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Abstract— The design of autonomous vehicles (AVs) and the
design of AV-enabled mobility systems are closely coupled.
Indeed, knowledge about the intended service of AVs would
impact their design and deployment process, whilst insights
about their technological development could significantly affect
transportation management decisions. This calls for tools to
study such a coupling and co-design AVs and AV-enabled
mobility systems in terms of different objectives. In this
paper, we instantiate a framework to address such co-design
problems. In particular, we leverage the recently developed
theory of co-design to frame and solve the problem of designing
and deploying an intermodal Autonomous Mobility-on-Demand
system, whereby AVs service travel demands jointly with public
transit, in terms of fleet sizing, vehicle autonomy, and public
transit service frequency. Our framework is modular and
compositional, allowing one to describe the design problem as
the interconnection of its individual components and to tackle it
from a system-level perspective. To showcase our methodology,
we present a real-world case study for Washington D.C., USA.
Our work suggests that it is possible to create user-friendly
optimization tools to systematically assess costs and benefits of
interventions, and that such analytical techniques might gain a
momentous role in policy-making in the future.

I. INTRODUCTION

Arguably, the current design process for AVs largely suf-

fers from the lack of clear, specific requirements in terms of

the service such vehicles will be providing. Yet, knowledge

about their intended service (e.g., last-mile versus point-to-

point travel) might dramatically impact how the AVs are

designed, and, critically, significantly ease their development

process. For example, if for a given city we knew that for

an effective on-demand mobility system autonomous cars

only need to drive up to 25 mph and only on relatively

easy roads, their design would be greatly simplified and

their deployment could certainly be accelerated. At the same

time, from the system-level perspective of transportation

management, knowledge about the trajectory of technology

development for AVs would certainly impact decisions on

infrastructure investments and provision of service. In other

words, the design of the AVs and the design of a mobility
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3Department of Aeronautics and Astronautics, Stanford University,

pavone@stanford.edu
4Control Systems Technology Group, Eindhoven University of Technol-

ogy, m.r.u.salazar@tue.nl
A preliminary version of this paper was presented at the 99th Annual

Meeting of the Transportation Research Board [1].
This research was supported by the National Science Foundation under

CAREER Award CMMI-1454737, the Toyota Research Institute (TRI), and
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system leveraging AVs are intimately coupled. This calls for

methods to reason about such a coupling, and in particular to

co-design the AVs and the associated AV-enabled mobility

system. A key requirement in this context is the ability to

account for a range of heterogeneous objectives that are often

not directly comparable (consider, for instance, travel time

and emissions).

Accordingly, the goal of this paper is to lay the foundations

for a framework through which one can co-design future AV-

enabled mobility systems. Specifically, we show how one

can leverage the recently developed mathematical theory of

co-design [2]–[4], which provides a general methodology to

co-design complex systems in a modular and compositional

fashion. This tool delivers the set of rational design solutions

lying on the Pareto front, allowing one to reason about

costs and benefits of the individual design options. The

framework is instantiated in the setting of co-designing

intermodal Autonomous Mobility-on-Demand (AMoD) sys-

tems [5], whereby fleets of self-driving vehicles provide on-

demand mobility jointly with public transit. Aspects subject

to co-design include fleet size, AV-specific characteristics,

and public transit service frequency.

A. Literature Review

Our work lies at the interface of the design of urban

public transportation services and the design of AMoD

systems. The first research stream is reviewed in [6], [7], and

comprises strategic long-term infrastructure modifications

and operational short-term scheduling. The joint design of

traffic network topology and control infrastructure has been

presented in [8]. Public transportation scheduling has been

solved jointly with the design of the transit network in a

passengers’ and operators’ cost-optimal fashion in [9], using

demand-driven approaches in [10], and in an energy-efficient

way in [11]. However, these works only focus on the public

transit system and do not consider its joint design with

an AMoD system. The research on the design of AMoD

systems is reviewed in [12] and mainly pertains their fleet

sizing. In this regard, studies range from simulation-based

approaches [13]–[16] to analytical methods [17]. In [18],

the authors jointly design the fleet size and the charging

infrastructure, and formulate the arising design problem as

a mixed integer linear program. The authors of [19] solve

the fleet sizing problem together with the vehicle allocation

problem. Finally, [20] co-designs the AMoD fleet size and its

composition. More recently, the joint design of multimodal

transit networks and AMoD systems was formulated in [21]

as a bilevel optimization problem and solved with heuristics.
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Overall, the problem-specific structure of existing design

methods for AMoD systems is not amenable to a modular

and compositional problem formulation. Moreover, previous

work does not capture important aspects of AV-enabled

mobility systems, such as other transportation modes and

AV-specific design parameters (e.g., the level of autonomy).

