
StreamBox-TZ: Secure Stream Analytics at the Edge with TrustZone

Heejin Park1, Shuang Zhai1, Long Lu2, and Felix Xiaozhu Lin1

1Purdue ECE 2Northeastern University

Abstract
While it is compelling to process large streams of IoT data on
the cloud edge, doing so exposes the data to a sophisticated,
vulnerable software stack on the edge and hence security
threats. To this end, we advocate isolating the data and its
computations in a trusted execution environment (TEE) on
the edge, shielding them from the remaining edge software
stack which we deem untrusted.

This approach faces two major challenges: (1) executing
high-throughput, low-delay stream analytics in a single TEE,
which is constrained by a low trusted computing base (TCB)
and limited physical memory; (2) verifying execution of
stream analytics as the execution involves untrusted software
components on the edge. In response, we present StreamBox-
TZ (SBT), a stream analytics engine for an edge platform that
offers strong data security, verifiable results, and good perfor-
mance. SBT contributes a data plane designed and optimized
for a TEE based on ARM TrustZone. It supports continuous
remote attestation for analytics correctness and result fresh-
ness while incurring low overhead. SBT only adds 42.5 KB
executable to the TCB (16% of the entire TCB). On an octa
core ARMv8 platform, it delivers the state-of-the-art perfor-
mance by processing input events up to 140 MB/sec (12M
events/sec) with sub-second delay. The overhead incurred by
SBT’s security mechanism is less than 25%.

1 Introduction

Many key applications of Internet of Things (IoT) process a
large influx of sensor1 data, i.e. telemetry. Smart grid aggre-
gates power telemetry to detect supply/demand imbalance and
power disturbances [76], where a power sensor is reported to
produce up to 140 million samples per day [16,17]; oil produc-
ers monitor pump pressure, tank status, and fluid temperatures
to determine if wells work at ideal operating points [55, 60],
where an oil rig is reported to produce 1–2 TB of data per

1Recognizing that IoT data sources range from small sensors to large
equipment, we refer to them all as sensors for brevity.

Edge

TrustZone
Isolation

StreamBox-TZ

Cloud

Telemetry
Data stream

Compact results
&

Audit records

Data Plane
Trusted

Control Plane
Untrusted

Commodity libs + OS

Computations

Sensors

Figure 1: An overview of StreamBox-TZ

day [43]; manufacturers continuously monitor vibration and
ultrasonic energy of industrial equipment for detecting equip-
ment anomaly and predictive maintenance [104, 120], where
a monitored machine is reported to generate PBs of data in a
few days [77].

The large telemetry data streams must be processed in
time. The high cost and long delay in transmitting data ne-
cessitate edge processing [98, 100]: sensors send the data
to nearby gateways dubbed “cloud edge”; the edge runs a
pipeline of continuous computations to cleanse and summa-
rize the telemetry data and reports the results to cloud servers
for deeper analysis. Edge hardware is often optimized for
cost and efficiency. According to a 2018 survey [45], modern
ARM machines are typical choices for edge platforms. Such
a platform often has 2–8 CPU cores and several GB DRAM.

Unfortunately, edge processing exposes IoT data to high
security threats. i) Deployed in the wild, the edge suffers
from common IoT weaknesses, including lack of professional
supervision [58, 118], weak configurations [108, 117], and
long delays in receiving security updates [58, 114]. ii) On
the edge, the IoT data flows through a set of sophisticated
components that expose a wide attack surface. These com-
ponents include a commodity OS (e.g. Linux or Windows),
a variety of user libraries, and a runtime framework called
stream analytics engine [37, 42, 83]. They reuse much code
developed for servers and workstations. Their exploitable mis-

configurations [121] and vulnerabilities [23, 35, 109] are not
uncommon. iii) With data aggregated from multiple sources,
the edge is a high-value target to adversaries. For these rea-
sons, edge is even more vulnerable than sensors, which run
much simpler software with narrower attack surfaces. Once
attackers compromise the edge, they not only access confi-
dential data but also may delete or fabricate data sent to the
cloud, threatening the integrity of an entire IoT deployment.

Towards secure stream analytics on an edge platform, our
goal is to safeguard IoT data confidentiality and integrity,
support verifiable results, and ensure high throughput with low
output delay. Following the principle of least privilege [95],
we protect the analytics data and computations in a trusted
execution environment (TEE) and limit their interface; we
leave out the remaining edge software stack which we deem
untrusted. By doing so, we shrink the trusted computing base
(TCB) to only the protected functionalities, the TEE, and the
hardware. We hence significantly enhance data security.

We face three challenges: i) what functionalities should
be protected in TEE and behind what interfaces? ii) how to
execute stream analytics on a TEE’s low TCB and limited
physical memory while still delivering high throughput and
low delay? iii) as both trusted and untrusted edge components
participate in stream analytics, how to verify the outcome?

