to take into account future
conditions when making control decisions for the
present. The general form of an MPC optimization
problem (P,) is as follows:

min ] = Z:;IL f(x(r), u(r))
s.t. xeX
ueu

x(t+ 1) = Ax(t) + Byu(t) + B,w(®) (P,)

In this study we apply a fully centralized approach to the
joint optimization problem. The joint optimization
problem (P)is postulated as:

min 1 Tp 1
= T—p;[Z—VO Ploss (PT(ORP(Y) +
q" (ORQ() + pe, & (D]
over  {Phvac(t), Poat (D), Gpac (1), Gpy (1), 0ty (D),

Xp (t)' Xbat(t)! V(t)}'tr=pl

s.t. (2)—(14) (®)
where

e p(t) and q(t) are vectors that collect the nodal
active and reactive power injections
Pk (1), qx (t) for each node k;

® ploss and pe, are weights used to tune the

relative importance of the grid and building
objectives;

®  Phvac (t)' Poat (t)' Qpat (t), Apv (t): Apy (t), Xp (t),
and X, (t) are vectors collecting HVAC power
consumption, battery active power charge/
discharge, battery reactive power set-points, PV
reactive power set-points, PV active power
curtailment, building state, and battery state for
each building 1;

® ¢,(t) is a vector that collects the temperature
set-point violations for each building at time t;
and

e the other quantities are as previously defined.

In the objective function of (P), the first term inside the
summation penalizes the total network losses over the
simulation duration. The second term penalizes
temperature deviations within the buildings. Each
objective is averaged over the entire simulation time.
This joint loss function allows the controller to make
decisions that simultaneously optimize the benefits to
both the buildings and the distribution network.

Because we employ a centralized optimization method,
the controller first aggregates all system data including
model parameters for each building, BESS, PV, and the
network; forecasted values for weather disturbances,
miscellaneous building power demand, and nodal base
loads (these are assumed to be known in advance); and
limits on system states and input values. Then the joint
problem (P) is solved in an iterative fashion according
to the MPC scheme, with final outputs including optimal
control set-points for building HVAC systems, battery
active power charging/discharging set-points, reactive
power set-points for PV and battery inverters, and PV
curtailment set-points for PV inverters.

SIMULATION

Benchmark algorithm

The centralized MPC algorithm is benchmarked against
a naive rule-based control (RBC) algorithm. The
algorithm consists of two heuristic sub-algorithms — one
for the building and one for the battery. The building
sub-algorithm controls the building HVAC power
depending solely on the zone temperature: if the
temperature is above the cooling set-point, HVAC power
is increased; else HVAC power is set to zero. The battery
sub-algorithm controls the battery charging/discharging
power based on battery SOC and available PV power: if
the available PV power is enough to satisfy building
demand, then any remaining power is used to charge the
battery (assuming the battery is not yet full — if it is full,
any excess power is assumed curtailed). If building
demand is greater than the PV power available, then the
battery is discharged to help meet the demand (assuming
the battery is not empty — if it is empty, then power is
drawn from the grid to meet the building load. The RBC
algorithm excludes reactive power control of the PV and
battery.

Pilot simulation

A pilot simulation was performed to demonstrate the
value of the BtDN framework. In this simulation, a 4-bus
network serves 50 residential and 2 commercial
buildings. The total simulation time is 24 hours, with the
optimization being solved over a prediction horizon T,
of 6 hours; the horizon recedes Ty, = 1 hour at each
iteration. Building control horizon is 15 minutes; since
the power generated by solar panels varies by 15% of its
nameplate rating within one-minute intervals, we have
assumed a control horizon of 1 minute for both PV and
battery inverters (Wang et al. 2016).

With the LinDistFlow approximations for power
distribution network, linear and quadratic constraints,
and quadratic objective function, the problem (P) is a
quadratically constrained quadratic problem (QCQP)
and can therefore be easily solved by off-the-shelf
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solvers. The simulations for this study were performed
using MATLAB/CVX (Grant and Boyd 2014) using the
solver Gurobi (Gurobi 2019).

RESULTS AND DISCUSSION

The results of the pilot simulation are presented in
Figures 4 and 5. In Figure 4, the top row shows the
results for the RBC algorithm; the bottom row shows the
MPC results. The left column plots the voltage at the
terminal node over the course of the simulation (solid
blue line) with the ANSI C84.1 limits represented by
dashed black lines. The solid orange line represents the
voltage in a scenario where reactive power support (Q-
support) is disabled. The right column plots the power
consumed by a single commercial building HVAC
system (solid blue line) along with ambient temperature
(dotted orange line), zone temperature (dot-dashed green
line), and temperature set-points (dashed black lines).
Here we note that there is a single line for HVAC power
in the predictive control case because the power
consumption curves for the two MPC scenarios (with
and without Q-support) are extremely similar. The same
applies for the building indoor temperature.

