


fleets in [11] and for car-sharing fleets in [12]. Only [11] and
[12] focus on large-scale fleet dispatching but are limited to
conventional vehicles.

Focusing on the field of AMoD systems, most publications
present mesoscopic analyses based on continuous network
flow models. Some works focus on the interaction between
AMoD and public transport [13], [14] or on congestion-
aware routing [15]. There are only few publications available
that focus on the interaction between an AMoD fleet and the
power grid. The authors of [16] developed a network flow
modeling approach that considers the power transmission
network, while the power distribution network was included
in [17]. Finally, an online controller for vehicle rebalancing
and recharging was presented in [18]. However, these ap-
proaches rely on heavily aggregated transportation networks
and are not amenable to fleet coordination in a microscopic
vehicle-centric fashion.

Statement of contributions: To close the research gap
among microscopic single-vehicle approaches, conventional
fleet routing approaches, and mesoscopic system-level ap-
proaches, we present a framework to solve an integrated
vehicle dispatching and charge scheduling problem for an
electric AMoD fleet. This framework preserves the system-
level perspective of [16] but vastly enhances its computa-
tional tractability for large-sized applications by integrating
recently developed concepts to reduce the complexity of
vehicle dispatching [12] and charge scheduling [9] problems.
Specifically, our contribution is threefold: First, we present a
mixed-integer linear program (MILP) that integrates vehicle
dispatching and recharging decisions for an electric AMoD
fleet, coupling the transportation system with the power grid,
and capturing V2G operations to balance the power grid in
the presence of electricity demand mismatch. Second, we de-
velop a heuristic algorithm to compute near-optimal solutions
in polynomial time. Finally, we validate the performance of
our algorithm with a realistic case-study for Newport Beach,
CA. Our results suggest that an optimized V2G operation can
enable a complete penetration of renewable energy sources
without affecting the mobility service quality.

Organization: The remainder of this paper is structured as
follows: We present a MILP to formally define our planning
problem in Section II. Then, we develop an approximation
algorithm to compute near-optimal solutions in polynomial
time in Section III. Section IV details our case study and
presents numerical results. Section V concludes this paper
with a summary and an outlook on future research.

II. MODEL DESCRIPTION

This section outlines a model jointly capturing the vehicle
coordination and charging scheduling problem for an electric
AMoD system including its interconnection with the power
grid. In particular, we first introduce a graph representation
capturing the tasks of the AMoD fleet in Section II-A
and leverage it in Section II-B to formulate the vehicle
dispatching problem as a MILP. Thereafter, we extend the
model in Section II-C to account for energy consumption,
battery charging and V2G operation. Finally, we discuss
assumptions and model limitations in Section II-D.

A. Graph Representation

We consider a road network modeled as a directed graph
Gr = (Vr,Ar) with a set of vertices Vr and a set of arcs Ar ⊆

Vr×Vr. Each vertex v ∈ Vr represents a road intersection, a
charging station (CS), or a customer’s pick-up or drop-off
point. We refer to the set of CS vertices as N ⊆Vr. Each arc
(n1,n2)∈ Ar represents a road between n1 and n2, associated
to a fixed travel time Tn1n2

and an energy consumption En1n2
.

In this network, we model customer transportation de-
mand as a set of trips S. A trip is defined as a triple
s = (os,ds, ts,s) ∈ S containing its origin and destination os ∈
Vr and ds ∈Vr, respectively, and its start time ts,s. Implicitly,
the end time of a trip results to te,s := ts,s +Tosds

, whereby
the travel time Tosds

results from the shortest path completing
the trip and is considered to be fixed. We denote the energy
consumed on trip s as Efix,s. The AMoD operator controls a
fleet modeled as a set of vehicles i ∈ I. Each vehicle starts
its route at an origin oi at the beginning of the planning
horizon with an initial state of charge (SoC) Einit,i and stops
immediately after finishing the last trip. In the following,
we introduce a graph representation similar to [12] that
captures precedence constraints for vehicle to job allocations
in the graph itself (see Fig. 2). This way, we reduce the
computational complexity of the resulting MILP.

