
Congestion-aware Routing and Rebalancing of Autonomous

Mobility-on-Demand Systems in Mixed Traffic

Salomón Wollenstein-Betech1, Arian Houshmand1, Mauro Salazar2,3,

Marco Pavone2, Christos G. Cassandras1, and Ioannis Ch. Paschalidis1

Abstract— This paper studies congestion-aware route-
planning policies for Autonomous Mobility-on-Demand (AMoD)
systems, whereby a fleet of autonomous vehicles provides on-
demand mobility under mixed traffic conditions. Specifically, we
first devise a network flow model to optimize the AMoD routing
and rebalancing strategies in a congestion-aware fashion by
accounting for the endogenous impact of AMoD flows on travel
time. Second, we capture reactive exogenous traffic consisting of
private vehicles selfishly adapting to the AMoD flows in a user-
centric fashion by leveraging an iterative approach. Finally,
we showcase the effectiveness of our framework with a case-
study considering the transportation sub-network in New York
City. Our results suggest that for high levels of demand, pure
AMoD travel can be detrimental due to the additional traffic
stemming from its rebalancing flows, whilst the combination of
AMoD with walking or micromobility options can significantly
improve the overall system performance.

I. INTRODUCTION

I
N THE past decade, the rapid adoption of smartphone tech-
nologies and wireless communications coupled with the

emergence of sharing economies has resulted in a widespread
use of Mobility-on-Demand (MoD) services. One of the main
operational challenges that these services face is deciding the
routing and rebalancing policies for their vehicles. Currently,
MoD systems use user-centric routing services (e.g., Waze
and Google Maps) to route their vehicles, and dynamic
pricing combined with a real-time heat-map of the users’
demand to rebalance their fleets.

Given this user-centric approach to route vehicles in which
every driver acts selfishly to minimize their own travel time,
the network reaches an equilibrium known as the Wardrop

equilibrium [1]. Unfortunately, these equilibria are in general
suboptimal compared to the system optimum, achievable
when the vehicles are coordinated by a central controller
in a system-centric fashion.

Recently, the combination of MoD services with Con-
nected and Automated Vehicles (CAVs) resulting into
Autonomous Mobility-on-Demand (AMoD) systems (see
Fig. 1) has attracted the interest of academia and industry.
These fleets of CAVs providing on-demand mobility are
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Fig. 1: AMoD network (supergraph) consisting of two digraphs for the
road (blue) and the walking (orange) network; the black arrows represent
switching arcs. AMoD vehicles are in black and private vehicles in grey.

expected to reduce labor costs, accidents, harmful emis-
sions [2], and increase the efficiency of the fleets’ operation
as they can be centrally controlled [3]. Considering high
penetration rates of AMoD in the mobility ecosystem, the
routing and rebalancing policies designed to centrally control
the vehicles will affect the congestion levels and, in turn, the
routing decisions of privately owned vehicles. In this context,
this paper studies system-optimal routing and rebalancing
strategies for AMoD systems in mixed-traffic conditions.

Related literature: AMoD systems and rebalancing poli-
cies have been extensively studied using simulation mod-
els [4]–[6], queuing-theoretical models [7], [8], and network-
flow models [9], [10]. In [4], the rebalancing of an AMoD
system is addressed using a data-driven real-time parametric
controller. Conversely, in [9], the rebalancing problem is
studied using a steady-state fluid model. Although [4] and [9]
seek to find effective rebalancing policies, they do not
consider the impact of the AMoD routes on congestion, but
rather assume travel times on the road links to be constant.

