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Abstract. We study an online hypergraph matching problem with delays, motivated by ridesharing
applications. In this model, users enter a marketplace sequentially, and are willing to wait up to d

timesteps to be matched, after which they will leave the system in favor of an outside option. A
platform can match groups of up to k users together, indicating that they will share a ride. Each group
of users yields a match value depending on how compatible they are with one another. As an example,
in ridesharing, k is the capacity of the service vehicles, and d is the amount of time a user is willing to
wait for a driver to be matched to them.
We present results for both the utility maximization and cost minimization variants of the problem. In
the utility maximization setting, the optimal competitive ratio is 1

d
whenever k ≥ 3, and is achievable

in polynomial-time for any fixed k. In the cost minimization variation, when k = 2, the optimal
competitive ratio for deterministic algorithms is 3

2
and is achieved by a polynomial-time thresholding

algorithm. When k > 2, we show that a polynomial-time randomized batching algorithm is (2− 1
d
) log k-

competitive, and it is NP-hard to achieve a competitive ratio better than log k −O (log log k).

Keywords: Online algorithms · competitive analysis · ridesharing.

1 Introduction

The United States loses hundreds of billions of dollars annually through time spent waiting in traffic. Ride-
hailing services such as Uber and Lyft are significant contributors to metropolitan congestion, since the
convenience and privacy offered by their services has led to increased travel demand [11]. At the same time,
they also have the potential to reduce congestion by the way of shared rides, whereby travelers can share
rides instead of each having their own vehicle on the road. A recent study [18] suggests that ridesharing can
reduce congestion when deployed together with congestion pricing and road tolls.

With this as motivation, we study the ridesharing problem through the lens of online hypergraph match-
ing. In our model, the problem instance is represented as a hypergraph. Vertices represent users who arrive
to a marketplace over time and hyperedges joining multiple users signify that those users can participate in
a shared service. To model disutility for waiting, users will wait in the system for at most d timesteps, after
which they will leave the system in favor of an outside option.

This model captures several characteristics of modern ridesharing. First, hyperedges represent groups of
potentially more than 2 people sharing a ride, i.e. a service vehicle can carry up to k customers at a time.
This is a generalization of previous work [5] where at most 2 people were allowed to share a ride. Similar
to recent works [5,2], the spatial nature of ridesharing is captured by weights of the hyperedges, where the
weight of a hyperedge measures the match efficiency of the associated requests. The online aspect of our
model captures the temporal uncertainty faced in ridehailing systems where decisions must be made without
knowledge of future demand.

We study both the utility maximization and cost minimization variants of the problem. In the utility
maximization setting, edge weights represent the utility gained by the associated users sharing a service, so
the goal is to find a matching in the hypergraph with large total weight. In the cost minimization setting,
edge weights correspond to the cost required to serve all associated vertices together. Vertices also have
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weights, representing the cost of serving the vertex individually. The goal in this setting is to find a matching
which minimizes the total edge cost plus the total cost of unmatched vertices.

1.1 Contributions

We study Online-(k, d)-Max-Matching and Online-(k, d)-Min-Matching, which are the utility maximiza-
tion and cost minimization variants of the problem respectively. For Online-(k, d)-Max-Matching we show
that whenever k ≥ 3, the optimal competitive ratio is 1

d , and we present a polynomial-time randomized
batching algorithm which is 1

d -competitive.
The cost minimization version of the problem will help us incorporate additional structures. We will

assume the costs are monotone and subadditive. That will allow us to prove the following set of results.
For k = 2, the optimal competitive ratio is 3

2 for deterministic algorithms. We present a polynomial-time
deterministic thresholding algorithm which is 3

2 -competitive. For k > 2, there exists a randomized batching
algorithm which is 2 − 1

d competitive. This algorithm, however, is not polynomial-time. Using a reduction
from set cover, we show that it is NP-hard to have a competitive ratio better than log k − O(log log k).
Leveraging the reduction, we also construct a randomized greedy batching procedure and show that it is
(2− 1

d ) log k-competitive, establishing the optimal polynomial-time competitive ratio up to a factor of 2− 1
d .

1.2 Organization

The remainder of this paper is structured as follows. In Section 2 we formally define our online hypergraph
matching model with deadlines. We discuss related work in Section 3. In Section 4 we study the utility
maximization variant of the model wherein we characterize the optimal competitive ratio. We study the cost
minimization variant of the model in Section 5. Section 6 presents conclusions and directions for future work.

2 Model

A total of n requests will arrive to the platform sequentially, one per timestep. Each request is represented
by a vertex, and the vertices are ordered corresponding to the order in which requests arrive in the system.
A request must be matched within d timesteps of its arrival, i.e. a request arriving at timestep i must be
matched by timestep i+d−1 at the latest. A vertex is critical if it will leave the system in the next timestep.
Concretely, a vertex arriving at timestep i will become critical at timestep i+ d− 1.

The system can serve the requests in groups of size at most k, where k is a constant independent of n, d.
For example, in ridesharing, k would be the capacity of a single service vehicle. The edge set E represents
compatible matches. Namely, e ∈ E implies that the set e of users can be served together.

The problem instance can thus be represented by a hypergraph H = (V,E,w). The following definition
is a generalization of shareability graphs from [2,5].

Definition 1 (Shareability Hypergraph). A hypergraph H = (V,E,w) is a Shareability Hypergraph with
parameters (n, d, k) if and only if 1) The set of vertices is ordered V = [n], and vertex i arrives at timestep
i, 2) diam(e) < d for all e ∈ E, where diam(e) := maxi,j∈e |i− j| 3) The rank of H is at most k, i.e.
|e| ≤ k for all e ∈ E and 4) w : E → R+, i.e. all hyperedge weights w(e) are non-negative.

In the utility maximization setting, the weight w(e) of an edge e is the utility gained by having the vertices
in e be served together. An optimal sharing strategy in a utility maximization problem corresponds to a
maximum weight matching in H. In the cost minimization setting, the weight w(e) of an edge e represents the
cost incurred when the vertices in e are served together. An optimal sharing strategy in a cost minimization
problem thus corresponds to a minimum weight matching in H, where the system also pays a cost for each
unmatched vertex. In this model we assume that all edge weights are non-negative.

We now formally define the utility maximization version of online hypergraph matching with deadlines,
which we will call the Online-(k, d)-Max-Matching problem.
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Definition 2 (Online-(k, d)-Max-Matching). The vertices of a shareability hypergraph H = (V,E,w) with
parameters (n, d, k) are revealed sequentially, one per timestep. The vertex that arrives at timestep t will
disappear at timestep t+ d. A hyperedge (along with its weight) e ∈ E is revealed once all of its vertices have
arrived. The Online-(k, d)-Max-Matching problem is to maximize over matchings of H the weight of the
matching, subject to the constraint that a hyperedge can only be included after it is revealed but before any
of its vertices disappear, and hyperedge inclusion is irrevocable.

The offline version of the problem is as follows:

Definition 3 (k-Max-Matching). We use k-Max-Matching to refer to the offline version of Online-(k, d)-
Max-Matching where d > n so the whole hypergraph can be observed before computing a matching.

The cost minimization version, which we call the Online-(k, d)-Min-Matching problem can be defined
similarly. In this setting, to ensure there is a feasible solution, we assume each customer can be served
individually, i.e. the shareability hypergraph H satisfies {i} ∈ E for every i ∈ V . In other words, the
platform must decide by time i+d− 1 whether to serve request i individually or have it share a service with
other vertices.

Definition 4 (Online-(k, d)-Min-Matching). The vertices of a shareability hypergraph H = (V,E,w) with
parameters (n, d, k) are revealed sequentially, one per timestep. Each vertex has a weight, which represents
the cost of serving this vertex individually. The vertex that arrives at timestep t will disappear at timestep
t+d. A hyperedge (along with its weight) e ∈ E is revealed once all of its vertices have arrived. The Online-
(k, d)-Min-Matching problem is to minimize over matchings of H the weight of the matching plus the weight
of all unmatched vertices, subject to the constraint that a hyperedge can only be included after it is revealed
but before any of its vertices disappear, and hyperedge inclusion is irrevocable.

Definition 5 (k-Min-Matching). We use k-Min-Matching to refer to the offline version of Online-(k, d)-
Min-Matching where d > n so the whole hypergraph can be observed before computing a matching.

3 Related Work

This paper is related to online resource allocation and online matching problems with delays. In the following,
we survey some recent results in these fields and discuss how they relate to this work.

Online resource allocation has applications in advertising [15], network routing problems [17], and rideshar-
ing [5]. In general, obtaining polynomial-time constant factor approximations for these problems is NP-hard,
so [15,17] study special cases where users can request for at most k different resource types. This assumption
is realistic in most settings as a single user will not need more than a constant number of resources. [15]
presents a sample-and-price algorithm and shows that it is 1

k2 -competitive if the arrival order of requests is
uniformly random. If the full distribution over user requests is known to the network operator, [17] show via
approximate dynamic programming that a competitive ratio of 1

k+1 is possible.
The above line of work does not model the trade-off between waiting costs and market thickness. The

option of waiting for a thicker market is studied in [4,10,1,3,5] in different contexts. In these works, requests
arrive sequentially in time, and the platform can match pairs of requests together. The objective in [4,10,1,3]
is cost minimzation, and the objective in [5] is utility maximization.

In [4,10], the platform can defer matching decisions but must pay a cost proportional to the total time
requests wait before being matched. In [1,3] requests arrive to the system according to some known distri-
bution. Requests will stay in the system for a random and unkown amount of time, so the platform operator
risks users leaving the system if it chooses to wait for a thicker market. Online matching with deadlines
was studied in [5]. Requests enter the system sequentially and are willing to wait up to d timesteps to be
matched, after which they will leave the system. Here d is known to the platform. The authors present a
1
4 -competitive algorithm and also show that no algorithm can have a competitive ratio better than 1

2 .
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This paper contributes generalizations to these aforementioned works in two ways. With respect to the
online matching literature, we consider a model where k > 2 users can be matched together. This is motivated
by ridesharing applications where service vehicles can hold more than 2 customers at any given time. With
respect to the online resource allocation literature, we present results that do not assume any distributional
information on the input instances. Our model also allows for waiting so that the platform has d units of
time after a request appears to determine whether to accept it or reject it. This is in contrast to the works of
[15,17] where the platform must immediately decide between accepting or rejecting upon a request’s arrival.

4 Utility Maximization: Online-(k, d)-Max-Matching

In this section, we characterize the optimal competitive ratio for Online-(k, d)-Max-Matching by first prov-
ing an upper bound on achievable competitive ratios, and then presenting a polynomial-time algorithm which
achieves this upper bound.

4.1 Upper Bounds

In this section we show that if the matching capacity k is at least 3, then no online algorithm can have a
better competitive ratio than 1

d , with d being the number of timesteps a customer stays in the system.

Theorem 1 (Upper bound on the competitive ratio). If k ≥ 3, then no online algorithm can have a
competitive ratio better than 1

d for Online-(k, d)-Max-Matching.

Proof. Consider a family G of shareability hypergraphs where G ∈ G is of the form G = (V,E,w) with

V = {0, 1, ..., 2d− 2}, w ∈ R
|E|
+ , and E = {et}

d−1
t=0 with e0 := {0, d− 2, d− 1} , ed−1 := {d− 1, d, 2d− 2} and

et := {t, d− 1, t+ d− 1} for all 0 < t < d− 1.