To extend this concept for charging stops, we introduce
a directed multigraph Gs := (Vs,As). In this graph, a vertex
represents either a trip request s∈ S⊆Vs or a vehicle’s initial
location i ∈ I ⊆Vs. Additionally, we add a dummy source O

which is connected to the initial vehicle locations in I. Arcs
in Gs represent time-related precedence constraints when
serving different requests, i.e., an arc (u,v,n) denotes that one
vehicle can serve request u and request v, while visiting CS
n∈N after finishing u and before starting v (see Fig. 3). Here,
(u,v,0) stands for a direct relocation from the destination of
u to the origin of v without visiting a CS. Specifically, an
arc (u,v,0) with a starting time ts,uv0 := te,u and end time
te,uv0 := ts,v exists if ts,uv0+Tduov

< te,uv0. An arc with charging
stop (u,v,n) exists if ts,uvn +Tdun +Tnov < te,uvn. Collectively,
As denotes the set of feasible relocations in-between trips
created with a k-neighborhood search by connecting each
trip to the closest k succeeding and preceding trips with one
non-charging arc and, if possible, at least one charging arc
per trip. Fig. 4 shows an example of the extension of Gs with
charging operations.

We define the relocation energy Euvn as the change of
SoC from the end of trip u to the end of trip v: It is the
sum of the fixed consumption Efix1,uvn used to reach the CS
n, the energy recharged Ech,uvn, the energy to drive from n

to the next customer Efix2,uvn and the energy to take her to
destination Efix,v. For the case n= 0, the energy terms Ech,uv0

and Efix2,uv0 are zero, whereas Efix1,uv0 captures the energy to
directly transfer from the drop-off point of u to the pick-up
location of v. Fig. 3 illustrates these energy components.

For each trip u ∈ S, it holds that ts,u < te,u. Similarly,
for each (u,v,n) ∈ As it holds that ts,uvn < te,uvn. Therefore,
there exist no paths in Gs that go backwards in time and Gs

is acyclic. This allows us to reformulate our problem as a
minimum cost maximum flow problem (cf. [12]), which can
be solved in polynomial time [19].

B. Vehicle Coordination Problem

To frame the vehicle coordination problem, we introduce
binary variables xuvn indicating whether an arc (u,v,n) is
traversed (xuvn = 1) or not (xuvn = 0) and maximize the
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considering the set of all time-steps in Tuvn during the
charging operation of (u,v,n), we assign a charged energy
value Ech,uvn for the whole arc as

Ech,uvn = ∑
t∈Tuvn

Ech,uvnt ∀(u,v,n) ∈ As. (8a)

We allow charging (positive or negative) only when a given
charging route is assigned to a vehicle with

Ech,uvnt ≤ bmaxxuvn ∀t ∈Tuvn,(u,v,n) ∈ As (9a)

Ech,uvnt ≥−bmaxxuvn ∀t ∈Tuvn,(u,v,n) ∈ As, (9b)

whereby bmax is the battery capacity of the vehicles.
The energy consumption of arc (u,v,n) consists of the

energy used to go from a customer trip to a CS Efix1,uvn, the
energy used to drive from the station to the next customer
Efix2,uvn, and of the energy Efix,v consumed during trip v. The
overall energy change Euvn over an arc (u,v,n) from the end
of trip u to the end of v is therefore

Euvn = Ech,uvn

− xuvn(Efix1,uvn +Efix2,uvn +Efix,v) ∀(u,v,n) ∈ As.