B. Statement of Contribution

In this paper we lay the foundations for the systematic

study of the design of AV-enabled mobility systems. Specif-

ically, we leverage the mathematical theory of co-design [2]

to devise a framework to study the design of intermodal

AMoD (I-AMoD) systems in terms of fleet characteristics

and public transit service, enabling the computation of the

rational solutions lying on the Pareto front of minimal travel

time, transportation costs, and emissions. Our framework

allows one to structure the design problem in a modular

way, in which each different transportation option can be

“plugged in” in a larger model. Each model has minimal

assumptions: Rather than properties such as linearity and

convexity, we ask for very general monotonicity assumptions.

For example, we assume that the cost of automation increases

monotonically with the speed achievable by the AV. We are

able to obtain the full Pareto front of rational solutions, or,

given policies, to weigh incomparable costs (such as travel

time and emissions) and to present actionable information

to the stakeholders of the mobility ecosystem. We show-

case our methodology through a real-world case study of

Washington D.C., USA. We show how, given the model, we

can easily formulate and answer several questions regarding

the introduction of new technologies and investigate possible

infrastructure interventions.

C. Organization

The remainder of this paper is structured as follows:

Section II reviews the mathematical theory of co-design.

Section III presents the co-design problem for AV-enabled

mobility systems. We showcase our approach with real-

world case studies for Washington D.C., USA, in Section IV.

Section V concludes the paper with a discussion and an

overview on future research directions.

II. BACKGROUND

This paper builds on the mathematical theory of co-design,

presented in [2]. In this section, we present a review of the

main contents needed for this work.

A. Orders

We will use basic facts from order theory, which we review

in the following.

Definition II.1 (Poset). A partially ordered set (poset) is a

tuple 〈P,�P〉, where P is a set and �P is a partial order,

defined as a reflexive, transitive, and antisymmetric relation.

Given a poset, we can formalize the idea of “Pareto front”

through antichains.

Definition II.2 (Antichains). A subset S ⊆P is an antichain

iff no elements are comparable: For x,y ∈ S, x � y implies

x = y. We denote by AP the set of all antichains in P .

Definition II.3 (Directed set). A subset S ⊆ P is directed

if each pair of elements in S has an upper bound: For all

a,b ∈ S, there exists a c ∈ S such that a � c and b � c.

Definition II.4 (Completeness). A poset is a complete partial

order (CPO) if each of its directed subsets has a supremum

and a least element.

For instance, the poset 〈R+,≤〉, with R+ := {x∈R |x≥ 0},

is not complete, as its directed subset R+ ⊆R+ does not have

an upper bound (and therefore a supremum). Nonetheless, we

can make it complete by artificially adding a top element ⊤,

i.e., by defining 〈R+,≤〉 with R+ := R+ ∪{⊤} and a ≤ ⊤
for all a ∈ R+. Similarly, we can complete N to N.

In this setting, Scott-continuous maps will play a key role.

Intuitively, Scott-continuity can be understood as a stronger

notion of monotonicity.

Definition II.5 (Scott continuity). A map f : P → Q be-

tween two posets 〈P,�P〉 and 〈Q,�Q〉 is Scott-continuous

iff for each directed set D ⊆ P the image f (D) is directed

and sup f (D) = f (supD).

B. Mathematical Theory of Co-Design

We start by presenting design problems with implementa-

tion (DPIs), which can then be composed and interconnected

to form a co-design problem with implementation (CDPI).

Definition II.6 (DPI). A DPI is a tuple 〈F,R,I,exe,eva〉:

• F is a poset, called functionality space;

• R is a poset, called resource space;

• I is a set, called implementation space;

• the map exe : I → F maps an implementation to the

functionality it provides;

• the map eva : I → R, maps an implementation to the

resources it requires.

Given a DPI we can define a map which, given a function-

ality f ∈F, returns all the non-comparable resources (i.e., the

antichain) which provide f.