In this study, the network power flows and voltages are
calculated using the LinDistFlow approximation of
nonlinear power flow equations. The control set-points
computed in the centralized optimization are validated
using the actual nonlinear power flow (Z-bus method)
outlined in (Bazrafshan and Gatsis 2018). In particular,

Terminal Node Voltage

the nodal voltages and resulting average thermal losses
are computed using the Z-bus method.

Under the RBC algorithm, nodal voltage drops gradually
throughout the day until 6 pm, dipping below the lower
limit once around 5:30 pm. This is due to the fact that the
residential loads are gradually increasing in the evening,
at the same time that PV generation naturally decreases.
In addition, the voltage profile contains several sudden
changes, such as spikes or sudden steep drops. These
instabilities are caused by changes in outdoor
temperature and solar radiation which, when combined
with building temperature set-point changes, cause
building loads to change drastically, placing strain on the
distribution network.

Under MPC the voltage exhibits a much more stable
profile; the voltage never drops below 0.98 per unit
(when Q-support is enabled) or 0.96 per unit (when Q-
support is disabled) and experiences fewer sudden
changes. Furthermore, the changes that are present in the
voltage profile are less drastic than those in the RBC
profile, whether Q-support is present or not.

With Q-support enabled, the MPC algorithm utilizes
reactive power control of PV and BESS inverters to
support the grid throughout the day and maintain per unit
voltage as close to unity as possible (this is seen in Figure
5). Even with Q-support disabled, the MPC algorithm is
still able to improve the network voltage and prevent it
from falling below the lower limit. MPC’s predictive
ability allows the controller to take actions to mitigate
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Figure 4 Simulation results — voltage and HVAC power
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voltage issues before they occur, exhibiting a behavior
analogous to pre-cooling a space prior to a steep increase
in outdoor temperature. This smoothed voltage profile
leads to increased grid stability and reliability and
ensures that customers will not experience a drop in
power quality during times of peak load.

When controlled by MPC, the building’s peak load
increases compared to the RBC; this is due to the lack of
energy pricing data. Since energy is the same price at all
times of day from the controller’s perspective, there is no
incentive to reduce peak usage (time-variable energy
pricing will be introduced in future work). Additionally,
the MPC controller exhibits pre-cooling behavior during
the early hours of the morning, resulting in a peak of
greater magnitude but shorter duration than the RBC. We
also note that the MPC maintains a smoother temperature
profile throughout the day thanks to its predictive ability,
whereas the RBC allows the temperature to reach (and in
some cases violate) the set-point before taking corrective
action.

In Figure 5, the top and bottom rows show the results for
RBC and MPC simulations, respectively. The three
columns show battery active, battery reactive, and PV
reactive power profiles for a single commercial building.
(In this figure, positive values indicate power injection
into the grid; negative values indicate power consump-
tion.) Similarly to Figure 4, the predictive control plots
show results for two scenarios — with and without Q-

support. Under the RBC algorithm, the battery
discharges once around 4:00 pm (when the outdoor
temperature and consequently building load are greatest)
and charges briefly in the middle of the night. Under the
MPC algorithms, however, the battery discharges and
recharges throughout the day in smaller quantities; this
allows the battery to provide more flexible active power
support to the building while also providing reactive
power support to the distribution network (when Q-
support is enabled). As the figure shows, both the battery
and PV inverter act as reactive sources for most of the
day, injecting reactive power to the distribution network
to maintain voltages as close to unity as possible.

Table 1 presents further results of this simulation study
— specifically, the average thermal line losses and total
energy use under each algorithm. Even without reactive
power support, the centralized MPC algorithm without
Q-support improves the performance of the distribution
network (losses are improved) and the building (energy
use is reduced) by 28.7 and 24.2 percent respectively.
Once Q-support is enabled, the MPC algorithm achieves
an additional 11.3 percent improvement in average
thermal losses for a total of 40 percent savings over the
baseline case. These results strongly demonstrate how
the centralized nature of the control algorithm works to
its advantage, as the controller is aware of the states of
all components throughout the network and implements
actions that maximize the benefit to the entire system.