(10)

To keep the fleet operational, we need to track the SoC for
each vehicle at each point in time. For each node v ∈Vs, we
introduce the SoC at the end of v bv. In order to propagate
the SoC through the graph, we introduce the variable yuvn

denoting the SoC of a vehicle at the end of (u,v,n) if a
vehicle chooses a route with this relocation, and remaining
zero otherwise. Specifically, it holds that

yuvn = xuvn(bu +Euvn) ∀(u,v,n) ∈ As,

which can be reformulated in linear form as

yuvn ≤ xuvnbmax ∀(u,v,n) ∈ As (11a)

yuvn ≤ bu +Euvn ∀(u,v,n) ∈ As (11b)

yuvn ≥ bu +Euvn− (1− xuvn)bmax ∀(u,v,n) ∈ As (11c)

yuvn ∈ [0,bmax] ∀(u,v,n) ∈ As. (11d)

The aggregation of yuvn to the SoC bv and its initialization
with the initial SoC Einit,i is defined as

bv = ∑
u,n:(u,v,n)∈As

yuvn ∀v ∈ S (12a)

bi = Einit,i ∀i ∈ I. (12b)

Finally, we ensure that the SoC of each vehicle stays always
between zero and the battery capacity bmax at each time-step:

0≤ bu− xuvnEfix1,uvn

+ ∑
t∈Tuvn[0:k]

Ech,uvnt ≤ bmax ∀(u,v,n) ∈ As,k ∈ [|Tuvn|]

(13a)

0≤ bu− xuvnEfix1,uvn

+Ech,uvn ≤ bmax ∀(u,v,n) ∈ As

(13b)

bv ∈ [0,bmax] ∀v ∈Vs.

(13c)

With Tuvn[0 : k] we denote the first k time-steps in the or-
dered list of time-steps of the charging operation of (u,v,n).

Algorithm 1: CEPAMoDS Algorithm

Input: Gs = (Vs,As), pa

Output: Set of feasible Routes R for all vehicles
1 ∀u,v,n ∈ As : ppred,uvn← EnergyPrediction(Gs)
2 R, pch,tot,routed← Routing(Gs, ppred, pa,As)
3 R← Adaptation(R, pch,tot,routed)

Using these constraints, we can extend Problem 1 to
account for energy consumption, charging activities and V2G
operation. This yields the optimal vehicle coordination and
charge scheduling problem.

Problem 2 (Vehicle Coordination and Charge Scheduling):

max
x,E,Ech,pch,·,pch,tot,y,b

∑
v∈Vs

∑
u,n:(u,v,n)∈As

xuvn (14)

s.t. (2)–(10), (11)–(13).

D. Discussion

A few comments on this modeling approach are in order.
First, we assume that at each charging station there are
always enough free slots, so that AMoD vehicles do not have
to wait in line to recharge their battery. Assuming that most
parking places will be electrified in the future, this can be
interpreted by the AMoD vehicles having a priority over reg-
ular electric cars. Second, we neglect power-line flow limits.
This assumption is adequate for urban scenarios, whereby
the distribution grid is usually over-dimensioned and active
bottle-neck monitoring is not yet required. Finally, we only
capture exogenous congestion effects, whilst neglecting the
endogenous impact of AMoD vehicles on travel time. This
assumption is adequate for small to medium sized fleets [12].
This way, we model exogenous congestion by adjusting the
travel time on each road link during the course of the day.

III. SOLUTION ALGORITHM

In this section, we develop a Convolutional Energy Pre-
dicting AMoD Scheduler (CEPAMoDS) to approximately
solve Problem 2 in polynomial time. Alg. 1 gives an
overview of this algorithm consisting of three steps: i)

predicting minimal energy demands between two subsequent
charging stops, ii) dispatching vehicles through energy-
feasible routes considering the information of step i), and iii)

adapting the solution of step ii) to reduce the residual supply-
demand mismatch in the power grid via V2G operation.