Definition II.7 (Functionality to resources map). Given a

DPI 〈F,R,I,exe,eva〉 define the map h : F → AR as

h :F → AR

f 7→ min
�R

{eva(i) | i ∈ I∧ f � exe(i)}. (1)

In particular, if a functionality is infeasible, then h(f) = /0.

We now turn our attention to “monotone” DPIs.

Definition II.8 (Monotone DPI). We say a DPI

〈F,R,I,exe,eva〉 is monotone if:

1) The posets F and R are CPOs.

2) The map h (see Definition II.7) is Scott-continuous.

Individual DPIs can be composed in series (i.e., the

functionality of a DPI is the resource of a second DPI) and in
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D. Energy Consumption

We compute the energy consumption of AVs for each road

link considering an urban driving cycle, scaled so that the

average speed vavg,cycle matches the free-flow speed on the

link. The energy consumption is then scaled as

ei j = ecycle · si j/scycle ∀(i, j) ∈ AR. (7)

For the public transportation system, we assume a constant

energy consumption per unit time. This approximation is

reasonable in urban environments, as the operation of the

public transportation system is independent from the num-

ber of customers serviced, and its energy consumption is

therefore customer-invariant.

E. Fleet Size

We consider a fleet of nV,max AVs. In a time-invariant

setting, the number of vehicles on arc (i, j)∈AR is expressed

as the product of the total vehicles flow on the arc and its

travel time. Therefore, we constrain the number of used AVs

as

nV,u = ∑
(i, j)∈AR

ftot (i, j) · ti j ≤ nV,max. (8)

F. Discussion

A few comments are in order. First, we assume the demand

to be time-invariant and allow flows to have fractional values.

This assumption is in line with the mesoscopic and system-

level planning perspective of our study. Second, we model

congestion effects using a threshold model. This approach

can be interpreted as a municipality preventing AVs to exceed

the critical flow density on road arcs. AVs can be therefore

assumed to travel at free-flow speed [22]. This assumption is

realistic for an initial low penetration of AMoD systems in

the transportation market, especially when the AV fleet is of

limited size. Finally, we allow AVs to transport one customer

at the time [23].

G. Co-Design Framework

We integrate the I-AMoD framework presented in Sec-

tion III-A in the co-design formalism, allowing one to

decompose the CDPI of a complex system in the DPIs of

its individual components in a modular, compositional, and

systematic fashion. We aim at computing the antichain of

resources, quantified in terms of costs, average travel time per

trip, and emissions required to provide the mobility service to

a set of customers. In order to achieve this, we decompose

the CDPI in the DPIs of the individual AVs (Section III-

G.1), of the AV fleet (Section III-G.3), and of the public

transportation system (Section III-G.2). The interconnection

of the presented DPIs is presented in Section III-G.4.

1) The Autonomous Vehicle Design Problem: The AV DPI

consists of selecting the maximal speed of the AVs. Under

the rationale that driving safely at higher speed requires more

advanced sensing and algorithmic capabilities, we model the

achievable speed of the AVs vV,a as a monotone function

of the vehicle fixed costs CV,f (resulting from the cost of

the vehicle CV,v and the cost of its automation CV,a) and

of the mileage-dependent operational costs CV,o (accounting

for maintenance, cleaning, energy consumption, depreciation,

and opportunity costs [24]). In this setting, the AV DPI

provides the functionality vV,a and requires the resources CV,f

and CV,o. Consequently, the functionality space is FV = R+,

and the resources space is RV = R+×R+.

2) The Subway Design Problem: We design the public

transit infrastructure by means of the service frequency

introduced in Section III-B. Specifically, we assume that the

service frequency ϕ j scales linearly with the size of the train

fleet nS as

ϕ j/ϕ j,base = nS/nS,base. (9)

We relate a train fleet of size nS to the fixed costs CS,f

(accounting for train and infrastructural costs) and to the

operational costs CS,o (accounting for energy consumption,

vehicles depreciation, and train operators’ wages). Given

the passenger-independent public transit operation in today’s

cities, we reasonably assume the operational costs CS,o to be

mileage independent and to only vary with the size of the

fleet. Formally, the number of acquired trains nS,a = nS −
nS,base is a functionality, whereas CS,f and CS,o are resources.

The functionality space is FS = N and the resources space

is RS = R+×R+.