First, note that any matching can have at most one hyperedge since et ∩ et′ 6= ∅ for any t, t′ since in
particular, all edges contain the vertex d − 1. Second, every edge et can only be chosen in the timestep in
which its weight is revealed. This is because the earliest vertex in et is t so et expires at time t+ d and the
latest vertex in et is t+d−1, so the earliest time et can be chosen is t+d−1. So Online-(k, d)-Max-Matching
restricted to instances in G is equivalent to the Adversarial Secretary Problem with d applicants, which is
defined below. See Appendix B.1 for a visualization of graphs in G and the relationship to d-ASP.

Definition 6 (Adversarial Secretary Problem with d applicants (d-ASP)). Adversarial Secretary
Problem with d applicants, which we denote by d-ASP, has the following setting: There are d applicants for
a secretary position, with corresponding non-negative aptitude scores {wi}

d
i=1. At most 1 applicant can be

hired and decisions are irrevocable. Time is discretized into d timesteps. The aptitude wi of the ith applicant
is revealed at time i, and the ith applicant can only be hired at time i. The goal is to maximize the aptitude
of the hired secretary.

Contrary to the canonical secretary problem where the arrival order of candidates is uniformly random,
d-ASP makes no distributional assumption on the ordering of the candidates. Next we establish a hardness
result for d-ASP.

Lemma 1 (Adversarial Secretary Problem). The best possible competitive ratio for the adversarial
secretary problem with d applicants is 1

d .

See Appendix B.2 for a proof of Lemma 1. Since d-ASP is a special case of Online-(k, d)-Max-Matching,
this proves that the best possible competitive ratio of the latter is at most 1

d . ⊓⊔
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4.2 Algorithms

In this section we present a polynomial-time 1
d -competitive algorithm for Online-(k, d)-Max-Matching by

adapting techniques from k-Max-Matching, the offline version of the problem. Specifically, we analyze the
Randomized-Batching algorithm described in Algorithm 1 which runs a k-Max-Matching algorithm A every
d timesteps, effectively treating the online problem as n/d separate offline problems. We refer to sets of d
consecutive vertices on which A is applied as batches. Figure 1 illustrates a batching procedure. The start
and end times for the batches are determined by a random shift Z ∈ {0, 1, ..., d− 1}.

The random shift Z in Randomized-Batching is essential to the competitiveness of batching. Figure 2
illustrates why batching without randomization can do arbitrarily worse than the optimal, i.e. it has a
competitive ratio of zero.

Algorithm 1: Randomized-Batching(H;A)

1 Input: Shareability Graph H = (V,E,w), Offline matching algorithm A;
2 Output: Matching M ;
3 M ← ∅;
4 Draw Z uniformly at random from {0, 1, 2, ..., d− 1};
5 for 1 ≤ i ≤ n do

6 Vertex i is revealed;
7 if (i+ 1 ≡ Z mod d) or (i = n) then

8 Use A to compute a matching M0 for nodes appearing at times in {i− d+ t}d
t=1;

9 M ←M ∪M0;

10 Return M

� 2� 3� 4� �

Fig. 1: An example of batching for the online matching problem. The time horizon is partitioned into batches
of length d, and an offline algorithm is used to compute a matching (blue hyperedges) for each batch.

� 2� 3� 4� �

Fig. 2: Consider a deterministic batching algorithm where the ith batch consists of vertices {id+ t}d−1
t=0 . The

batching algorithm is unable to select the red edges, since they are not fully contained in any batch. If the
red edges each have weight 1 and all other edges have weight ǫ, then the weight of the matching obtained
by batching is at most ǫ |E|, whereas the optimal solution has weight at least 3. Hence the competitive ratio

of batching is at most ǫ|E|
3 , which converges to zero as ǫ → 0.

The following result provides a performance guarantee for Randomized-Batching.
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Theorem 2 (Performance of Randomized-Batching). Let A be an algorithm for k-Max-Matching with

competitive ratio ρ(A). For any matching M̃ in H, the matching M returned by Algorithm 1 using A satisfies

E [w (M)] ≥
ρ (A)

d

∑

e∈M̃

w(e) (d− diam(e)) .

Proof. Let A be an offline matching algorithm for k-Max-Matching with competitive ratio ρ(A) and consider
an instance H = (V,E,w) of Online-(k, d)-Max-Matching. For each z ∈ {0, 1, ..., d− 1} we define the batch
Wz,i = (Vz,i, Ez,i, w) where

1. Vz,i := {z + id+ t}d−1
t=0 , i.e. all vertices arriving between timestesp z + id and z + (i+ 1)d− 1.

2. Ez,i := {e ∈ E : e ⊂ Vz,i}, i.e. all edges whose vertices are all in Vz,i.

We will also define Ez := ∪iEz,i. With this notation, Randomized-Batching returns a matching M :=
∪iMz,i, where Mz,i is obtained by applying A to Wz,i. We will also use M∗

z,i to denote a maximum weight
matching in Wz,i. We will make use of the following observation.

Observation 1 For any e ∈ E we have
∑d−1

z=0 1[e∈Ez ] ≥ d− diam(e).

Proof. Fix any e ∈ E and let t be the smallest arrival time of any vertex in e. Without loss of generality
(by a linear change of coordinates) we assume that t = 0. By definition of diam(e), all vertices of e appear
between time 0 and diam(e). Any edge that is a subset of {z, z + 1, ..., z + d− 1} will belong to Ez. Next,
note that for any z satisfying diam(e) − d + 1 ≤ z ≤ 0, we have z ≤ 0 and z + d − 1 ≥ diam(e), and
hence e ⊂ {z, z + 1, ..., z + d− 1}. Therefore, e ∈ Ez for every z ∈ {diam(e)− d+ 1, ...,−1, 0} mod d. In
particular, e ∈ Ez for at least d− diam(e) values of z. ⊓⊔

Let M̃ be a matching for H, and let M∗
z be an optimal matching for Hz := (V,Ez, w). Given Z = z, we have

w(M) =
∑

i

w(Mz,i)
(a)

≥
∑

i

ρ(A)w(M∗
z,i) = ρ(A)w(M∗

z ). (1)

Where (a) is because A is ρ(A)-competitive, and Mz,i is obtained by applying A to Wz,i. Because Z is
uniformly distributed over {0, 1, ..., d− 1}, we have

EZ [w(M)] =

d−1∑

z=0

P [Z = z]E [w(M)|Z = z]
(a)

≥
1

d

d−1∑

z=0

ρ(A)
∑

e∗∈M∗

z

w(e∗)
(b)

≥
ρ(A)

d

d−1∑

z=0

∑

e∗∈M̃∩Ez

w(e∗)

=
ρ(A)

d

d−1∑

z=0

∑

e∗∈M̃

w(e∗)1[e∈Ez ] =
ρ(A)

d

∑

e∗∈M̃

w(e∗)
d−1∑

z=0

1[e∈Ez ]

(c)

≥
ρ(A)

d

∑

e∗∈M̃

w(e∗) (d− diam(e)) .

Where (a) is due to (1), (b) is because and M̃ ∩ Ez is a matching in Hz and M∗
z is a maximum weight

matching in Hz. Finally, (c) is due to Observation 1. ⊓⊔

The following is a straightforward consequence of Theorem 2 by choosing M̃ to be an optimal matching, and
noting that d− diam(e) ≥ 1 for all e ∈ E since H is a shareability hypergraph.

Lemma 2 (Competitive Ratio of Randomized-Batching). Let A be an offline matching algorithm for

k-Max-Matching with competitive ratio ρ(A). Algorithm 1 using A is ρ(A)
d -competitive for Online-(k, d)-

Max-Matching.
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We now briefly explore the implications of Lemma 2 for different choices of A. The best known polynomial-
time algorithms for k-Max-Matching are O( 1k )-competitive [6,8], and in particular Greedy is 1

k -competitive.3

Corollary 1. Choosing A to be Greedy when running Algorithm 1 gives a polynomial-time algorithm with
competitive ratio of 1

kd for Online-(k, d)-Max-Matching.

We can also consider an exact procedure A∗ for k-Max-Matching which satisfies ρ(A∗) = 1. Applying Lemma
2 with such an A∗ establishes 1

d as the optimal competitive ratio for Online-(k, d)-Max-Matching.

Corollary 2. If A∗ is an exact procedure for k-Max-Matching, i.e., ρ(A∗) = 1, then Algorithm 1 using A∗

as a subroutine achieves a competitive ratio of 1
d for Online-(k, d)-Max-Matching.

Corollary 2 in conjunction with Theorem 1 shows that the optimal competitive ratio of 1
d is achievable in

finite time. However, it is known from [13] that achieving ρ(A) = Ω
(

log k
k

)
for k-Max-Matching is NP-hard,

and thus no exact procedure A∗ can run in polynomial-time unless P = NP. For this reason, Corollary 2
does not show that a competitive ratio of 1

d is achievable in polynomial-time.
To obtain a polynomial-time 1

d -competitive algorithm, we will replace Greedy by Depth-k Greedy as the
choice for A. Depth-k Greedy is described in Algorithm 2. Making this replacement leads to the following
result.

Theorem 3. Randomized-Batching using A =Depth-k Greedy as a subroutine is 1
d -competitive for Online-

(k, d)-Max-Matching. Furthermore, its running time is O
(
|E|k+1

)
which is polynomial in the size of the

shareability hypergraph H for any fixed k.

Algorithm 2: Depth-k Greedy(H)

1 Input: Hypergraph H = (V,E,w) where the vertices are ordered;
2 Output: A matching M for H ;
3 Define L to be the first k vertices;
4 Define R to be the last k vertices;
5 DefineML,R(H) := {M is a matching : e ∩ L 6= ∅, e ∩R 6= ∅ ∀e ∈M};

6 Enumerate all matchings inML,R(H) as {Mi}
|ML,R(H)|
i=1 ;

7 for 1 ≤ i ≤ |ML,R(H)| do
8 Vi ← {i ∈ V : i is matched in Mi};

9 M̃i ← Greedy((V \ Vi, E))

10 i∗ ← argmaxi w(Mi ∪ M̃i);

11 M ←Mi∗ ∪ M̃i∗ ;
12 Return M

In the remainder of this section, we sketch the proof of Theorem 3. See Appendix B.3 for a full proof of
Theorem 3.

To understand how to construct a polynomial-time algorithm for Online-(k, d)-Max-Matching with
the optimal competitive ratio of 1

d , we first need to understand why Corollary 1 falls short: let M∗ be a
maximum weight matching for a shareability hypergraph H = (V,E,w). We can partition M∗ into two sets:
short hyperedges M∗

s and long hyperedges M∗
ℓ as follows:

M∗
s := {e ∈ M∗ : diam(e) ≤ d− k} and M∗

ℓ := {e ∈ M∗ : diam(e) > d− k} .