Little work has been done to solve the congestion-aware
routing and rebalancing problem jointly. Most approaches
leverage approximations of the travel time function relating
traffic density to travel times to address the non-convex
nature of the problem. The authors of [10] use a threshold
model to show that under relatively mild assumptions rebal-
ancing vehicles does not lead to an increase in congestion,
suggesting that the joint problem can be decoupled without
a substantial impact on the solution’s quality. Furthermore,
a piecewise-affine approximation of the travel time function
was introduced in [11] in order to relax the problem to a
quadratic program. Yet, depending on the congestion levels,
both approaches may lack in accuracy. Moreover, [10] and
[11] assume a static exogenous traffic flow that does not
change for varying AMoD routes. Finally, reactive private
traffic was modeled in [12] to show that under a system-
centric optimal-routing strategy both CAVs and non-CAVs
can achieve better performance in terms of travel time and



energy savings. However, such an approach neither captures
rebalancing effects nor intermodal routing possibilities.

Statement of contribution: This paper bridges the gap
between [11] and [12]. In particular, we study how system-
optimal routing of AMoD services can affect the system-level
performance in mixed-traffic (presence of AMoD and private
vehicles in the road network). Similar to [11], we assume that
AMoD users can use multiple modes of transportation, i.e.,
autonomous taxi rides and walking. In addition, we assume
the private vehicle flow to be reactive, meaning that private
vehicles will choose their routes selfishly considering the
congestion stemming from the AMoD flow. To this end,
we use the framework developed in [12] for modeling the
interaction between AMoD and private vehicles. Moreover,
we devise an approximation of the travel time function that
is more accurate than the one proposed in [11], whilst still
maintaining the quadratic convex structure of the problem.
The proposed model can efficiently compute congestion-
aware routing and rebalancing strategies for a given demand
and road network topology. Finally, with this framework
at hand, we analyze the trade-offs between the benefits of
system-centric routing and the cost of rebalancing, and inves-
tigate the achievable benefits stemming from the combination
of AMoD with walking and micromobility options.

Organization: The rest of the paper is organized as fol-
lows: In Section II we provide preliminaries of the model
and its formulation. In Section III we develop a convex
approximation of the original problem to overcome its non-
convex nature. Then, we present experiments using a New
York City case-study in Section IV. Finally, in Section V we
conclude the paper and point to future research directions.

Notation: All vectors are column vectors and denoted by
bold lowercase letters. We use “prime” to denote transpose,
and use 1 to denote the indicator function.

II. PROBLEM FORMULATION

In this section, we present macroscopic models for plan-
ning the routing and rebalancing strategies used throughout
the paper. First, we introduce the notation and preliminaries
of transportation modeling. With this at hand, we model the
system-centric routing and rebalancing of AMoD, followed
by the user-centric model for the private vehicles. Finally,
we formulate the joint problem of congestion-aware routing
and rebalancing of AMoD in mixed traffic.

A. Preliminaries

Consider an AMoD system which provides mobility ser-
vices through two modes of transportation: walking and
autonomous taxi-rides. To model the system, let G be a
network (supergraph) composed of two layers, a road and a
walking network. We denote by GR = (VR,AR) the road
network and by GW = (VW,AW) the pedestrian graph
where (VR,AR) and (VW,AW) are the sets of intersections
(vertices) and streets (arcs) in the road and in the pedestrian
network, respectively. Then, the supergraph G = (V,A)
is composed of GR and GW, and a set of switching arcs
AS ⊂ VR × VW ∪ VW × VR that connect the pedestrian
and the road network layers to allow AMoD users to change
modes (see Fig. 1). Formally G is composed of the set of
vertices V = VR ∪ VW and arcs A = AR ∪ AW ∪ AS.

In order to model the demanded trips, let w = (ws, wt)
denote an Origin-Destination (OD) pair and dw ≥ 0 the
demand rate at which customers request service per unit
time from origin ws to destination wt. Let W be the total
number of OD pairs and W = {wk : wk = (wsk, wtk), k =
{1, ...,W}} the set of OD pairs. Let a vectorized version
of the demand be g = (dw : w ∈ W), which denotes the
demand flows for all OD pairs.