3) The I-AMoD Framework Design Problem: The

I-AMoD DPI considers demand satisfaction as a function-

ality. Formally, FO = 2V ×V ×R+ with the partial order �FO

defined by D1 := {(o1
i ,d

1
i ,α

1
i )}

M1
i=1 �FO

{(o2
i ,d

2
i ,α

2
i )}

M2
i=1 =:

D2 iff for all (o1,d1,α1)∈D1 there is some (o2,d2,α2)∈D2

with o1 = o2, d1 = d2, and α2
i ≥α1

i . In other words, D1 �FO

D2 if every travel request in D1 is in D2 too. To successfully

satisfy a given set of travel requests, we require the following

resources: (i) the achievable speed of the AVs vV,a, (ii) the

number of available AVs per fleet nV,max, (iii) the number of

trains nS,a acquired by the public transportation system, and

(iv) the average travel time of a trip

tavg :=
1

αtot
· ∑

m∈M ,(i, j)∈A

ti j · fm (i, j) , (10)

with αtot := ∑m∈M αm, (v) the total distance driven by the

AVs per unit time

sV,tot := ∑
(i, j)∈AR

si j · ftot (i, j) , (11)

(vi) the total AVs CO2 emissions per unit time

mCO2,V,tot := γ · ∑
(i, j)∈AR

ei j · ftot (i, j) , (12)

where γ relates the energy consumption and the CO2 emis-

sions. We assume that customers’ trips and AMoD rebalanc-

ing strategies are chosen to maximize customers’ welfare,

defined through the average travel time tavg. Hence, we link

the functionality and resources of the I-AMoD DPI through

the following optimization problem:

min
fm(·,·)≥0,
f0(·,·)≥0

tavg =
1

αtot
∑

m∈M ,(i, j)∈A

ti j · fm (i, j)

s.t. Eq.(2), Eq.(6), Eq.(8).

(13)
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Formally, FO = R+, and RO = R+×N×N×R+×R+×R+.

Remark. In general, the optimization problem (13) might

possess multiple optimal solutions, making the relation be-

tween resources and functionality ill-posed. To overcome this

subtlety, if two solutions share the same average travel time,

we select the one incurring in the lowest mileage.

4) The Monotone Co-Design Problem: The functionality

of the system is to provide mobility service to the customers.

Formally, the functionality provided by the CDPI is the set of

travel requests. To provide the mobility service, the following

three resources are required. First, on the customers’ side, we

require an average travel time, defined in (10). Second, on

the municipality side, the resource is the total transportation

cost of the intermodal mobility system. Assuming an average

vehicles’ life lV, an average trains’ life lS, and a baseline

subway fleet of nS,base trains, we express the total costs as

Ctot =CV +CS, (14)

where CV is the AV-related cost

CV =
CV,f

lV
·nV,max +CV,o · sV,tot, (15)

and CS is the public transit-related cost

CS =
CS,f

lS
·nS,a +CS,o. (16)

Third, on the environmental side, the resources are the total

CO2 emissions

mCO2,tot = mCO2,V,tot +mCO2,S ·nS, (17)

where mCO2,S represents the CO2 emissions of a single train.

Formally, the set of travel requests {ρm}m∈M is the CDPI

functionality, whereas tavg, Ctot, and mCO2,tot are its resources.

Consistently, the functionality space is F = R+ and the

resources space is R =R+×R+×R+. Note that the resulting

CDPI (Figure 2) is indeed monotone, since it consists of the

interconnection of monotone DPIs [2].

5) Discussion: A few comments are in order. First, we

lump the autonomy functionalities in its achievable velocity.

We leave to future research more elaborated AV models,

accounting for instance for accidents rates [25] and for

safety levels. Second, we assume the service frequency

of the subway system to scale linearly with the number

of trains. We inherently rely on the assumption that the

existing infrastructure can homogeneously accommodate the

acquired train cars. To justify the assumption, we include

an upper bound on the number of potentially acquirable

trains in our case study design in Section IV. Third, we

highlight that the I-AMoD framework is only one of the

many feasible ways to map total demand to travel time, costs,

and emissions. Specifically, practitioners can easily replace

the corresponding DPI with more sophisticated models (e.g.,

simulation-based frameworks like AMoDeus [26]), as long as

the monotonicity of the DPI is preserved. In our setting, we

conjecture the customers’ and vehicles’ routes to be centrally

controlled by the municipality in a socially-optimal fashion.