A. Step i): Prediction

In the first step, for each charging stop on an arc (u,v,n)∈
As we predict an estimate of the charging load in case the
arc is traversed by a vehicle (see Alg. 2). This charging
load corresponds to the energy needed to reach the closest
succeeding charging stop after v with the same SoC as when
reaching the charging stop between u and v (Alg. 2 line 2).
If there is no succeeding charging stop, we consider the
energy needed to finish the vehicles’ route instead. For this
prediction, we use a graph convolution over a neighborhood
of v ∈Vs (see Fig. 5), similarly to a convolution of a kernel
with an image and a pooling layer in a convolutional neural
net [20]. In particular, we replace the image with a graph, the
kernel matrix is the identity, and the pooling is a min-pooling
layer. Note that the prediction ppred,uvn is purely based on Gs

and not on the available charging power pa.
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TABLE I

PARAMETERS OF THE CASE STUDIES.

Case Study Trips Cars Time pa(t) [kW] E±a,tot [kWh]

Synthetic high-energy 100 20 3 h 300 0, 900
Synthetic low-energy 100 20 3 h 85 0, 255

Realistic small 250 15 24 h ∈ [−21,61] –129, 525
Realistic large 750 45 24 h ∈ [−63,183] –387, 1575

TABLE II
SYNTHETIC CASE STUDIES: THE CEPAMODS (CEPA) SOLUTION

AND THE GLOBALLY OPTIMAL SOLUTION FROM THE MILP.

Synthetic Runtime Trips Served
Case Study CEPA MILP CEPA MILP

High-energy 13 s 4.6 h 91% 95%
Low-energy 11 s 4.3 h 88% 97%

energy. By doing so, we consider a scenario with 100%
penetration of renewables, whereby we empirically scaled
down the power grid to a level which can keep the average
SoC of the chosen fleet balanced. Finally, for the large case,
we also study fleets equipped with smaller batteries.

B. Results

Table II and III summarize the numerical results ob-
tained for each experiment. For the synthetic cases, we used
Gurobi 8.1 as the benchmark MILP solver. All experiments
ran on an i5 2.5 GHz processor with 8 GB of memory. In the
following, we discuss each case individually.

a) Synthetic Cases: As shown in Table II, the proposed
CEPAMoDS Alg. 1 solved Problem 2 for both synthetic
cases in less than 15 seconds, whereas the state-of-the-
art MILP solver took more than 4 hours. Notably, the
suboptimality gap is below 5% for the high-energy scenario,
and below 10% for the low-energy scenario, underlining the
impact of energy availability on the problem complexity.
Overall, these scenarios showed that our algorithm can
compute near-optimal solutions a thousand times faster than
state-of-the-art MILP solvers.

b) Realistic 24h Cases: These realistic case studies
could not be solved as MILPs due to the problem size.
Conversely, as shown in Table III, the CEPAMoDS algorithm
solved Problem 2 in about 4 minutes for the small case and
in approximately 2 to 3 hours for the large cases.

As shown in Section III-D, the algorithmic complexity is
bilinear in the number of cars and in the number of arcs of
Gs. Since the number of cars was increased by factor of 3
and the number of arcs by factor of 9 (due to the increase
in number of nodes and neighbors in the k-neighborhood by
a factor of 3 each), our analysis predicts a computational
complexity increase by a factor of 27. This is in line with
the increase in computational time by a factor of 30 to 40.

Fig. 7 shows a snapshot of the vehicles’ operation and the
total power drawn from the grid for the large case study with
100% battery size (the small case study achieved very similar
results – a link to the full video is provided in Section VI).
The charging power pch,tot(t) matches the available power
pa(t) both when the latter is positive and negative, i.e., the
necessary curtailment of the power plants

Ecurtailed :=
∫

t:pa(t)≥0
max{0, pa(t)− pch,tot(t)}dt

TABLE III

CEPAMODS SOLUTION FOR THE REALISTIC CASE STUDIES

Scenario Battery Runtime Trips Ecurtailed Edeficit Eadapt

Size [min] Served [kWh] [kWh] [kWh]