To keep track of AMoD users’ flow on an arc, we let
xw

ij denote the AMoD flow induced by OD pair w in link

(i, j) ∈ A. Given that the AMoD needs to rebalance its
vehicles to ensure service, we let xr

ij be the rebalancing

flow of empty vehicles on road (i, j). Finally, to consider
the interaction between the AMoD provider and the other
vehicles, we let xp

ij be the self-interested private vehicle

flow on (i, j). We use the term private as we assume
that self-interested users must arrive at their destination
with their vehicle and do not have the option of switching
transportation mode (i.e., walking). To simplify notation, we
let the AMoD user flow on any edge (road, walking, or
switching) to be xu

ij =
∑

w∈W xw

ij , ∀(i, j) ∈ A, and the
total flow on a link to be

xij = xu
ij + xr

ij + xp
ij , ∀(i, j) ∈ A. (1)

Note that neither rebalancing nor the private vehicle flow
should exist on the switching or walking arcs. Hence, for
those arcs we set xr

ij = xp
ij = 0, ∀(i, j) ∈ AS ∪ AW.

Let tij(x) : R
|A|
+ 7→ R+ be the travel time function, i.e.,

the time it takes to cross link (i, j) given the flow on that link.
Using the same function structure as in [13], we characterize
tij as a function of the flow xij with

tij(xij) = t0ijf(xij/mij), (2)

where mij is the road’s capacity, f(·) is a strictly increasing,
positive, and continuously differentiable function, and t0ij is

the free-flow travel time on link (i, j). We consider functions
with f(0) = 1, which ensures that if there is no flow on
the link, the travel time tij is equal to the free-flow travel
time. Typically, travel time functions used by urban planners
and researchers are polynomials which are hard to estimate
[14]. A widely used function is the Bureau of Public Roads

(BPR) travel time function [15] denoted by tij(xij) = t0ij(1+
0.15(xij/mij)

4). Throughout this paper, we use this function
to decide the routes of AMoD users and private vehicles,
given the network flow levels. For AMoD users who walk,
we consider a constant travel time (independent of the flow)
on each link.

B. System-centric Routing and Rebalancing of AMoD

Recall that our goal is to find the system-centric
congestion-aware routes and the rebalancing policy of an
AMoD provider. The objective consists of minimizing the
cost composed of the overall travel time of AMoD users,
and a regularizer penalizing rebalancing flow.

We formulate the problem similar to [11] where we
address it from an AMoD perspective. Let du

w
be customer

requests to the AMoD provider traveling from origin ws to
destination wt, and let the total link flow be x = {xw}w∈W∪
xr where we use bold notation x to represent a vector



containing all the elements of xij . The problem we aim to
solve is then expressed by

min
x

J(x) :=
∑

(i,j)∈A

tij(xij)x
u
ij + c

′
x
r

(3a)

s.t.
∑

i:(i,j)∈A

x
w

ij + 1j=wsd
u
w

=
∑

k:(j,k)∈A

x
w

jk + 1j=wtd
u
w
,

∀w ∈ W, j ∈ V, (3b)
∑

i:(i,j)∈AR

(

x
r
ij + x

u
ij

)

=
∑

k:(j,k)∈AR

(

x
r
jk + x

u
jk

)

, (3c)

∀j ∈ VR,

x ≥ 0. (3d)

The constraints (3b) take care of flow conservation and
demand compliance as in a multi-commodity transportation
problem (including flow conservation on the walking net-
work), constraints (3c) ensure the rebalancing of the AMoD
fleet (only on the road network), and (3d) restrict the flows
to non-negative values. By solving (3) we find the optimal
AMoD user and rebalancing flows. Note that the AMoD
users’ flow may consist of both walking or vehicle options.