3 See Appendix A.1 for further details and existing results for k-Max-Matching.
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As the names suggest, M∗
s contains all hyperedges of M∗ with diameter at most d− k, and M∗

ℓ contains all
hyperedges whose diameters are larger than d− k. By Theorem 2, running Randomized-Batching with the
Greedy subroutine results in a matching whose weight satisfies

E [w (M)] ≥
ρ (A)

d

∑

e∈M∗

w(e) (d− diam(e)) =
1

kd

∑

e∈M∗

s

w(e) (d− diam(e)) +
1

kd

∑

e∈M∗

ℓ

w(e) (d− diam(e))

≥
1

kd

∑

e∈M∗

s

w(e)k +
1

kd

∑

e∈M∗

ℓ

w(e) =
1

d
w(M∗

s ) +
1

kd
w(M∗

ℓ ).

From this, we see that the approximation factor for M∗
s and M∗

ℓ are different.

Observation 2 Since M∗
s is already contributing a 1

d fraction of its weight to M , we just need to improve
the contribution of M∗

ℓ from 1
kd to 1

d in order to achieve a competitive ratio of 1
d .

Since all edges in M∗
ℓ have large diameter, we can show that |M∗

ℓ | cannot be too large. Specifically, for any
batch (i.e. subgraph on d consecutive vertices) (V ′, E′), we can show that |M∗

ℓ ∩ E′| ≤ k. We can then show

that there are at most O
((

d
k

)k)
possibilities for M∗

ℓ ∩E
′. Since k is a constant, this is polynomial in the batch

size. Finally, we extend all of these possibilities for M∗
ℓ ∩ E′ to maximal matchings in (V ′, E′) via Greedy

and return the maximal matching with the highest total weight. This can be done in polynomial-time, and
improves the contribution of w(M∗

ℓ ) from
1
kd to 1

d . This motivates Depth-k Greedy described in Algorithm
2 as an alternative to Greedy.

5 Cost Minimization: Online-(k, d)-Min-Matching

In this section we study Online-(k, d)-Min-Matching specialized to the ridesharing problem. We first present
additional assumptions that we make to utilize the structure of ridesharing problems. For k = 2 we prove that
the optimal competitive ratio for deterministic algorithms is 3

2 and is achieved by a thresholding algorithm.
For k > 2, we characterize both the optimal competitive ratio and the optimal competitive ratio attainable
with polynomial-time algorithms up to a factor of 2− 1

d .

5.1 Ridesharing Assumptions

Let H = (V,E,w) be the shareability hypergraph for an instance of Online-(k, d)-Min-Matching. For the
application to ridesharing, we leverage the following two assumptions.

Assumption 1 (Monotonicity) For any e ∈ E, and any e′ ⊆ e, we have e′ ∈ E and w(e′) ≤ w(e).

Assumption 1 is realistic in ridesharing problems for the following reason. The cost w(e) is the minimum
cost required to service the customers in e, i.e. taking them from their pickup point to their dropoff point.
Let p be such a minimum cost path. Note that p also serves all requests in e′, and therefore, the minimum
cost required to serve e′ can only be smaller than w(e). Thus we see that w(e′) ≤ w(e).

Assumption 2 (Subadditivity) For any e ∈ E, and any partition e = ⊔ℓ
j=1ej, we have w(e) ≤

∑ℓ
j=1 w(ej).

The above assumption is also quite reasonable. If there exists e ∈ E which does not satisfy Assumption 2,
then any matching that includes e can be converted to a matching with lower cost by replacing e by {ej}

ℓ
j=1.

Therefore e will never be in an optimal matching, and so we can remove e from E. Finally, we will consider
the single occupancy matching Mso as a benchmark.

Definition 7 (Single Occupancy Matching). The single occupancy matching serves each customer in-
dividually, i.e. Mso = ∅. It is clear from Assumption 2 that the competitive ratio of Mso is k.
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5.2 The k = 2 Case

We first study the k = 2 case where the shareability hypergraph is in fact a shareability graph. In this case,
single occupancy is a 2-competitive algorithm. We will thus limit our search to algorithms whose competitive
ratio is smaller than 2. We will use the following notation:

– For i ∈ V , we use wi ∈ R+ to denote the cost of serving i individually.
– For (i, j) ∈ E, we use w(i, j) ∈ R+ to denote the cost of serving i and j together.
– Given a matching M , a vertex i is unmatched under M if it is not an endpoint of any edge in M .
– We use w(M) to represent the cost of a matching M , defined via w(M) :=

∑
(i,j)∈M w(i, j) +

∑
i∈U wi

where U is the set of unmatched vertices in M .

The following lemma gives a lower bound on the competitive ratio of all deterministic and randomized
algorithms and is proved in Appendix C.1.

Lemma 3 (Lower Bound on the Competitive Ratio). When k = 2, no deterministic algorithm can
have a competitive ratio smaller than 3

2 and no randomized algorithm can have a competitive ratio smaller
than 5

4 .

Before presenting our algorithm, let us discuss a motivating example to highlight one of the key challenges
in Online-(k, d)-Min-Matching. Consider the following shareability graph where wA = 1, wB = x > 1, and
w(A,B) = x. There is also a third vertex C with wC ∈ {0, x} and w(B,C) = x.

Suppose A becomes critical before C arrives. In this case, our algorithm needs to decide whether to match
(A,B), or wait and match (B,C) instead. The optimal matching depends on wC . In particular, if wC = 0,
then the minimum cost is w(A,B) +wC = x and is achieved by matching (A,B). However, if wC = x, then
the minimum cost is wA + w(B,C) = 1 + x. Since we are interested in the worst-case error, we make the
following two observations.

1. If wC = 0, and we choose not to match (A,B), then our resulting cost will be wA + w(B,C) = 1 + x.
Recall that the minimum cost is x, so our matching has a cost that is 1+x

x times as large as the minimum
cost.

2. If wC = x and we choose to match (A,B), then our resulting cost will be w(A,B) + wC = 2x. Recall
that the minimum cost in this case is 1+ x, so our matching has a cost that is 2x

1+x times as large as the
minimum cost.

Since our goal is to minimize the worst case performance, this shows that we should match (A,B) if
2x
1+x ≤ 1+x

x , and not match A otherwise. Equivalently, we should match (A,B) if and only if x ≤ 1√
2−1

.

This motivates thresholding algorithms which only accept matches that are sufficiently high quality as a
way of balancing immediate reward with possible future reward. Algorithm 4 describes the Risk-Threshold
algorithm, which matches critical vertices to the most appealing partner according to a risk score. We also
present Risk-Threshold-ag in Algorithm 3, which is an agnostic version of Risk-Threshold that does not
need to know when vertices become critical, and can thus be used in settings where users’ willingness to wait
is not observable. The competitive ratios of these algorithms are presented in the following results.

Theorem 4. Using θ =
√
5−1
2 , the competitive ratio of Risk-Threshold-ag(·,

√
5−1
2 ) is

√
5+1
2 ≈ 1.61.
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Algorithm 3: Risk-Threshold-ag(H, θ)

1 Input: Shareability Graph H = (V,E,w), Risk parameter θ ∈ [ 1
2
, 1];

2 Output: Matching M ;

3 Define θij := w(i,j)
wi+wj

for (i, j) ∈ E;

4 M ← ∅;
5 while There are vertices in the system do

6 if ∃i, j : θij ≤ θ then

7 M ←M ∪ {(i, j)};

8 Return M

Algorithm 4: Risk-Threshold(H, θ)

1 Input: Shareability Graph H = (V,E,w), Risk parameter θ ∈ [ 1
2
, 1];

2 Output: Matching M ;

3 Define θij := w(i,j)
wi+wj

for (i, j) ∈ E;

4 M ← ∅;
5 while There are vertices in the system do

6 if i is critical then

7 j∗ ← argminj θij ;
8 if θij∗ ≤ θ then

9 M ←M ∪ {(i, j∗)}

10 Return M

Theorem 5. Using θ = 2
3 , Risk-Threshold(·, θ) is

3
2 -competitive.

Theorem 5 in conjunction with Lemma 3 shows that Risk-Threshold has the optimal competitive ratio
among deterministic algorithms.

While every customer is willing to wait d timesteps in our model, Risk-Threshold-ag and Risk-

Threshold can handle heterogeneous deadlines. The algorithms do not require homogeneous deadlines, and
the proofs do not need this property either. Concretely, Theorems 4 and 5 hold in the more general setting
where the platform has until timestep i+ di to decide how to serve a user who arrives at timestep i, where
the di need not be the same.

Another interesting observation is that knowledge of willingness to wait in this model is not very valuable
for deterministic algorithms. Indeed, Risk-Threshold-ag is 1.61-competitive without knowledge of d, and
Lemma 3 shows that knowledge of d can only improve the competitive ratio by 0.11.

We now prove Theorem 4. The proof of Theorem 5 is similar, but more technically involved, and can be
found in Appendix C.2.

Proof (Theorem 4). For a given instance H, let M∗ denote a minimum weight matching, and let U∗ be the

set of vertices unmatched under M∗. For each (i, j) ∈ E, we denote θij :=
w(i,j)
wi+wj

. For θ ∈
[
1
2 , 1
]
, define the

set Eθ := {(i, j) ∈ E : θij ≤ θ}. Next, let M be a matching produced by Risk-Threshold-ag(H, θ), and let
U be the set of unmatched vertices under M . Note that M is a maximal matching in (V,Eθ, w). To compare
w(M) to w(M∗), we assign to each vertex a score v according to M by the following rule:

vi :=

{
wi if i ∈ U

θijwi if (i, j) ∈ M for some j ∈ V
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Note that by construction,
∑

i∈V vi = w(M). One way to interpret v is that vi is the contribution of vertex
i to the total cost of the matching. With this notation, we can now write

w(M) =
∑

i∈V

vi
(a)
=

∑

(i,j)∈M∗

(vi + vj) +
∑

i∈U∗

vi =
∑

(i,j)∈M∗∩Eθ

(vi + vj)

︸ ︷︷ ︸
term 1

+
∑

(i,j)∈M∗\Eθ

(vi + vj)

︸ ︷︷ ︸
term 2

+
∑

i∈U∗

vi

︸ ︷︷ ︸
term 3

,

where (a) is due to the fact that the set of matched nodes under M∗ and the set of unmatched nodes under
M∗ form a partition of V . For term 1, note that M∗ ∩Eθ is a matching in (V,Eθ, w). Since M is a maximal
matching in (V,Eθ, w), this means that for every (i, j) ∈ M∗ ∩ Eθ, at least one of i or j is also matched in
M . Without loss of generality, suppose i is matched. Then we have

vi + vj ≤ θijwi + wj ≤ θij max(wi, wj) + max(wi, wj) ≤ (1 + θ)max(wi, wj)
(a)

≤ (1 + θ)w(i, j).

Where (a) is due to Assumption 1. For term 2, note that (i, j) 6∈ Eθ means that θij > θ. Thus for any
(i, j) ∈ M∗ \ Eθ, we have:

vi + vj ≤ wi + wj =
1

θij
w(i, j) ≤

1

θ
w(i, j).