Small 100% 4 90% 0 0.5 45
Large 100% 147 93% 0.1 0.7 151
Large 50% 146 93% 0.2 2.7 161
Large 20% 163 84% 159 0 219
Large 10% 128 73% 417 159 131

and the energy missing in the grid during V2G operation

Edeficit :=
∫

t:pa(t)<0
max{0, pch,tot(t)− pa(t)}dt

are both almost zero (see Table III). This implies that the
intra-day volatility of the power grid resulting from the 100%
renewable energy sources can be balanced solely with the
batteries of AMoD vehicles and no significant stationary grid
storage is needed. Critically, this is enabled by the adaptation
step of Section III-C, which increases the charged energy by

Eadapt :=
∫

t:pa(t)≥0
pch,tot(t)− pch,tot,routed(t)dt

and introduces V2G detours in order to lower the energy
deficit Edeficit to zero. The increase of charged energy Eadapt

in the adaptation step is especially useful in scenarios with
a small battery size, where charge scheduling is critical.

Notably, the same results in terms of mobility service and
grid balancing were observed also for the large scenario with
50% the battery size. Further decreasing the battery size to
20% worsened the number of customers serviced by 9% and
wasted about 10% of available energy, due to lacking storage
and consequent power plant curtailment. Nevertheless, the
adaptation step still enabled full V2G operation. Finally, a
fleet with 10% of the battery size could only service 73%
of the travel demand. Moreover, it was no longer able to
balance the grid with V2G operation due to lacking energy
in the vehicles, which led to an energy deficit of more than
40% of the requested energy E−a,tot. Overall, these case studies
suggest that the battery size of the vehicles could be halved
without causing service performance losses.

V. CONCLUSION

In this paper we explored the possibility of jointly optimiz-
ing the vehicle routes and the charging schedules of a fleet of
electric self-driving cars providing on-demand mobility. The
proposed model combines task-allocation methods for the
coordination of AMoD fleets with energy-constrained longest
path approaches for single vehicles, and can be framed
as a mixed-integer linear program (MILP). To overcome
scalability issues, we devised an algorithm that is able to
approximately solve the presented vehicle coordination and
charge scheduling problem in polynomial time. Specifically,
our numerical results empirically showed that for both bench-
mark cases the quality of our solution is not more than
10% lower than the globally optimal one. Moreover, our
algorithm is about a thousand times faster than state-of-the-
art MILP solvers. Finally, we investigated a realistic case
study suggesting that an electric fleet could be used as a
free-floating energy storage system to completely enable a
full penetration of renewable energy sources in the power
grid, whilst still providing a high-quality mobility service.
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Fig. 7. Results for the realistic case study with 45 vehicles equipped
with a 50 kWh battery and 750 trips. The map shows a snapshot at 4pm of
the vehicles’ positions, their current task (indicated by their shape) and SoC
level (indicated by their color). In addition, the color-bar shows the average,
maximum and minimum SoC level of the fleet. The plot below shows the
charging load before (pch,tot,routed(t), solid blue) and after (pch,tot(t), dashed
orange) the adaptation step (Sec. III-C), whereby the charging load pch,tot(t)
follows the available power pa(t) (solid grey). A link to a full video of the
case study can be found in Section VI at the end of the paper.

This work can be extended in several directions. First,
we would like to provide theoretical guarantees on problem
feasibility (in terms of grid balancing) and on solution sub-
optimality, also computing an upper bound on the total
execution time. Second, we are interested in extending the
model to account for power-line flow limits and voltage
limitations on the grid. Third, it would be of interest to
improve the computational performance of the algorithm by
leveraging its highly parallelizable structure. Fourth, we plan
to devise a real-time model predictive controller by imple-
menting this algorithmic framework in a receding-horizon
fashion, potentially capturing stochastic phenomena such as
uncertain travel demand and electricity production. Finally,
we would like to leverage this approach to perform sensitivity
analysis on the system characteristics, including charging
infrastructure placement and achievable vehicle speed, and
include it in a co-design framework [24].

VI. MEDIA MATERIAL

A video with the results of the realistic case study can be
found at the following link: vimeo.com/362510230
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