The objective J is composed of two terms. The first term
considers the total travel time of AMoD users. This term
evaluates the travel time function tij(xij) with respect to the
total flow (see (1)) which includes variables corresponding
to private vehicle flow xp

ij (assumed to be fixed), and the
rebalancing flow xr

ij . Hence, when taking the product of

tij(xij)x
u
ij we obtain a non-convex function. To address

the non-convexity issue, we will use a piecewise-affine
approximation of tij(xij), further presented in Section III.
The second term, c′xr, acts as a linear reguralizer whose
purpose is to penalize rebalancing flows. This will ensure that
a cost for rebalancing of the fleet is taken into account. In this
work, we use c = λt0. One can think of this reguralizer as
a linear travel time function with respect to the rebalancing
flow (since (λt0)′xr). Therefore, if one lets λ be high with
respect to the overall travel time, the reguralizer term will
dominate the objective. Hence, we use a small λ in order
to guide the rebalancing flow through good paths without
dominating the AMoD user routing decisions.

C. Private Vehicle Flow Modeling

Aiming to understand the interaction between a system-
centric AMoD fleet and self-interested private vehicles, we
assume some rationale behind private vehicle decisions. To
model this class of vehicles we use the user-centric approach
as in the Traffic Assignment Problem (TAP) [16]. This model
finds, given OD demands, the flows in the network which
achieve a Wardrop equilibrium [1].

Given a demand gp for this type of vehicle, each private
user decides its route such that it minimizes its own travel
time. Moreover, we impose that private vehicles can travel
exclusively through the road network GR. In other words, we
do not allow private vehicles to change their transportation
mode to walking.

Let xp,w
ij be the flow on link (i, j) induced by private

vehicle demand dp
w

of OD pair w. Then, we assume pri-
vate vehicles decide their routes by using the user-centric
approach,

min
x
p≥0

∑

(i,j)∈AR

xij
∫

xu
ij

+xr
ij

tij(s)ds (4a)

s.t.
∑

i:(i,j)∈AR

x
p,w
ij + d

p
w
1j=ws =

∑

k:(j,k)∈AR

x
p,w

jk + d
p
w
1j=wt ,

∀w ∈ W, j ∈ VR. (4b)

Notice that this version of the user-centric TAP is slightly
different from the classical [16], given that it considers the
AMoD flow in its objective (see the integral’s limits in (4a)).

To solve this problem we assume that the AMoD flow
is fixed and private vehicles plan their routes consider-
ing AMoD flows as exogenous. When working with this
restriction, we can use any efficient TAP algorithm (e.g.
Frank-Wolfe) [16] to solve (4). Let us use the shorthand
notation of TAP(g,xe) to indicate the TAP with xe being
the exogenous flow. We denote a solution to (4) by xp =
minTAP(gp,xu + xr).

D. Nested Problem for AMoD in Mixed Traffic

Critically, AMoD flows react to the decisions made by
private vehicles and these, in turn, react to private vehicles’
flows. Hence, whenever private vehicles make their routing
decisions, the AMoD fleet adjusts theirs, and vice versa.
This creates a nested optimization problem between these
two classes of vehicles. To give a formal definition of
this game-theoretical problem we use the following bi-level
optimization problem formulation

min
{xw}

w∈W ,xr,xp
J(x) (5a)

s.t. (3b) − (3d), (5b)

x
p ∈ argminTAP(gp

,x
u + x

r), (5c)

which has the same structure as (3) with the additional
constraint (5c). The latter constraint refers to the TAP (the
lower-level problem), which depends on the solution of
the full problem (upper-level). Note that the upper-level
problem is minimizing over the AMoD users, rebalancing,
and privately-owned vehicle flows.

This phenomenon has been identified and is often de-
scribed in a Stackelberg game framework. In this setting,
there is a leader agent (in our case the AMoD manager) and
a follower (the private vehicles). In transportation networks,
Korilis et al. [17] derived sufficient conditions to solve this
problem when the network has parallel links. Under a similar
setting, Lazar et al. [18] have analyzed the links’ capacity
and price of anarchy for mixed traffic. Although these models
enable a better understanding of the phenomenon, they are
not applicable to general networks and one can hardly assess
the benefits of system-centric routing in realistic networks.
To address this limitation, we will leverage the iterative
approach [12] to compute an equilibrium between the private
vehicles’ and AMoD flows.