Finally, for term 3, note that vi ≤ wi is always true. Putting these observations together, we see that:

w(M) =
∑

(i,j)∈M∗∩Eθ

(vi + vj) +
∑

(i,j)∈M∗\Eθ

(vi + vj) +
∑

i∈U∗

vi

≤
∑

(i,j)∈M∗∩Eθ

(1 + θ)w(i, j) +
∑

(i,j)∈M∗\Eθ

1

θ
w(i, j) +

∑

i∈U∗

wi

≤ max

(
1 + θ,

1

θ

) ∑

(i,j)∈M∗∩Eθ

w(i, j) + max

(
1 + θ,

1

θ

) ∑

(i,j)∈M∗\Eθ

w(i, j) + max

(
1 + θ,

1

θ

) ∑

i∈U∗

wi

= max

(
1 + θ,

1

θ

)
 ∑

(i,j)∈M∗∩Eθ

w(i, j) +
∑

(i,j)∈M∗\Eθ

w(i, j) +
∑

i∈U∗

wi


 = max

(
1 + θ,

1

θ

)
w(M∗).

Thus Risk-Threshold(·, θ) is a max
(
1 + θ, 1

θ

)
-competitive algorithm. To finish, we now observe this value is

minimized when θ =
√
5−1
2 , which implies that Risk-Threshold

(
·,

√
5−1
2

)
is a

√
5+1
2 -competitive algorithm

for Online-(k, d)-Min-Matching when k = 2. ⊓⊔

5.3 The k > 2 Case

This case can be addressed by a combination of ideas that we have discussed earlier. Therefore, we just state
the results, sketch the main ideas, and refer the reader to the Appendix for the details.

First, observe that the offline version of the problem k-Min-Matching is essentially a weighted set cover
problem (see Appendix A.2). To prove the equivalence, one needs to make sure Assumption 1 does not make
the problem strictly easier. This observation allows us to leverage hardness results from set cover [19] to
prove hardness results for Online-(k, d)-Min-Matching.

We can also use the idea of batching with a random shift to get a postive result with loss of factor 2.
Putting them all together gives the following:

Theorem 6. Let A be an algorithm for k-WSC with approximation ratio ρ(A). Then Randomized-Batching(·,A)
is
(
2− 1

d

)
ρ(A)-competitive for Online-(k, d)-Min-Matching. In particular, Randomized-Batching(·,A) with

A =Weighted-Greedy is
(
2− 1

d

)
(1 + log k)-competitive for Online-(k, d)-Min-Matching.

Furthermore, no algorithm with running time polynomial in n and k can obtain a better ratio than
Online-(k, d)-Min-Matching within log k −O(log log k) unless P = NP .
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See Appendix C.4 for a proof of Theorem 6.

6 Conclusions

In this paper we studied online hypergraph matching with delays motivated by applications to high capacity
ridesharing. We studied both the utility maximization and cost minimization variants of the problem. For
utility maximization, we presented a polynomial-time randomized batching algorithm and proved that it
attains the optimal competitive ratio. We studied cost minimization under additional assumptions specialized
to the ridesharing problem. For k = 2 we introduced a thresholding algorithm and proved that it achieves
the optimal competitive ratio for deterministic algorithms. For k > 2, we characterize both the optimal
competitive ratio and the optimal polynomial-time competitive ratio up to a factor of 2− 1

d .
There are several interesting directions for future work. With regards to Online-(k, d)-Max-Matching,

adding additional application-specific assumptions could enable better approximation guarantees. For Online-
(k, d)-Min-Matching, closing the (2 − 1

d ) gap between the achievability and impossibility results for k > 2
and finding a randomized algorithm that beats the 3

2 threshold for k = 2 would both be interesting. For both
models, extensions to heterogeneous and unobserved willingness to wait for k > 2 would provide compelling
insight for practitioners and real-world deployment.
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A Appendix: Background

In this section we introduce the hypergraph matching and set cover problems along with existing achievability
and hardness results for these problems. Hypergraph matching and set cover play an important role in our
results on utility maximization and cost minimization respectively.

A.1 Hypergraphs

In this section we introduce hypergraphs and the hypergraph matching problem4.

Definition 8 (Hypergraph). A hypergraph is a generalization of a graph where edges can join any number
of vertices. A weighted undirected hypergraph H = (V,E,w) is defined by its vertex set V , its hyperedge set
E, and its hyperedge weights w. The hyperedge weights w : E → R assign to each hyperedge a real value. For
any E′ ⊂ E, we define the weight of E′ as w(E′) :=

∑
e∈E′ w(e).

Below we list some definitions related to hypergraphs that will be used throughout this paper.

Definition 9 (Hypergraph Rank). The rank of a hypergraph is the maximum cardinality of a hyperedge
in the hypergraph, i.e. the hyperedges of a rank k hypergraph have at most k vertices.

Definition 10 (Matching). For a graph or hypergraph H = (V,E), a matching M in H is a set of edges
M ⊆ E where all edges are disjoint.

Definition 11 (Maximal Matching). A matching M in H is maximal if it is not a strict subset of any
other matching.

Definition 12 (Maximum Matching). A matching M in H is maximum if it there is no matching with
greater cardinality.

Definition 13 (Edge Diameter of Graphs and Hypergraphs). In a graph or hypergraph H = (V,E,w)
with ordered vertices V = [n], we define the diameter of an edge to be diam(e) := maxi,j∈e i−j. Furthermore,
we define the edge diameter of a graph G to be diam(E) := maxe∈E diam(e), where E is its edge set.

Finding matchings in rank k hypergraphs We now define the k-Max-Matching problem, which plays
a key role in our discussion on online hypergraph matching.

Definition 14 (k-Max-Matching). The k-Max-Matching problem is to find a maximum weight matching
in a rank k hypergraph H. The maximum weight matching problem in graphs is a special case where k = 2.

The best known algorithms for k-Max-Matching [6,8] are combinatorial in nature and are 2
k -competitive.

Convex relaxations are surveyed in [7] who show that the standard linear programming relaxation of k-
Max-Matching can be rounded to produce a 1

k−1+ 1
k

-competitive algorithm. Conversely, [13] proves that it is

NP-hard to approximate k-Max-Matching better than Ω
(

log k
k

)
, showing that existing methods are optimal

up to log factors.

Among all of the existing methods, we focus our discussion on a Greedy algorithm outlined in Algorithm 5.
As described in Lemma 4, Greedy is appealing because its competitive ratio is within a constant factor of
the best known result and also runs in nearly linear time.

Lemma 4 (Greedy is 1
k -competitive). The competitive ratio of Algorithm 5 is at least 1

k for k-Max-
Matching. Furthermore, its runtime is O (|E| log |E|).
4 also known as set packing in the computer science literature
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Algorithm 5: Greedy

1 Input: Weighted Hypergraph H = (V,E,w);
2 Output: A matching M in H;
3 Set M ← ∅;

4 Sort edges in E = {ej}
|E|
j=1 according to their weights, in decreasing order to obtain {ẽj}

|E|
j=1;

5 for 1 ≤ j ≤ |E| do
6 if M ∪ {ẽj} is a matching then

7 M ←M ∪ {ẽj};

8 Return M

A.2 Set Cover

Crucial to our discussion on minimum cost matchings will be the set cover problem and its variants, which
we define below.

Definition 15 (Weighted Set Cover (WSC)). Given a set X, a collection S ⊂ 2X of subsets of X satisfying
∪S∈SS = X and a weight function w : S → R+, the weighted set cover problem WSC(X,S, w) asks the
following minimization problem

minimize
E⊂S

∑

S∈E
w(S)

s.t. ∪S∈E S = X.

Definition 16 (Set Cover (SC)). An instance of WSC(X,S, w) is an unweighted set cover problem if w(S) =
1 for every S ∈ S. We denote such an instance as SC(X,S).

Definition 17 (Set Cover with a rank constraint (k-WSC)). An instance WSC(X,S, w) is rank k if
|S| ≤ k for every S ∈ S. We denote the rank k set cover problem as k-WSC(X,S, w). If in addition, w(S) = 1
for every S ∈ S, then this is an instance of rank k unweighted set cover, which we denote as k-SC(X,S).

The set cover problem and its variants have been extensively studied in the computer science literature. A
simple greedy algorithm was shown in [14,16] to be 1 + log n competitive for SC, where n = |X|. It was
later shown by [12] that this performance is optimal up to lower order terms. Namely, they showed that a
polynomial-time (1−ǫ) log n competitive ratio is achievable only if NP has quasi-polynomial-time algorithms.

For k-SC, the greedy algorithm presented in [14,16] is 1 + log k competitive. [9] extended this result to the
weighted version of the problem k-WSC. Trevisan showed that this performance is optimal up to lower order
terms in [19] by showing that it is NP-hard to approximate k-SC better than log k −O(log log k).
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B Appendix: Proofs for Utility Maximization

B.1 Visualizing the reduction from d-ASP to Online-(k, d)-Max-Matching
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Fig. 3: An example of a shareability hypergraph G ∈ G evolving in time. This example has d = 9. Vertices
arrive one per timestep on the right, and depart one per timestep from the left. A vertex is red during the
last timestep it is in the system. For each t, et is revealed at time t + d − 1, when its last vertex appears.
It also becomes critical at this time, since t ∈ et is about to leave the system. Therefore, from timestep
d− 1 onward, one edge, along with its weight, is revealed each timestep, and can only be included into the
matching at that timestep. Furthermore, at most one edge can be in the matching, since all edges contain
the node d− 1 = 8. Hence, the family G encodes the d-ASP problem.

B.2 Proof of Lemma 1

For any (possibly randomized) algorithm A, we use the random variable W (A) to denote the aptitude of
the candidate chosen by A. Let At be any algorithm with the optimal competitive ratio ρ(At) for t-ASP.
First, ρ(At) ≥

1
t by the trivial algorithm A∗

t which ignores all scores, and commits to one of the t secretaries
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uniformly at random. Indeed,

E [W (A∗
t )] =

1

t

t∑

τ=1

wτ =
||w||1
t

≥
||w||∞

t
=

OPT

t
.

Therefore, all we need to show is that ρ(At) ≤
1
t , which we will do by induction.

Base Case: For t = 1 the problem is trivial; there is only one candidate, so hiring the candidate gives the
optimal solution and the optimal competitive ratio is 1

1 = 1
t .

Induction Step: Suppose that ρ(At) = 1
t for some t ≥ 1. For the (t + 1)-ASP, at the first timestep, At+1

decides to hire the first candidate with some probability p. If the first candidate is hired, the algorithm
collects utility w1. If the first candidate is not hired, then the algorithm must solve a secretary problem on
the remaining t candidates. Therefore,

E [W (At+1)] = pw1 + (1− p)E [W (At)] .

Therefore the competitive ratio of At+1 is

ρ(At+1) = min
w∈R

t+1

+

pw1

||w||∞
+ (1− p)

E[W (At)]

||w||∞
(2)

Let z ∈ R
t
+ be a worst-case instance for At so that E[W (At)] =

OPT

t . Now let [w2, w3, ..., wt+1]
⊤ = αz for

some α > 0. Sending w1 → ∞, (2) converges to p. Sending α → ∞, eventually we have ||w||∞ = ||z||∞, and
(2) converges to (1− p)ρ(At) =

1−p
t . Therefore,

ρ(At+1) ≤ min

(
p,

1− p

t

)
.

The best choice of p to maximize this upper bound is p = 1
t+1 , which yields ρ(At+1) =

1
t+1 . This completes

the induction step, and thus completes the proof.