PV Reactive Power

Battery Active Power
0

Pattery Reactive Power

Autonomous Control
Power (kW)

0 I

0 4 8 12 16 20 24

1
0 4 8 12 16 20 24

-1
0 4 8 12 16 20 24

_ 20 30 15
o ——Q-support enabled
“E ~ 10 ——Q-supportdisabled| .~ =
o= T 20 T 10
92 o0 3 <
>0 5 5
g 5-10 210 : 5
H— o O
T o o o
2 20
o | o ] E— 1
0 4 8 12 16 20 24 0 4 8 12 16 20 24 0 4 8 12 16 20 24
Hour of Day Hour of Day Hour of Day
Figure 5 Simulation results — battery and PV power
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Table 1 Comparison of control algorithms
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centralized model predictive control algorithm is applied Tsp Discretization sampling S
to the framework in order to optimally control a small max  max time .
network in a simulation study. The results of the study Sbat > Spv (Battery, PV) inverter VA
demonstrate the utility and advantage of the framework apparent power rating
as well as the centralized controller. r, X Line (resistance, reactance) £}
This pilot study is limited in two ways. Firstly, though Ploss: Pep ](DD.lStr.lbuuor% ne‘.cwork,. -

. . uilding) objective weight

the developed framework is flexible enough to accom- T Prediction horizon s
modate different types of building thermal models and P . . .
differing levels of PV and battery penetration, those fea- Th Horizon receding distance s
tures were not explored in this study — each building is Model states
modeled using the same model (with different parameter T T Building (wall, zone) K
values) and each building is furthermore assumed to wall> Tzone temperature ’
have an associated PV device and battery. Secondly, this soC Battery state of charge _
study does not include a sensitivity analysis of the
framework and controller to different initial values and ~ Model variables
uncertainty in the disturbances (i.e., a perfect forecast is Phvac HVAC active power w
assumed). Future extensions of this work will close these Pbats Abat Battery (active, reactive) W, Var
two gaps, as well as expanding the size of the simulation power
studies to include benchmark networks and comparing Qpv PV reactive power Var
the control algorithm performance to more sophisticated Ay PV curtailment ratio _
basethne algorlthr.ns.. . . v Nodal voltage Vo
Besides the two limitations already mentioned, there are P Line active power flow w
two other considerations that are less pressing yet Q Line reactive power flow Var
nevertheless of interest. The first is the trade-off between .
centralized and decentralized control. In general, & ;l;ieorlrzllzie;zture set-point K
centralized control results in better objective function
values than decentralized control, while requiring greater ~ Model disturbances
computational time and resources due to the large Tamb Ambient temperature K
amount of data that must be stored and manipulated. Qsobs Qine (Solar, Internal) heat gains W
Additionally, centralized control places a higher Ppv PV active power W
communication burden on the entire system, as each Priser A Miscellaneous (active W Var
component must send its state data to the controller at fiser mise reactive) power load ’ '
each time-step. This trade-off will be explored in a future PBL, GBL Base (active, reactive) load W, Var
extension of this study. The second consideration is that
of implementation. Many existing buildings lack the  Indices
necessary infrastructure, sensors, and equipment to k Node index
implement advanced building controls such as MPC. 1 Building index
Exploration of this challenge is currently outside the
scope of this work.
© 2020 ASHRAE (www.ashrae.org) and IBPSA-USA (www.ibpsa.us). 51

For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without

ASHRAE or IBPSA-USA's prior written permission.



REFERENCES

ANSI. 2016. ANSI C84.1-2016 Electric Power Systems
and Equipment — Voltage Ratings (60 Hz).

Badings, Thom S., Vahab Rostampour, and Jacquelien
M.A. Scherpen. 2019. “Distributed building energy
storage units for frequency control service in power
systems.” IFAC CSGRES. Jeju, Korea. 228-233.

Baran, Mesut, and Felix F. Wu. 1989. “Optimal sizing of
capacitors placed on a radial distribution system.”
IEEE Trans. Power Delivery 4 (1): 735-743.

Bazrafshan, Mohammadhafez, and Nikolaos Gatsis.
2018. “Comprehensive modeling of three-phase
distribution systems via the bus admittance matrix.”
IEEE Trans. Power Systems 33 (2): 2015-2029.

DOE. 2011. Building Energy Data Book. Retrieved from
https://openei.org/doe-opendata/dataset/buildings-
energy-data-book.

DOE. 2014. “Buildings-to-grid technical opportunities:
Introduction and vision.” Retrieved from
https://energy.gov/eere/buildings/buildings-grid-
integration.

DOE. 2019. EnergyPlus Essentials. Retrieved from
https://energyplus.net/documentation.