Discussion: A few comments are in order. First, we
assume the demand to be time-invariant. This assumption
is in line with densely populated urban environments, where
requests change more slowly compared to the average du-
ration of a trip. Second, we use the BPR function to relate
traffic flows to travel time and allow flows to be fractional.
While not capturing microscopic traffic phenomena, these
approximations stem from established modeling assumptions
suiting the macroscopic perspective of our study.

III. AMOD ROUTING AND REBALANCING PROBLEM

As mentioned earlier, the problem of routing and rebal-
ancing stated in (3) is non-convex for typical travel time



functions such as BPR. This happens due to the term
t(xij)x

r
ij in the objective function which takes products of

the form k(xu
ij)

nxr
ij with k and n being a constant and

the order of the polynomial, respectively. To overcome this
issue, we take the suggested piecewise-affine approximation
in [19] and extend it to a 3-line approximation. We present
the derivation of the 3-line segment case (CARS3) followed
by a disjoint formulation of the problem which will serve as
a benchmark for comparison.

A. 3-line Piecewise-affine Approximation (CARS3)

We approximate the latency function (Eq. (2)) using a
piecewise-affine function as shown in Fig. 2. Note that
the 2-line approximation (CARS) presented in [11] might
not provide a very accurate estimate of travel times when
the flow is around the capacity level (Fig. 2), therefore,
we approximate the travel time function using a 3-line
piecewise-affine function. To construct this approximation,
we follow a similar approach as in the 2-line case [11]. Let
the piecewise-linear function be

t̂ij(x) =















at
0
ij , if x < θij

at
0
ij+bij(x− θ

(1)
ij ), if θ

(1)
ij ≤ x ≤ θ

(2)
ij

at
0
ij+bij(θ

(2)
ij − θ

(1)
ij )+cij(x− θ

(2)
ij ), if θ

(2)
ij ≤ x,

where a, bij and cij are constant values with a = 1; bij =
β/mij ; and cij = σ/mij . The slope of the function is β

for xij ∈ (θ
(1)
ij , θ

(2)
ij ) and σ for xij > θ

(2)
ij . Moreover, θ(1)

and θ(2) are the normalized (θ(1) = θ
(1)
ij /mij), non-smooth

thresholds of the travel time function. Assuming θ
(2)
ij ≥ θ

(1)
ij

and σ, β > 0 we define two new sets of slack variables as

ε
(1)
ij = max{0, xij − θ

(1)
ij − ε

(2)
ij }, (7a)

ε
(2)
ij = max{0, xij − θ

(2)
ij }, (7b)

where ε
(1)
ij is the excess flow after θ

(1)
ij and up to θ

(2)
ij −θ

(1)
ij ,

and ε
(2)
ij is the excess flow after θ

(2)
ij . Note that ε

(1)
ij is defined

in terms of ε
(2)
ij to ensure that it is upper-bounded by θ

(2)
ij −

θ
(1)
ij . Using these definitions we are ready to analyze and

propose a tractable cost function. To this end, we focus our
attention on an element-wise analysis of the first term (non-
convex part) of objective (3a) using t̂ instead of t, which we

call Ĵij .