B.3 Proof of Theorem 3

Let M∗ be a maximum weight matching for an instance H = (V,E,w) of Online-(k, d)-Max-Matching.
Partition M∗ into two disjoint subsets M∗

s ∪M∗
ℓ defined via

M∗
s := {e ∈ M∗ : diam(e) ≤ d− k}

M∗
ℓ := {e ∈ M∗ : diam(e) > d− k} ,

where M∗
s contains all of the edges of M∗ whose diameter is at most d− k, and M∗

ℓ contain the other edges.
First note that w(M∗) = w(M∗

s ) + w(M∗
ℓ ).

Recall the definition of batches: For each z ∈ {0, 1, ..., d− 1} and i ≤ n
d , we define the batch Wz,i :=

(Vz,i, Ez,i, w) to be a subgraph of H in the following way:

1. Vz,i = {z + id+ t}d−1
t=0 is the set of nodes that arrive between times z + id and z + (i+ 1)d− 1.

2. Ez,i ⊂ E are all edges whose endpoints are a subset of Vz,i.

We then use Ez :=
⋃

i Ez,i.
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Now suppose we have a procedure A that, for every pair z, i, can find a matching Mz,i ⊂ Ez,i so that

w(Mz,i) ≥ w(M∗
ℓ ∩ Ez,i) +

1

k
w(M∗

s ∩ Ez,i). (3)

Next we show that Algorithm 1 using such an A as a subroutine is 1
d -competitive for Online-(k, d)-Max-

Matching.

E [w(M)] =

d−1∑

z=0

P [Z = z]E [w(M)|Z = z] (4)

=
1

d

d−1∑

z=0

n/d∑

i=0

w(Mz,i)

(a)

≥
1

d

d−1∑

z=0

n/d∑

i=0

[
w(M∗

ℓ ∩ Ez,i) +
1

k
w(M∗

s ∩ Ez,i)

]

=
1

d

d−1∑

z=0

[
w(M∗

ℓ ∩ Ez) +
1

k
w(M∗

s ∩ Ez)

]

=
1

d

d−1∑

z=0

∑

e∈M∗

ℓ
∩Ez

w(e) +
1

kd

d−1∑

z=0

∑

e∈M∗

s ∩Ez

w(e)

=
1

d

∑

e∈M∗

ℓ

w(e)

d−1∑

z=0

1[e∈Ez ] +
1

kd

∑

e∈M∗

s

w(e)

d−1∑

z=0

1[e∈Ez ]

(b)

≥
1

d

∑

e∈M∗

ℓ

w(e) +
1

kd

∑

e∈M∗

s

w(e)k =
1

d

∑

e∈M∗

w(e) =
w(M∗)

d
.

Where (a) is due to condition (3) and (b) is due to Observation 1; edges in M∗
s have diameter at most d− k

and edges in M∗
ℓ have diameter at most d − 1. Therefore if we can find a A that runs in polynomial-time

and satisfies (3) for all pairs z, i, then Algorithm 1 using A as a subroutine will achieve a competitive ratio
of 1

d in expectation.

Finding a subroutine that satisfies (3): Let Wz,i = (Vz,i, Ez,i, w) be a batch. Without loss of generality
(by shifting the time indices) we will assume that Vz,i = {0, 1, ..., d− 1}, i.e. z = i = 0. Recalling that Greedy
is 1

k -competitive for k-Max-Matching, for M = Greedy(Wz,i) we have

w(M) ≥
1

k
w(M∗ ∩ Ez,i)

=
1

k
w(M∗

ℓ ∩ Ez,i) +
1

k
w(M∗

s ∩ Ez,i). (5)

Following the same analysis as (4), running Algorithm 1 with Greedy gives

E [w(M)] ≥
1

kd


 ∑

e∈M∗

ℓ

w(e)

d−1∑

z=0

1[e∈Ez ] +
∑

e∈M∗

s

w(e)

d−1∑

z=0

1[e∈Ez ]


 =

1

kd
w(M∗

ℓ ) +
1

d
w(M∗

s ). (6)

This is not sufficient for our purposes because the 1
k coefficient in front of w(M∗

ℓ ∩Ez,i) in (5) leads to a
1
kdw(M

∗
ℓ ) contribution to the bound in (6). Note that the reason we are able to tolerate the 1

k coefficient on
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w(M∗
s ∩Ez,i) in (3) is because of Observation 1; each e ∈ M∗

s is in Ez for at least k choices of z, which will
cancel the 1

k coefficient. However, edges in M∗
ℓ are in Ez for less than k choices of z, and hence we cannot do

the same cancellation. Thus, we need to find a way to modify Greedy to get a better approximation factor
for w(M∗

ℓ ∩ Ez,i).

To this end, we have the following observation. Let L := {0, 1, .., k − 1} and R := {d− k, d− k + 1, ..., d− 1}
be the sets of the first and last k vertices of Wz,i respectively.

Observation 3 For e ∈ M∗ ∩ Ez,i, if e ∩ L = ∅ or e ∩ R = ∅, then diam(e) ≤ d − k, and hence e 6∈ M∗
ℓ .

Equivalently, for any e ∈ M∗
ℓ , we have e ∩ L 6= ∅ and e ∩R 6= ∅.

Hence M∗
ℓ ∩ Ez,i is a member of the following set:

ML,R(Wz,i) := {M a matching in Wz,i : e ∩ L 6= ∅, e ∩R 6= ∅ ∀ e ∈ M} .

In other words, M∗
ℓ ∩Ez,i is a matching in Wz,i that is restricted to L,R where we define restricted matchings

below.

Definition 18 (Restricted Matchings). Given a hypergraph H = (V,E) and two disjoint subsets L,R ⊂
V, L ∩R = ∅, a collection of edges M ⊂ E is a matching is restricted to L,R if

1. M is a matching in H.
2. For any e ∈ M , e ∩ L 6= ∅ and e ∩R 6= ∅.

Finally, we use ML,R(H) to denote the set of all matchings in H that are restricted to L,R.

Since |L| = |R| = k is a constant, |ML,R(Wz,i)| is small (polynomial in d). This motivates the Depth-k
Greedy algorithm which does the following: For each M ∈ ML,R(Wz,i), extend M to a maximal matching
by adding edges via Greedy, and then among the |ML,R(Wz,i)| resulting maximal matchings, return the one
with the largest weight. First, we will show that Depth-k Greedy satisfies (3). To this end, for any matching
M we use V (M) to denote the vertices that are matched by M . If Mz,i is the matching returned by Depth-k
Greedy, we have

w(Mz,i) = max
M∈ML,R(Wz,i)

w(M) + w(Greedy(Vz,i \ V (M), Ez,i))

(a)

≥ w(M∗
ℓ ∩ Ez,i) + w(Greedy(Vz,i \ V (M∗

ℓ ∩ Ez,i), Ez,i))

(b)

≥ w(M∗
ℓ ∩ Ez,i) +

1

k
max
M ′ s.t.

M ′∪(M∗

ℓ ∩Ez,i) is
a matching
in Wz,i

w(M ′)

(c)

≥ w(M∗
ℓ ∩ Ez,i) +

1

k
w(M∗

s ∩ Ez,i).

Where (a) is due to M∗
ℓ ∩Ez,i ∈ ML,R(Wz,i), (b) is due to Greedy being 1

k -competitive for k-Max-Matching,
and (c) is because (M∗

ℓ ∩Ez,i)∪(M
∗
s ∩Ez,i) = M∗∩Ez,i is a matching inWz,i. Hence Depth-k Greedy satisfies

condition (3). To complete the proof, we next show that the runtime of Depth-k Greedy is polynomial in
the size of the problem instance H.

Runtime of Depth-k Randomized Batching: Finally, we need to show that the runtime of Depth-k
Randomized Batching is polynomial in the size of H. Since |L| = k, any matching in ML,R(Wu,i) can have
at most k hyperedges. From this, we conclude that

|ML,R(Wz,i)| ≤
k∑

ℓ=1

(
|Ez,i|

ℓ

)
≤ k

(
|Ez,i|

k

)
≤ k

(
|Ez,i|

ek

)k
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For a batch Wz,i, it takes c |Ez,i| log |Ez,i| time to sort the edges by weight, for some constant c. For each
M ∈ ML,R(Wz,i), given that the edges are already sorted, extending M to a maximal matching via Greedy

requires O(k |Ez,i|) time, since for each edge, it takes O(k) time to check if it is disjoint from the current
matching. Doing this for all members of ML,R(Wz,i) would take

c |Ez,i| log |Ez,i|+ |ML,R(Wz,i)| · k |E| = c |Ez,i| log |Ez,i|+
k2

(ek)k
|Ez,i|

k+1

time. Therefore the expected runtime of Randomized-Batching(·,A) with A = Depth-k Greedy is

1

d

d−1∑

z=0

∑

i

(
c |Ez,i| log |Ez,i|+

k2

(ek)k
|Ez,i|

k+1

)
= O

(
1

d

d−1∑

z=0

∑

i

|Ez,i|
k+1

)

≤ O

(
1

d

d−1∑

z=0

|Ez|
k+1

)

≤ O

(
max

0≤z≤d−1
|Ez|

k+1

)

≤ O
(
|E|k+1

)
.

This completes the proof.

C Appendix: Proofs for Cost Minimization in Ridesharing

C.1 Proof of Lemma 3

Consider the following pair of shareability graphs H1, H2, where the arrival order of vertices is A,B,C,D, the
cost of each vertex is 1, and the cost of every edge is also 1. The minimum weight matchings are highlighted
for each graph.

H1 H2

When A becomes critical, there are only 3 possible actions for a deterministic algorithm:

(a) Pair (A,B).

(b) Pair (A,C).

(c) Don’t pair A with anything.

Proving a 3

2
lower bound for deterministic algorithms Action (a) is optimal for H2, but leads to a

non-maximum matching for H1. On the other hand, action (b) is optimal for H1 but leads to a non-maximum
matching for H2. A non-maximum matching has either 0 edges and 4 unmatched vertices, which gives a cost
of 4, or 1 edge and 2 unmatched vertices, which gives a cost of 3. A maximum matching has 2 edges, and a
cost of 2. Therefore, every non-maximum matching has cost at least 3

2 times as large as an optimal matching.
Before D arrives, the instances H1, H2 look identical:
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Therefore, if A becomes critical before D arrives, then there is no way to distinguish whether the instance is
H1 or H2. Using action (a) will lead to a non-maximum matching if the instance is H1, and using the action
(b) leads to a non-maximum matching if the instance is H2. Action (c) always leads to a non-maximum
matching.

Now we review the observations to prove a lower bound of 3
2 for all deterministic algorithms. First, on the

instances {H1, H2}, there are only 3 choices for the first action in any deterministic algorithm. Next, for
each of the three possible first actions, there is an instance H ∈ {H1, H2} for which this action leads to a
non-maximum matching. Finally, for any H ∈ {H1, H2}, a non-maximum matching has cost at least 3

2 times
as large as the minimum cost matching. Therefore, for any deterministic algorithm, there is an instance for
which the algorithm’s cost is at least 3

2 times that of the minimum cost matching.

Proving a 5

4
lower bound for randomized algorithms We will prove a 5

4 lower bound using Yao’s
minimax principle. When A becomes critical, the only actions for deterministic algorithms are {(a), (b), (c)}.
Thus the behavior of any randomized algorithm at the time A becomes critical can be described as a distri-
bution over {(a), (b), (c)}. Let pa, pb, pc be the probabilities that actions (a), (b), (c) are taken respectively.
Since pa + pb + pc = 1, at least one of the following must happen:

Case 1: pa + pc ≥
1
2 .