Implicitly, we rely on the existence of effective incentives

I-AMoD

Vehicle Subway� ��

×�

�

×�

�× �

�� +

�

+ � × �

�

+

+

� + �

vV,a nS,asV,tot

CV,oCV,f

co-design

constraint

CS,oCS,f

nV,max

Ctot

αtot

mCO2,V,tot

nS

mCO2,S

mCO2,tot
tavg

lV

lS

total cost average

travel time

total

emissions

total

request rate

Fig. 2: Schematic representation of the CDPI. In solid green the provided
functionalities and in dashed red the required resources. The edges represent
co-design constraints: The resources required by a first design problem are
the lower bound for the functionalities provided by the second one.

aligning private and societal interests. The study of such

incentives represents an avenue for future research. Fourth,

we assume a homogenous fleet of AVs. Nevertheless, our

model is readily extendable to capture heterogeneous fleets.

Finally, we consider a fixed travel demand, and compute

the antichain of resources providing it. Nonetheless, our

formalization can be readily extended to arbitrary demand

models preserving the monotonicity of the CDPI (accounting

for instance for elastic effects). We leave this topic to future

research.

IV. RESULTS

In this section, we leverage the framework presented in

Section III to perform a real-world case study of Washington

D.C., USA. Section IV-A details the case study. We then

present numerical results in Sections IV-B and IV-C.

A. Case Study

We base our studies on a real-world case of the urban

area of Washington D.C., USA. We import the road net-

work and its features from OpenStreetMap [27]. The public

transit network and its schedules are extracted from the

GTFS data [28]. Demand data is obtained by merging the

origin-destination pairs of the morning peak of May 31st

2017 provided by taxi companies [29] and the Washington

Metropolitan Area Transit Authority (WMATA) [23]. Given

the lack of reliable demand data for the MetroBus system,

we focus our studies on the MetroRail system and its design,

inherently assuming MetroBus commuters to be unaffected

by our design methodology. To conform with the large

presence of ride-hailing companies, we scale the taxi demand

rate by factor of 5 [30]. Overall, the demand dataset includes

15,872 travel requests, corresponding to a demand rate of

24.22 requests/s. To account for congestion effects, we compute

the nominal road capacity as in [31] and assume an average

baseline road usage of 93%, in line with [32]. We summarize

the main parameters together with their bibliographic sources
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Parameter Name Value Units Source

Road usage ui j 93 % [32]

V
eh

ic
le

C1 C2.1 C2.2

Operational cost CV,o 0.084 0.084 0.062 USD/mile [34], [35]

Cost CV 32,000 32,000 26,000 USD/car [34]

Automation cost

20 mph

CV,a

15,000 20,000 3,700 USD/car [35]–[39]

25 mph 15,000 30,000 4,400 USD/car [35]–[39]

30 mph 15,000 55,000 6,200 USD/car [35]–[39]

35 mph 15,000 90,000 8,700 USD/car [35]–[39]

40 mph 15,000 115,000 9,800 USD/car [35]–[39]

45 mph 15,000 130,000 12,000 USD/car [35]–[39]

50 mph 15,000 150,000 13,000 USD/car [35]–[39]

Vehicle life lV 5 5 5 years [34]

CO2 per Joule γ 0.14 0.14 0.14 g/kJ [40]

Time GW to GR tWR 300 300 300 s -

Time GR to GW tRW 60 60 60 s -

Speed fraction β 1
1.3

1
1.3

1
1.3 - -

P
u
b
li

c
tr

an
si

t

Operational cost

100 %
CS,o

148,000,000 USD/year [41]

133 % 197,000,000 USD/year [41]

200 % 295,000,000 USD/year [41]

Fixed cost CS,f 14,500,000 USD/train [42]

Train life lS 30 years [42]

Emissions/train mCO2 ,S
140,000 kg/year [43]

Fleet baseline nS,base 112 trains [42]

Service frequency ϕ j,base 1/6 1/min [44]

Time GW to GP tWS 60 s -

Time GP to GW tSW 60 s -

TABLE I: Parameters, variables, numbers, and units for the case studies.

in Table I. In the remainder of this section, we tailor and

solve the co-design problem presented in Section III through

the PyMCDP solver [33], and investigate the influence of

different AVs costs on the design objectives and strategies.