Ĵij = t̂ij(xij)x
u
ij (8a)

= (at0ij + bijt
0
ijε

(1)
ij + cijt

0
ijε

(2)
ij )xu

ij (8b)

= at
0
ijx

u
ij + bijt

0
ijε

(1)
ij (ε

(1)
ij + ε

(2)
ij + θ

(1)
ij − x

r
ij − x

e
ij)

+ cijt
0
ijε

(2)
ij (ε

(2)
ij + θ

(2)
ij − x

r
ij − x

e
ij) (8c)

≤ at
0
ijx

u
ij + bijt

0
ijε

(1)
ij (ε

(1)
ij + ε

(2)
ij + θ

(1)
ij − x

e
ij)

+ cijt
0
ijε

(2)
ij (ε

(2)
ij + θ

(2)
ij − x

e
ij), (8d)

where in (8c) we express xu
ij by using a combination

of (1) and (7); in the last step (8d), we add to Ĵij the

term bijt
0
ijεijx

r
ij . By adding this term to Ĵ , we consider a

relaxation of the original problem (i.e., minimizing an upper

bound of Ĵ (8d) as opposed to the original Ĵ in (8a)). This
relaxation allows the proposed objective to be quadratic.

Moreover, even though the quadratic term bijt
0
ijε

(1)
ij ε

(2)
ij is

not guaranteed to be convex, we have that ε
(1)
ij ε

(2)
ij = 0
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Fig. 2: Travel time function approximation.

if xij < θ
(2)
ij . Additionally, notice that when xij > θ

(2)
ij

the residual flow ε
(1)
ij = (θ

(2)
ij − θ

(1)
ij ). Therefore, we can

replace bijt
0
ijε

(1)
ij ε

(2)
ij with bijt

0
ij(θ

(2)
ij − θ

(1)
ij )ε

(2)
ij and write

the objective function of the QP as

JQP
ij = at0ijx

u
ij + bijt

0
ijε

(1)
ij (ε

(1)
ij + θ

(1)
ij − xe

ij)

+ cijt
0
ijε

(2)
ij (ε

(2)
ij + θ

(2)
ij − xe

ij) (9)

+ bijt
0
ij(θ

(2)
ij − θ

(1)
ij )ε

(2)
ij

= t̂ij(xij)x
u
ij + t̂a=0

ij (xij)x
r
ij ,

where t̂a=0(x) is equal to t̂(x) with parameter a = 0, and

where ε
(1)
ij and ε

(2)
ij are linearly constrained as follows:

ε
(1)
ij ≥ 0, ε

(1)
ij ≥ xij − θ

(1)
ij − ε

(2)
ij , (10a)

ε
(2)
ij ≥ 0, ε

(2)
ij ≥ xij − θ

(2)
ij . (10b)

By analyzing this convex approximation JQP with both

J and Ĵ , we observe that the implication of adding the
extra term is taking into account congestion-aware rebalanc-

ing when the flow is greater than θ
(1)
ij . Nevertheless, this

congestion-aware routing of the rebalancing vehicles has a
lower impact in JQP than the AMoD users flows since a = 0
in t̂a=0

ij (xij)x
r
ij , i.e., the function starts to increase from an

initial point equal to zero instead of t0ij . Considering that the
number of rebalancing vehicles has a minor impact on J in
comparison to road congestion, and the fact that it converges
to zero for perfectly symmetric demand distributions [10],
JQP can be used as a model to estimate the total travel
time on road arcs. Our empirical studies show that, when no
rebalancing is considered, the difference between the solution
J∗ and J evaluated with the optimal solution of the Quadratic
Program (QP) is typically less than 5% (Fig. 5). In contrast
with the previous method to the original CARS model in
[19], we get a better convex approximation of the original
problem. To summarize, the QP problem is to minimize (9)
subject to (3b)-(3d), and (10a)-(10b).

An important trade-off worth noting is the difference
between CARS and CARS3. Even though CARS3 provides a
better approximation of the cost function and hence a better
solution to the problem, it requires |A| additional variables
and linear constraints.

B. Disjoint Strategy

Another way of addressing the system-centric routing and
re-balancing problem is to solve the problem using a disjoint
method instead of the joint approach. That is, to solve the
system-centric problem for AMoD users first, and then solve
the rebalancing problem formulated as a linear program (LP).