Case 2: pb + pc ≥
1
2 .

Note that actions (a), (b) lead to non-maximum matchings for the instance H1, and actions (b), (c) lead to
non-maximum matchings for the instance H2. If Case 1 is true, then on the instance H1, and letting M be
the matching produced by the randomized algorithm,

E [c(M)] = pbE [M |first action is (b)] + (pa + pc)E [M |first action ∈ {(a), (c)}]

≥ pb · 2 + (pa + pc)3

≥ 1 +
3

2
=

5

2
.

Where the first inequality is because 2 is the minimum cost matching, so in particular it is a lower bound
for E [M |first action is (b)], and because taking action (a) or (c) leads to a non-maximum matching in H1,

which has cost at least 3. Therefore, c(M)
c(M∗) ≥

5
2 ÷ 2 = 5

4 . The analysis if Case 2 is true is analogous; the only

difference is we apply the analysis to the H2 instance instead.

C.2 Proof of Theorem 5

For an instance H = (V,E,w), let M∗ be a minimum weight matching for H, and let U∗ denote the set of

vertices that are unmatched under M∗. For each edge (i, j) ∈ E, define θij :=
w(i,j)
wi+wj

. For θ ∈
[
1
2 , 1
]
, define

Eθ := {(i, j) ∈ E : θij ≤ θ} .



22 M. Pavone et al.

Let M be the matching produced by Risk-Threshold(H, θ), and let U be the set of vertices that are
unmatched under M . Note that M is a maximal matching in (V,Eθ, w). Define v∗, v in the following way:

v∗i :=

{
wi if i ∈ U∗

θijwi if (i, j) ∈ M∗ and vi :=

{
wi if i ∈ U

θijwi if (i, j) ∈ M .

Note that by construction, w(M∗) =
∑

i∈V v∗i and w(M) =
∑

i∈V vi, so vi, v
∗
i denote the contribution of

vertex i to the total cost under matchings M,M∗ respectively.

Since M,M∗ are matchings, their union M ∪M∗ is a disjoint union of cycles and paths, i.e. every connected
component of (V,M ∪M∗, w) falls into one of the three following categories:

1. Vertices of degree 0.
2. Cycles.
3. Maximal Paths.

Where the definition of a maximal path is the following.

Definition 19 (Maximal Paths). We say a path P is maximal in a graph G = (V,E,w) if it is not a
strict subset of another path.

To prove Theorem 5, we will prove the following claim.

Observation 4 For every connected component in M ∪M∗, the cost of the vertices in this connected com-
ponent under M is no more than 3

2 times the cost of those same vertices under M∗.

Once we establish this, Theorem 5 follows by the following implications. Suppose

M ∪M∗ =




p⋃

j=1

Cj


⋃

(
q⋃

ℓ=1

Pℓ

)

is the partition of M ∪M∗ into cycles {Cj}
p
j=1 and maximal paths {Pℓ}

q
ℓ=1. If for a collection of edges E′

we use V (E′) to denote the set of vertices that are touched by edges in E′, we have

V =




p⋃

j=1

V (Cj)


⋃

(
q⋃

ℓ=1

V (Pℓ)

)
⋃

(U ∩ U∗)

where recall that U ∩ U∗ denotes the vertices that are unmatched under both M and M∗. Finally we can
see that:

w(M) =
∑

i∈V

vi

=

p∑

j=1

∑

i∈V (Cj)

vi +

q∑

ℓ=1

∑

i∈V (Pℓ)

vi +
∑

i∈U∩U∗

vi

(a)

≤

p∑

j=1

3

2

∑

i∈V (Cj)

v∗i +

q∑

ℓ=1

3

2

∑

i∈V (Pℓ)

v∗i +
∑

i∈U∩U∗

v∗i

≤
3

2




p∑

j=1

∑

i∈V (Cj)

v∗i +

q∑

ℓ=1

∑

i∈V (Pℓ)

v∗i +
∑

i∈U∩U∗

v∗i




=
3

2

∑

i∈V

v∗i =
3

2
w(M∗).

Where (a) is due to Observation 4. We will prove claim 3 by examining each of the 3 types of connected
components of (V,M ∪M∗, w).
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Vertices of degree 0 If a vertex i has degree zero in the graph (V,M ∪M∗), this means it is unmatched
under both M and M∗, meaning that vi = wi and v∗i = wi, therefore the cost contribution of i to M is the
same as its cost contribution to M∗.

Cycles Note that any cycle in (V,M ∪ M∗, w) must have even length. A cycle having odd length would
imply that there are two edges from the same matching that share a vertex. So consider an even cycle on
vertices {1, 2, ..., 2ℓ} where the edges {(2k + 1, 2k + 2)}ℓ−1

k=0 belong to M∗ and the edges {(2k, 2k + 1)}ℓk=1

belong to M . Since every vertex in a cycle has degree 2, this means that each vertex in the cycle is matched
in both M and M∗. We thus see that

2ℓ∑

i=1

vi =
ℓ∑

k=1

w(2k, 2k + 1)
(a)

≤
ℓ∑

k=1

θw2k + θw2k+1

(b)

≤
ℓ∑

k=1

2θv∗2k + 2θv∗2k+1 = 2θ
2ℓ∑

i=1

v∗i .

Where (a) is due to the fact that w(i, j) = θij(wi + wj), θe ≤ θ for every e ∈ Eθ and M ⊂ Eθ. We get (b)
because θ ≥ 1

2 due to Assumption 1. We conclude this part by noting that for θ = 2
3 , 2θ = 4

3 ≤ 3
2 .

Paths To analyze the cost contributions of maximal paths, we will use the following definition of restricted
cost.

Definition 20 (Restricted Cost). Given a graph G = (V,E,w), an edge sets E′ ⊂ E, and a matching
M , we define w(M ;E′) to be the cost of M ∩ E′ in the subgraph (V (E′), E′, w).

To prove Observation 4 for paths, we will use the following lemma.

Lemma 5 (Path cost bound). For any path P ⊂ (V,M ∪M∗, w), we have:

w(M ;P ) ≤
3

2
w(M∗;P ).

See Section C.3 for a proof of Lemma 5. Once we establish this lemma, we can establish Observation 4 for
maximal paths using the following observation.

Observation 5 If P is a maximal path,
∑

i∈V (P ) vi = w(M ;P ) and
∑

i∈V (P ) v
∗
i = w(M∗;P ).

Proof (proof of Observation 5). Note that
∑

i∈V (P ) vi 6= w(M ;P ) only if there is some vertex i ∈ V (P ) so
that either

1. i is matched under M ∩ P in (V (P ), P, w) but is not matched under M in (V,E,w), or
2. i is not matched under M ∩ P in (V (P ), P, w) but is matched under M in (V,E,w).

The first situation can never happen because M ∩P ⊂ M , so every vertex matched by M ∩P is also matched
by M . If the second situation happens, this means that the degree of i is 1 in (V (P ), P, w) and there exists
some i′ ∈ V \V (P ) with (i, i′) ∈ M . But this implies that P ∪{(i, i′)} is a path in M ∪M∗, which contradicts
the assumption that P is maximal. The proof for M∗ is analogous.

Using Observation 5, we can prove Observation 4 for maximal paths P via

∑

i∈V (P )

vi = w(M ;P ) ≤
3

2
w(M∗;P ) =

∑

i∈V (P )

v∗i .

This completes the proof for Theorem 5.
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C.3 Proof of Lemma 5

We partition the set of maximal paths in (V,M ∪M∗, w) into four categories, and treat each of the categories
separately.

1. Length 1 paths.
2. Type 1 paths.
3. Even length paths.
4. Type 2 paths of length at least 3.

Where type 1 and type 2 paths are defined as follows:

Definition 21 (Path Types). A path in (V,M ∪ M∗, w) is type 1 if it has an odd length, and contains
more edges from M than from M∗. A path is type 2 if it has odd length and contains more edges from M∗

than from M .

Proving Lemma 5 for paths in categories 1 and 2 are easy, so we will do this directly. For Categories 2
and 3, we will prove the lemma by induction on the path length.

Maximal paths of length 1 Consider a path of length 1 in M ∪M∗, i.e. an edge e = (i, j) ∈ E. There
are two cases to consider: 1) e ∈ M and 2) e ∈ M∗ \M .

Case 1: First note that either (i, j) ∈ M∗, or both i, j are unmatched underM∗. To see this, if (i, j′) ∈ M∗ for
some j 6= j′, then the path {(j, i)} would not be maximal since in particular the path {(j, i), (i, j′)} ⊂ M∪M∗.
From this we can conclude that that v∗i ≥ θijwi, v

∗
j ≥ θijw

∗
j . Finally,

vi + vj = w(i, j) = θijwi + θijwj ≤ v∗i + v∗j .

Case 2: Now we consider the case where e ∈ M∗ \ M . We argue by contradiction that e 6∈ Eθ. Suppose
e ∈ Eθ. We can immediately say that neither i nor j matched under M , because if any of the vertices of
e are matched under M , then this path would have more than 1 edge. Since none of the vertices of e are
matched in M , then M ∪{e} is a matching in (V,Eθ). However, this contradicts the fact that M is a maximal
matching in (V,Eθ). Therefore if e ∈ M∗, it must be the case that e 6∈ Eθ. From this we see that:

vi + vj ≤ wi + wj =
w(i, j)

θij
=

v∗i + v∗j
θij

≤
v∗i + v∗j

θ
=

3

2
(v∗i + v∗j ).

Where θij ≥ θ is because e 6∈ Eθ, and the last equality is due to θ = 2
3 .

Type 1 Paths Let P be a type 1 path on the vertices {1, 2, ..., 2ℓ} where {(2k + 1, 2k + 2)}ℓ−1
k=0 ∈ M and

{(2k, 2k + 1)}ℓ−1
k=1 ∈ M∗. Since P contains more edges from M than M∗, the set of vertices in V (P ) matched

byM∗∩P is a subset of vertices matched byM∩P . Concretely, note thatM matches all vertices {1, 2, ..., 2ℓ},
whereas M∗ matches all of the vertices except {1, 2ℓ}. We thus see that

2ℓ∑

k=1

vk = v1 + v2ℓ +

2ℓ−1∑

k=2

vk

≤ v∗1 + v∗2ℓ +
2ℓ−1∑

k=2

θwk

≤ v∗1 + v∗2ℓ +
2ℓ−1∑

k=2

2θv∗k

≤ 2θ

2ℓ∑

k=1

v∗k.
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We conclude by noting that θ = 2
3 implies that 2θ = 4

3 ≤ 3
2 .

Even length paths: Base case We argue by induction on the length of even paths. The base case is when
the path P = {(a, b), (b, c)} has 2 edges where (a, b) ∈ M, (b, c) ∈ M∗. We will use the following fact:

Fact 1 (Fractions and convex combinations) If x > y > 0 and z > 0, then x+z
y+z ≤ x

y .

Proof (Proof of Fact 1). This follows from the following algebra:

x > y > 0, z > 0 =⇒ xz > yz

=⇒ xy + xz > xy + yz

=⇒ x(y + z) > y(x+ z)

=⇒
x

y
>

x+ z

y + z
.