B. Case 1 - Constant Cost of Automation

In line with [35]–[39], we first assume an average

achievable-velocity-independent cost of automation. As dis-

cussed in Section III, we design the system by means of

subway service frequency, AV fleet size, and achievable free-

flow speed. Specifically, we allow the municipality to (i)

increase the subway service frequency ϕ j by a factor of 0%,

33%, or 100%, (ii) deploy an AVs fleet of size nV,max ∈
{0,500,1000, . . . ,6000} vehicles, and (iii) design the single

AV achievable velocity vV,a ∈ {20mph,25mph, . . . ,50mph}.

We assume the AVs fleet to be composed of battery electric

BEV-250 mile AVs [34]. In Figure 3a, we show the so-

lution of the co-design problem by reporting the antichain

consisting of the total transportation cost, average travel

time, and total CO2 emissions. These solutions are rational

(and not comparable) in the sense that there exists no

instance which simultaneously yields lower cost, average

travel time, and emissions. For the sake of clarity, we opt

for a two-dimensional antichain representation, by translating

and including the emissions in the total cost. To do so, we

consider the conversion factor 40 USD/kg [45]. Note that since

this transformation preserves the monotonicity of the CDPI

it smoothly integrates in our framework. Doing so, we can

conveniently depict the co-design strategies through the two-

dimensional antichain (Figure 3b, left) and the corresponding

municipality actions (Figure 3b, right). Generally, as the

municipality budget increases, the average travel time per

trip required to satisfy the given demand decreases, reaching

a minimum of about 17.1 min with an expense of around

43 Mil USD/month. This configuration corresponds to a fleet

of 5,500 AVs able to drive at 50 mph and to the doubling

of the current MetroRail train fleet. On the other hand,

the smallest rational investment of 12.9 Mil USD/month leads

to a 42 % higher average travel time, corresponding to

(a) Left: Three-dimensional representation of antichain elements and their projection

in the cost-time space. Right: Two-dimensional projections.

(b) Results for constant automation costs. On the left, the two-dimensional representa-

tion of the antichain elements: In red are the unfeasible strategies, in orange the feasible

but irrational solutions, and in green the Pareto front. On the right, the implementations

corresponding to the highlighted antichain elements, quantified in terms of achievable

vehicle speed, AV fleet size, and train fleet size.

Fig. 3: Solution of the CDPI: state-of-the art case.

a inexistent autonomous fleet and an unchanged subway

infrastructure. Notably, an expense of 23 Mil USD/month (48 %

lower than the highest rational investment) only increases

the minimal required travel time by 9 %, requiring a fleet of

4,000 vehicles able to drive at 35 mph and no acquisition of

trains. Conversely, an investment of 15.6 Mil USD/month (just

2 Mil USD/month more than the minimal rational investment)

provides a 3 min shorter travel time. Remarkably, the design

of AVs able to exceed 40 mph only improves the average

travel time by 6 %, and it is rational just starting from

an expense of 22.8 Mil USD/month. This suggests that the de-

sign of faster vehicles mainly results in higher emission

rates and costs, without substantially contributing to a more

time-efficient demand satisfaction. Finally, it is rational to

improve the subway system only starting from a budget

of 28.5 Mil USD/month, leading to a travel time improvement

of just 4 %. This trend can be explained with the high

train acquisition and increased operation costs, related to

the subway reinforcement. We expect this phenomenon to

be more marked for other cities, considering the moderate

operation costs of the MetroRail subway system due to its

automation [44] and related benefits [46].

C. Case 2 - Speed-Dependent Automation Costs

To relax the potentially unrealistic assumption of

a velocity-independent automation cost, we consider a

performance-dependent cost structure. The large variance in

sensing technologies and their reported performances [47]

suggests that this rationale is reasonable. Indeed, the technol-

ogy required today to safely operate an autonomous vehicle

at 50 mph is substantially more sophisticated, and therefore

Authorized licensed use limited to: Stanford University. Downloaded on January 11,2021 at 22:28:26 UTC from IEEE Xplore.  Restrictions apply. 



(a) Results for speed-dependent automation costs in 2020.

(b) Results for speed-dependent automation costs in 2025.

Fig. 4: Results for the speed-dependent automation costs. On the left, the
two-dimensional representation of the antichain elements: In red are the
unfeasible strategies, in orange the feasible but irrational solutions, and in
green the Pareto front. On the right, the implementations corresponding to
the highlighted antichain elements.

more expensive, than the one needed at 20 mph. To this end,

we adopt the cost structure reported in Table I. Furthermore,

the frenetic evolution of automation techniques intricates

their monetary quantification. Therefore, we perform our

studies with current (2020) costs as well as with their

projections for the upcoming decade (2025) [34], [48].