Farivar, Masoud, Christopher R. Clarke, Steven H. Low,
and K. Mani Chandy. 2011. “Inverter VAR control
for distribution systems with renewables.” Proc.
IEEE SmartGridComm. Brussels, Belgium. 457—
462.

Grant, Michael, and Stephen Boyd. 2014. CVX: Matlab
Software for Disciplined Convex Programming,
version 2.1. Retrieved from http://cvxr.com/cvx.

Gurobi Optimization, LLC. 2019. Gurobi Optimizer
Reference Manual. Retrieved from https://www.
gurobi.com/documentation/9.0/refman/index.html.

IEEE PES Industry Technical Support Task Force. 2018.
Impact of IEEE 1547 standard on smart inverter.

Jiang, Tao, Zening Li, Xiaolong Jin, Houhe Chen, Xue
Li, and Yunfei Mu. 2018. “Flexible operation of
active distribution network using integrated smart
buildings with heating, ventilation and air-
conditioning systems.” Ap. Energy 226: 181-196.

Kekatos, Vassilis, Gang Wang, Antonio J. Conejo, and
Georgios B. Giannakis. 2015. “Stochastic reactive
power management in microgrids with renewables.”
IEEE Trans. Power Systems 30 (6): 3386—-3395.

Lin, Yashen, Timothy Middelkoop, and Prabir Barooah.
2012. “Identification of control-oriented thermal

models of rooms in multi-room buildings.” Proc.
IEEE CDC. Maui, USA. 10-13.

Liu, Guodong, Tao Jiang, Thomas B. Ollis, Xiaohu
Zhang, and Kevin Tomsovic. 2019. “Distributed
energy management for community microgrids con-
sidering network operational constraints and buil-
ding thermal dynamics.” Ap. Energy 239: 83-95.

Liu, Guodong, Thomas B. Ollis, Bailu Xiao, Xiaohu
Zhang, and Kevin Tomsovic. 2017. “Community
microgrid  scheduling  considering  network
operational constraints and building thermal
dynamics.” Energies 10 (10): 1554.

Liu, Yang, Nanpeng Yu, Wei Wang, Xiaohong Guan,
Zhanbo Xu, Bing Dong, and Ting Liu. 2018.
“Coordinating the operations of smart buildings in
smart grids.” Ap. Energy 228: 2510-2525.

Mirakhorli, Amin, and Bing Dong. 2018. “Model predic-
tive control for building loads connected with a resi-
dential distribution grid.” Ap. Energy 230: 627—642.

Olama, Mohammed, Teja Kuruganti, James Nutaro, and
Jin Dong. 2018. “Coordination and control of
building HVAC systems to provide frequency reg-
ulation to the electric grid.” Energies 11 (7): 1852.

Razmara, Meysam, Guna R. Bharati, Mahdi Shahbakhti,
Sumit Paudyal, and Rush D. Robinett. 2018.
“Bilevel optimization framework for smart
building-to-grid systems.” IEEE Trans. Smart Grid
9 (2): 582-593.

Smith, J. W., W. Sunderman, R. Dugan, and Brian Seal.
2011. “Smart inverter volt/var control functions for

high penetration of PV on distribution systems.”
Proc. IEEE/PES PSCE. Phoenix, USA. 1-6.

Taha, Ahmad F., Nikolaos Gatsis, Bing Dong, Ankur
Pipri, and Zhaoxuan Li. 2019. “Buildings-to-grid
integration framework.” IEEE Trans. Smart Grid 10
(2): 1237-1249.

Torabi, Roham, Alvaro Gomes, and F. Morgado-Dias.
2018. “The duck curve characteristic and storage
requirements for greening the island of Porto
Santo.” Proc. IEEE ES2DE. Funchal, Madeira. 1-7.

Turitsyn, Konstantin, Petr Sulc, Scott Backhaus, and
Michael Chertkov. 2011. “Options for control of
reactive power by distributed photovoltaic
generators.” Proc. IEEE 99 (6): 1063—-1073.

Wang, Gang, Vassilis Kekatos, Antonio J. Conejo, and
Georgios B. Giannakis. 2016. “Ergodic energy
management leveraging resource variability in
distribution grids.” IEEE Trans. Power Systems 31
(6): 4765-4775.

Wei, Tianshu, Qi Zhu, and Nanpeng Yu. 2016.
“Proactive demand participation of smart buildings
in smart grid.” IEEE Trans. Computers 65 (5):
1392-1405.

© 2020 ASHRAE (www.ashrae.org) and IBPSA-USA (www.ibpsa.us). 52
For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without

ASHRAE or IBPSA-USA's prior written permission.