With this, observe that

va + vb + vc
v∗a + v∗b + v∗c

=
w(a, b) + wc

wa + w(b, c)
≤

w(a, b) + wc

wa +max(wb, wc)
(7)

If the numerator in (7) is smaller than the denominator, we are done. Therefore from this point onward
assume that the numerator is larger. There are two cases. If wc ≤ wb, then we apply this bound to the
numerator. If wb < wc, then we apply Fact 1 with z = wc − wb. In either case, we get

va + vb + vc
v∗a + v∗b + v∗c

≤
w(a, b) + wb

wa + wb

=
θabwa + θabwb + wb

wa + wb

= 1 +
(θab − 1)wa + θabwb

wa + wb

(a)

≤ 1 +
(θab − 1)

(
1−θab

θab

)
wb + θabwb

(
1−θab

θab

)
wb + wb

= 1 +
−(1− θab)

2wb + θ2abwb

wb

= 1 + θ2ab −
(
1− 2θab + θ2ab

)

= 2θab ≤ 2θ =
4

3
≤

3

2
.

We get (a) because the numerator is a decreasing function of wa and the denominator is a increasing function
of wa, which means the bound is maximized when wa is minimized. Furthermore, θabwa+ θabwb = w(a, b) ≥

wb implies that wa ≥
(

1−θab

θab

)
wb. This establishes the base case for even length paths.

Induction Step on the Path Length Since we already bounded the cost contribution of type 1 paths in
Section C.3, in this section we focus on paths that are not type 1. In particular, we focus on paths that have
at least as many edges from M∗ as they do from M . Note that any such path has the following property:
Either the first edge in the path or the last edge in the path belong to M∗. In this section, we will without
loss of generality assume that the first edge of the path belongs to M∗. If the first edge belongs to M , then
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it must be the case that the last edge belongs to M∗, and we can just reverse the ordering of the edges.

Now we begin the induction step. Assume that for all paths P of length n whose vertices are {0, 1, ..., n} and
whose first edge belongs to M∗, we have

w(M ;P ) ≤
3

2
w(M∗;P ).

Now let P ′ be a length n + 2 path whose vertices are {0, 1, 2, ..., n+ 1, n+ 2} and whose first edge belongs

to M∗. Define P to be the path containing the edges {(i, i+ 1)}n+1
i=2 . Note that the first edge of P belongs

to M∗, and the length of P is n. We can write

w(M ;P ′) =
n+2∑

i=0

vi = v0 + v1 + (v2 − w2) + w2 +

n+2∑

i=3

vi

= v0 + v1 + (v2 − w2)︸ ︷︷ ︸
term 1

+w(M ;P )

Where term 1 is because of the following. Vertex 2 is unmatched in P ∩M , so it contributes a cost of w2.
However, (1, 2) ∈ (P ′ \ P ) ∩ M reduces the cost contribution of vertex 2 from w2 to v2. Similarly, we can
write

w(M∗;P ′) = v∗0 + v∗1 +
n+2∑

i=2

v∗i

= v∗0 + v∗1 + w(M∗;P ).

Since P is a length n path whose first edge belongs to M∗, we can use the induction hypothesis to conclude
that

w(M ;P ) ≤
3

2
w(M∗;P ).

Next, we will show that

v0 + v1 + (v2 − w2)

v∗0 + v∗1
≤

3

2
. (8)

Once we show (8), we can conclude the proof as follows:

w(M ;P ′) = v0 + v1 + (v2 − w2) + w(M ;P )

≤
3

2
(v∗0 + v∗1) +

3

2
w(M∗;P )

=
3

2
w(M∗;P ′)

Where the inequality is obtained by applying (8) and the induction hypothesis on P . Therefore, all that
remains is to prove (8). Observe that

v0 + v1 + (v2 − w2)

v∗0 + v∗1
=

w0 + θ12w1 + (θ12 − 1)w2

θ01w0 + θ01w1
≤

w0 + θ12w1 + (θ12 − 1)w2

max (w0, w1)
.

We now use an approach similar to what was done in Section C.3. If the numerator is smaller than the
denominator, then we are done. If it is not, then there are two cases. If w0 ≤ w1, we apply this bound to the
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numerator. If w1 < w0, then we apply Fact 1 with z = w0 − w1. In both cases, we get

v0 + v1 + (v2 − w2)

v∗0 + v∗1
≤

w1 + θ12w1 + (θ12 − 1)w2

w1

(a)

≤
w1 + θ12w1 + (θ12 − 1)

(
1−θ12
θ12

)
w1

w1

=
θ12 + θ212 − (1− θ12)

2

θ12
=

θ12 + θ212 − (1− 2θ12 + θ212)

θ12

=
3θ12 − 1

θ12
(b)

≤
3θ − 1

θ
=

3

2
.

Where (a) is because the numerator is a decreasing function of w2, so the bound is maximized when w2 is

minimized. Next, θ12w1+θ12w2 = w(1, 2) ≥ w1 implies that w2 ≥
(

1−θ12
θ12

)
w1. Finally, (b) is because θ12 ≤ θ

since (1, 2) ∈ M ⊂ Eθ, and the function 3x−1
x is increasing on [ 12 ,

2
3 ].

Base case for type 2 paths of length at least 3 Our base case is a path P = {(a, b), (b, c), (c, d)} where
(a, b), (c, d) ∈ M∗ and (b, c) ∈ M . There are two cases we need to consider:

1. At most one of (a, b) or (c, d) is in Eθ.
2. (a, b), (c, d) ∈ Eθ.

Remark 1. One may be tempted to use the result for type 2 paths of length 1 from Section C.3 together
with the induction step in Section C.3 to establish a result for all type 2 paths. This, however, will not work.
In section C.3 when discussing type 2 paths of length 1, we used the fact that the edge e ∈ M∗ cannot be in
Eθ. Therefore applying the result from Section C.3 together with the induction step in Section C.3 will only
prove the result for type 2 paths that contain at least one edge from E \Eθ. There can in general be type 2
paths whose edges are all contained in Eθ. Case 2 of this section addresses such paths. Once we address case
2, then we can apply the induction argument from Section C.3 to establish the desired result for all type 2
paths.

We now prove the desired result for each of the two cases. This section, together with the induction argument
from Section C.3 establishes the desired result for all type 2 paths.

Case 1: In this case, either (a, b) 6∈ Eθ or (c, d) 6∈ Eθ. Without loss of generality assume that (a, b) 6∈ Eθ

(otherwise simply relabel the vertices). Since (a, b) 6∈ Eθ, we have w(a,b)
wa+wb

> θ. We then observe

va + vb ≤ wa + wb ≤
1

θ
w(i, j) ≤

v∗a + v∗j
θ

=
3

2
(v∗a + v∗j ).

We now have a path P0 = {(a, b)} where w(M ;P0) is no more than 3
2w(M

∗;P0). Applying the induction
argument from Section C.3, we can conclude that

w(M ;P )

w(M∗;P )
≤

3

2
.

This completes the proof of Case 1.
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Case 2: In this case we have a path P = {(a, b), (b, c), (c, d)} where (a, b), (c, d) ∈ M∗ ∩ Eθ and (b, c) ∈ M .
We first show that the first vertex among {a, b, c, d} to become critical must be either b or c. Note that if a
were the first vertex among {a, b, c, d} to become critical, then in particular a becomes critical before either
b, c becomes critical. Since (b, c) ∈ M , no vertex that becomes critical before b and c choose to match with
either of them. Therefore, by the time a becomes critical, both b, c are available, meaning that a should be
matched, since in particular it can match to b. However, since a is unmatched in M , it cannot be the case
that a is the first vertex among {a, b, c, d} to become critical. The same argument concludes that d cannot
be the first to become critical. This means that the first among these vertices to become critical is either b
or c. Thus without loss of generality assume that b is the first vertex to become critical. When b becomes
critical, both a, c are available. Since b chooses to match with c, we can conclude that θbc ≤ θab.

We now observe that

w(M ;P )

w(M∗;P )
=

wa + w(b, c) + wd

w(a, b) + w(c, d)

=
wa + θbcwb + θbcwc + wd

θabwa + θabwb + θcdwc + θcdwd

≤
wa + θbcwb + θbcwc + wd

θabwa + θabwb +max(wc, wd)

If the numerator is smaller than the denominator, then we are done. So from now on we assume that the
numerator is larger. There are two cases to consider. If wc > wd, then we can bound the numerator by
wa + θbcwb + θbcwc + wc. If wd > wc, then applying Fact 1 with z = wd − wc, we get

wa + θbcwb + θbcwc + wd

θabwa + θabwb +max(wc, wd)
=

wa + θbcwb + θbcwc + wc + (wd − wc)

θabwa + θabwb + wc + (wd − wc)
≤

wa + θbcwb + θbcwc + wc

θabwa + θabwb + wc
.

So in either case, we have

w(M ;P )

w(M∗;P )
≤

wa + θbcwb + θbcwc + wc

θabwa + θabwb + wc

There are two cases to consider. If wa ≥ wc, then

w(M ;P )

w(M∗;P )

(a)

≤
wa + θabwb + θabwc + wc

θabwa + θabwb + wc

= 1 +
(1− θab)wa + θabwc

θabwa + θabwb + wc

≤ 1 +
(1− θab)wa + θabwc

wa + wc

= 1 + (1− θab)
wa

wa + wc
+ θab

wc

wa + wc

≤ 1 +
1− θab

2
+

θab
2

=
3

2
.

Where (a) is due to θbc ≤ θab. The other case is that wc > wa. In this case, we have

w(M ;P )

w(M∗;P )
=

wa + θbcwb + θbcwc + wc

θabwa + θabwb + wc

(a)

≤
wa + θabwb + θbcwc + wc

θabwa + θabwb + wc

= 1 +
(1− θab)wa + θbcwc

θabwa + θabwb + wc

= 1 +
(1− θab)wa

θabwa

θabwa

θabwa + θabwb + wc
+

θbcwc

θabwb + wc

θabwb + wc

θabwa + θabwb + wc︸ ︷︷ ︸
term 1
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Where (a) is obtained by bounding θbcwb ≤ θabwb. We will show that term 1 is maximized when wb takes its
smallest possible value. To this end, note that term 1 is a convex combination of 1−θab

θab
and θabwc

θabwb+wc
. Since

wb ≥
1−θbc
θbc

wc and θbc ≤ θab, we have

θbcwc

θabwb + wc
≤

θbcwc

θbcwb + wc
≤

θbcwc

θbc
1−θbc
θbc

wc + wc

=
θbc

2− θbc
≤

θab
2− θab

. (9)

Next, we note that since θab ≤ θ = 2
3 , we have θab

2−θab
≤ 1−θab

θab
. So 1−θab

θab
is larger than θabwc

θabwb+wc
for any

valid values5 of wa, wb, wc. Since
θabwa

θabwa+θabwb+wc
and θabwc

θabwb+wc
are decreasing functions of wb, we see that

for any valid values of wa, wc, term 1 is maximized when wb takes its smallest possible value, that is to say

wb = max
(

1−θab

θab
wa,

1−θbc
θbc

wc

)
. From this we get:

w(M ;P )

w(M∗;P )
= 1 +

(1− θab)wa

θabwa

θabwa

θabwa + θabwb + wc
+

θbcwc

θabwb + wc

θabwb + wc

θabwa + θabwb + wc

(a)

≤ 1 +
(1− θab)wa

θabwa

θabwa

θabwa + θabwb + wc
+

θab
2− θab

θabwb + wc

θabwa + θabwb + wc

(b)

≤ 1 +
(1− θab)

θab

θabwa

θabwa + θab

(
1−θab

θab

)
wa + wc

+
θab

2− θab


1−

θabwa

θabwa + θab

(
1−θab

θab

)
wa + wc




= 1 +
(1− θab)

θab

θabwa

wa + wc
+

θab
2− θab

(
1−

θabwa

wa + wc

)

(c)

≤ 1 +
(1− θab)

θab

θabwa

wa + wa
+

θab
2− θab

(
1−

θabwa

wa + wa

)

= 1 +
1− θab

2
+

θab
2− θab

(
2− θab

2

)

= 1 +
1− θab

2
+

θab
2

=
3

2
.