1) Case 2.1 - 2020: We study the hypothetical case

of an immediate AV fleet deployment. We introduce the

aforementioned velocity-dependent automation cost structure

and obtain the results reported in Figure 4a. Comparing

these results with the state-of-the-art parameters presented in

Figure 3 confirms the previously observed trend concerning

high vehicle speeds. Indeed, spending 24.9 Mil USD/month (55 %

lower than the highest rational expense) only increases the

average travel time by 10 %, requiring a fleet of 3,000 AVs

at 40 mph and no subway interventions. Nevertheless, the

comparison shows two substantial differences. First, the

budget required to reach the minimum travel time of 17.1 min

is 28 % higher compared to the previous case, and consists

of the same strategy for the municipality, i.e., doubling the

train fleet and having a fleet of 5,500 AVs at 50 mph. Second,

the higher vehicle costs result in an average AV fleet growth

of 5 %, an average velocity reduction of 9 %, and an average

train fleet growth of 7 %. This trend suggests that, compared

to Case 1, rational design strategies foster larger fleets and

less performing AVs.

2) Case 2.2 - 2025: Experts forecast a substantial de-

crease of automation costs (up to 90 %) in the next decade,

mainly due to mass-production of the AVs sensing tech-

nology [48], [49]. In line with this prediction, we inspect

the futuristic scenario by solving the CDPI for the adapted

automation costs, and report the results in Figure 4b. Two

comments are in order. First, the maximal rational budget is

25 % lower than in the immediate adoption case. Second, the

reduction in autonomy costs clearly eases the acquisition of

more performant AVs, increasing the average vehicle speed

by 10 %. As a direct consequence, the AV and train fleets

are reduced in size by 5 % and 10 %, respectively.

D. Discussion

We conclude the analysis of our case study with two

final comments. First, the presented case studies illustrate the

ability of our framework to extract the set of rational design

strategies for an AV-enabled mobility system. This way,

stakeholders such as AVs companies, transportation authori-

ties, and policy makers can get transparent and interpretable

insights on the impact of future interventions. Second, we

perform a sensitivity analysis through the variation of the

autonomy cost structures. On the one hand, this reveals a

clear transition from small fleets of fast AVs (in the case of

low autonomy costs) to slow fleets of numerous AVs (in the

case of high autonomy costs). On the other hand, our studies

highlight that investments in the public transit infrastructure

are rational only when large budgets are available. Indeed,

the onerous train acquisition and operation costs lead to a

comparative advantage of AV-based mobility.

V. CONCLUSION

In this paper, we leveraged the mathematical theory of

co-design to propose a design framework for AV-enabled

mobility systems. Specifically, the nature of our framework

allows both for the modular and compositional intercon-

nection of the DPIs of different mobility options and for

multiple objectives. Starting from the multi-commodity flow

model of an I-AMoD system, we optimize the design of

AVs and public transit both from a vehicle-centric and fleet-

level perspective. In particular, we studied the problem of

deploying a fleet of AVs providing on-demand mobility in

cooperation with public transit, optimizing the speed achiev-

able by the vehicles, the fleet size, and the service frequency

of the subway lines. Our framework allows the stakeholders

involved in the mobility ecosystem, from vehicle devel-

opers all the way to mobility-as-a-service companies and

governmental authorities, to characterize rational trajectories

for technology and investment development. We showcased

our methodology on a real-world case study of Washington

D.C., USA. Notably, our problem formulation allows for

a systematic analysis of incomparable objectives, providing

stakeholders with analytical insights for the socio-technical

design of AV-enabled mobility systems. This work opens the

field for the following future research streams:

Modeling: First, we would like to extend the presented

framework to capture additional modes of transportation,

such as micromobility, and heterogeneous fleets with dif-

ferent self-driving infrastructures, propulsion systems, and

passenger capacity. Second, we would like to investigate

variable demand models. Finally, we would like to analyze

the interactions between multiple stakeholders, characteriz-

ing the equilibrium arising from their conflicting interests.

Algorithms: It is of interest to tailor co-design algorithmic

frameworks to the particular case of transportation DPIs,

possibly leveraging their specific structure.

Application: Finally, we would like to devise a user-friendly
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web interface which supports mobility stakeholders to reason

about strategic interventions in urban areas.
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