We get (a) from the chain of inequalities in (9). We get (b) and (c) by increasing the weight of 1−θab

θab
in the

convex combination and reduce the weight of θab

2−θab
by the same amount. This leads to an upper bound since

1−θab

θab
≥ θab

2−θab
. This completes the base case for case 2.

C.4 Proof of Theorem 6

The proof proceeds in the following steps. First, we establish an equivalence between the offline version
of the problem k-Min-Matching and the weighted set cover problem through Observation 6. Using this
equivalence, we use existing results from set cover to prove that it is NP-hard to approximate Online-

(k, d)-Min-Matching better than log k −O(log log k). This is done in Lemma 6. We conclude by presenting
a randomized batching scheme that can convert any algorithm for weighted set cover into an algorithm for
Online-(k, d)-Min-Matching with a 2 − 1

d overhead in the competitive ratio. This allows us to establish
both the optimal competitive ratio and optimal polynomial-time competitive ratio up to a factor of 2− 1

d .
We will use SC(X,S) to refer to the set cover problem with universe X and a collection of sets S. We use

WSC(X,S, w) to denote the weighted version of the problem where w : S → R+. We use k-SC and k-WSC to
denote instances where |S| ≤ k for all S ∈ S. See Appendix A.2 for further details and existing results for
set cover.

5 By this we simply mean θbc ≤ θab ≤ θ.
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Observation 6 (Equivalence between k-Min-Matching and Weighted Set Cover) Due to Assump-
tion 1, k-Min-Matching on an instance H = (V,E,w) is equivalent to k-WSC(V,E,w)

Proof. First we will show that from every matching M for Online-(k, d)-Min-Matching, we can construct
a cover with the same cost for k-WSC(V,E,w). Given any matching M in H, let U be the set of vertices that
are unmatched under M . Defining U := ∪i∈U {i}, note that E := M ∪ U covers V and

∑

S∈E
w(E) =

∑

S∈M

w(S) +
∑

S∈U
w(S) =

∑

e∈M

w(e) +
∑

i∈U

w({i}).

Next, from every cover E of V , we construct a matching in H whose cost is at most the cost of E for
k-WSC(V,E,w). Given a cover E := {S1, S2, ..., Sm}, consider the edges ei := Si \

(
∪i−1
j=1Sj

)
and the set

M := {ei}
m
i=1. By construction, ∪m

i=1Si = ∪m
i=1ei, so in particular M is also a cover of V . Furthermore,

since ei ⊂ Si, by Assumption 1, we have w(ei) ≤ w(Si), so the cost of M is no greater than the cost of
E . Finally, note that by construction, ei ∩ ej = ∅ if i 6= j. Therefore M is a matching in H whose cost for
k-Min-Matching is no more than the cost of E for k-WSC. ⊓⊔

This result allows us to leverage hardness results from set cover [19] to prove hardness results for Online-
(k, d)-Min-Matching.

Lemma 6 (Computational Complexity of Online-(k, d)-Min-Matching). Under Assumption 1, it is
NP-hard to approximate Online-(k, d)-Min-Matching within log k −O(log log k).

Proof. Observation 6 shows an equivalence between k-Min-Matching and k-WSC(X,S, w) with the additional
condition that S is downward closed, i.e. S ∈ S implies that S′ ∈ S for any subset S′ of S, and w(S′) ≤ w(S).
This additional condition is due to Assumption 1. Let S denote the downward closure of a collection of sets
S. We will show in every instance of k-SC, replacing S with S does not change the optimal solution. This
proves that all hardness results for k-SC also hold for k-Min-Matching. Since k-Min-Matching is a special
case of Online-(k, d)-Min-Matching, this allows us to inherit hardness results from k-SC to Online-(k, d)-
Min-Matching.

Now we prove that k-SC(X,S) and k-SC(X,S) have the same optimal solution. Let E be any minimum
cardinality set cover for k-SC(X,S). For any S ∈ S \ S, there exists some TS ∈ S with S ⊂ TS . Therefore,
by replacing every S ∈ E with the corresponding TS , we obtain a set cover for k-SC(X,S). Thus k-SC(X,S)
cannot have a strictly smaller optimal solution than k-SC(X,S). Hence requiring S to be downward closed
does not make k-SC easier. Trevisan proved in [19] that it is NP-hard to approximate k-SC better than
log k − O(log log k). Therefore, by the above reasoning, it is also NP-hard to approximate Online-(k, d)-
Min-Matching better than log k −O(log log k). ⊓⊔

We now leverage the relation to set cover to design polynomial time algorithms for Online-(k, d)-Min-
Matching. In Section 4.2 we presented Randomized-Batching(·,A) for Online-(k, d)-Max-Matching, which
is described by Algorithm 1. We will re-purpose this algorithm for Online-(k, d)-Min-Matching. Recall that
in Randomized-Batching, every d timesteps we use a k-Max-Matching algorithm A to compute a matching
of the most recently arrived d vertices. We now prove the main result of Theorem 6:

Main Result: LetA be an algorithm for k-WSC with competitive ratio ρ(A). Then Randomized-Batching(·,A)
is
(
2− 1

d

)
ρ(A)-competitive for Online-(k, d)-Min-Matching.

Proof. Let H = (V,E,w) be a shareability graph. For a given value of z, recall the definition the batches

{Wz,i}
n/d
i=0 as Wz,i := (Vz,i, Ez,i, w) where

Vz,i = {z + i ∗ d+ j}d−1
j=0

Ez,i = {e ∈ E : e ⊂ Vz,i} .
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Algorithm 6: Weighted-Greedy(H)

1 Input: Shareability Graph H = (V,E,w);
2 Output: Matching M ;
3 M ← ∅;
4 U ← V ;
5 for e ∈ E do

6 θe ←
w(e)
|e|

7 while U 6= ∅ do
8 e∗ ← argmine⊂U θe;
9 M ←M ∪ e∗;

10 U ← U \ e∗

11 Return M

Let M∗ be a minimum weight matching in H. Define M̃z = ∪
n/d
i=1M̃z,i where

M̃z,i := {e ∩ Vz,i : e ∈ M∗} .

Observation 7 Note that since H is a shareability hypergraph, for any e ∈ E,
∑n/d

i=0 1[e∩Vz,i 6= ∅] ≤ 2, i.e.
every edge e ∈ E intersects at most two windows.

Proof. We can show this easily by contradiction. Suppose there exists e ∈ E that intersects more than 2
windows. Then define

j = max {k : e ∩ Vz,k 6= ∅}

i = min {k : e ∩ Vz,k 6= ∅} .

It must be the case that i + 1 < j. If this is not the case, i.e. if j = i + 1, then e intersects Vu,k only if
k ∈ {i, i+ 1}, and thus it does not intersect more than 2 windows. Therefore, we know that i + 1 < j.
Finally, note that for any a ∈ Vz,i, b ∈ Vz,j , we have b > a + d. This implies that diam(e) > d, which is a
contradiction to the fact that diam(e) < d promised by H being a shareability hypergraph. ⊓⊔

Now consider the matching produced by Randomized-Batching(·,A) given Z = z. This procedure com-

putes a matching M as ∪
n/d
i=1Mz,i, where Mz,i is a set cover of Wz,i chosen by A. Recall from Observation 6

that under Assumption 1, any set cover can be converted into a matching with the same cost. We thus see
that

E [w(M)|Z = z] =

n/d∑

i=0

E [w(Mz,i)|Z = z]

(a)

≤

n/d∑

i=0

ρ(A)w(M̃z,i)

= ρ(A)

n/d∑

i=0

∑

e∈M∗

w(e ∩ Vz,i)

≤ ρ(A)
∑

e∈M∗

w(e)

n/d∑

i=0

1[e ∩ Vz,i 6= ∅].
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Where (a) is due to the following. Since M̃z,i is a matching in Wz,i, from Observation 6 we know w(Mz,i)
is at least as large as the minimum weight of a set cover of (Vz,i, Ez,i, w). Since Mz,i is the output of a

ρ(A)-competitive k-WSC algorithm, we have w(Mz,i) ≤ ρ(A)w(M̃z,i). We now take expectation over Z to
bound E[w(M)]:

E [w(M)] = EZ [E [w(M)|Z = z]]

≤ EZ


ρ(A)

∑

e∈M∗

w(e)

n/d∑

i=0

1[e ∩ VZ,i 6= ∅]




= ρ(A)
∑

e∈M∗

w(e)EZ




n/d∑

i=0

1[e ∩ VZ,i 6= ∅]




For any edge e ∈ E, let i denote its earliest vertex. Note that when Z = i mod d,
∑n/d

i=0 1[e ∩ Vz,i 6= ∅] = 1.

Therefore, P
(∑n/d

i=0 1[e ∩ Vz,i 6= ∅] = 1
)
≥ 1

d . Since we already showed that
∑n/d

i=0 1[e ∩ Vz,i 6= ∅] is always

either 1 or 2, this means that the probability it is 2 is at most 1− 1
d . Applying this gives:

E [w(M)] ≤ ρ(A)
∑

e∈M∗

w(e)EZ




n/d∑

i=0

1[e ∩ Vz,i 6= ∅]




≤ ρ(A)
∑

e∈M∗

w(e)

[
2

(
1−

1

d

)
+ 1

1

d

]

=

(
2−

1

d

) ∑

e∈M∗

w(e) =

(
2−

1

d

)
ρ(A)w(M∗).

This completes the proof. ⊓⊔

We conclude with several remarks. If A computes a minimum weight set cover, i.e. ρ(A) = 1, then
Randomized-Batching(·,A) is (2 − 1

d )-competitive by Theorem 6. However, it is well known that k-WSC is
an NP-hard problem, so there is likely no polynomial-time algorithm which can find minimum weight set
covers.

The Weighted-Greedy algorithm shown in Algorithm 6 runs in polynomial-time and is (1 + log k)-
competitive for k-WSC. This is optimal up to lower order terms, given the log k−O(log log k) lower bound of
Trevisan [19] for k-SC, which is a special case of k-WSC. The following result is obtained from Theorem 6 with
A = Weighted-Greedy. Running Algorithm 1 with Weighted-Greedy as a subroutine gives a

(
2− 1

d

)
(1 +

log k)-competitive algorithm for Online-(k, d)-Min-Matching. Lemma 6 provides a complementary lower
bound, establishing the optimal in polynomial-time competitive ratio for Online-(k, d)-Min-Matching to
be O(log k).
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