Existing solutions are inadequate: pulling entire stream
analytics engines to TEE [22, 27, 112] would result in a large
TCB with a wide attack surface; the systems securing dis-
tributed operators [53,99,124] often lack stream semantics or
optimizations for efficient execution in a single TEE, which
are crucial to the edge; only attesting TEE integrity [65] or
data lineages [50, 99, 102, 124] is inadequate for verifying
stream analytics. We will show more evidences in the paper.

Our response is StreamBox-TZ (SBT), a secure engine for
analyzing telemetry data streams. As shown in Figure 1, SBT
builds on ARM TrustZone [2] on an edge platform. SBT
contributes the following notable designs:
(1) Architecting a data plane for protection SBT provides
a data plane exposing narrow, shared-nothing interfaces to
untrusted software. SBT’s data plane encloses i) all the ana-
lytics data; ii) a new library of low-level stream algorithms
called trusted primitives as the only allowed computations
on the data; iii) key runtime functions, including memory
management and cache-coherent parallel execution of trusted
primitives. SBT leaves thread scheduling and synchronization
out of TEE.
(2) Optimizing data plane performance within a TEE In
contrast to many TEE-oblivious stream engines that operate
numerous small objects, hash tables, and generic memory
allocators [32, 82, 122], SBT embraces unconventional de-
sign decisions for its data plane. i) SBT implements trusted
primitives with array-based algorithms and contributes new
optimizations with handwritten ARMv8 vector instructions.
ii) To process high-velocity data in TEE, SBT provides a new
abstraction called uArrays, which are contiguous, virtually un-

bounded buffers for encapsulating all the analytics data; SBT
backs uArrays with on-demand paging in TEE and manages
uArrays with a specialized allocator. The allocator leverages
hints from untrusted software for compacting memory lay-
out. iii) SBT exploits TrustZone’s lesser-explored hardware
features: ingesting data straightly through trusted IO with-
out a detour through the untrusted OS; avoiding relocating
streaming data by leveraging the large virtual address space
dedicated to a TEE.
(3) Verifying edge analytics execution SBT supports cloud
verifiers to attest analytics correctness, result freshness, and
the untrusted hints received during execution. SBT captures
coarse-grained dataflows and generates audit records. A cloud
verifier replays the audit records for attestation. To mini-
mize overhead in the edge-cloud uplink bandwidth, SBT com-
presses the records with domain-specific encoding.

Our implementation of SBT supports a generic stream
model [1] with a broad arsenal of stream operators. The TCB
of SBT contains as little as 267.5 KB of executable code, of
which SBT only constitutes 16%. On an octa core ARMv8
platform, SBT processes up to 12M events (144 MB) per
second at sub-second output delays. Its throughput on this
platform is an order of magnitude higher than an SGX-based
secure stream engine running on a small x86 cluster with
richer hardware resources [53]. The security mechanisms con-
tributed by SBT incur less than 25% throughput loss with
the same output delay; decrypting ingress data, when needed,
incurs 4%–35% throughput loss with the same output delay.
While sustaining high throughput, SBT uses up to 130 MB of
physical memory in most benchmarks.

The key contributions of SBT are: i) a stream engine ar-
chitecture with strongly isolated data and a lean TCB; ii) a
data plane built from the ground up with computations and
memory management optimized for a single TrustZone-based
TEE; iii) remote attestation for stream analytics on the edge
with domain-specific compression of audit records. To our
knowledge, SBT is the first system designed and optimized
for data-intensive, parallel computations inside ARM Trust-
Zone. Beyond stream analytics, the SBT architecture should
help secure other important analytics on the edge, e.g. ma-
chine learning inference. The SBT source can be found at
http://xsel.rocks/p/streambox.

2 Background & Motivation

2.1 ARM for Cloud Edge
As typical hardware for IoT gateways [45], recent ARM plat-
forms offer competitive performance at low power, suiting
edge well. Most modern ARM cores are equipped with Trust-
Zone [2], a security extension for TEE enforcement. Trust-
Zone logically partitions a platform’s hardware resources, e.g.
DRAM and IO, into a normal (insecure) and a secure world.
CPU cores independently switch between two worlds. A TEE

Operator
0:100:20 0:20 0:10

An event A window

0:22

(a) A stream of events flowing through an operator.

Windowing AggregationGroupBy

<power,plug,
house,time>

<window,house>
:<plug,power>

<window>
:<house,power>

Ingress Egress
(b) A simple analytics pipeline that predicts power grid loads

/* 1. Declare operators */
Ingress in(/* config info */);
Window w(1 _SECOND); GroupBy <house > gb;
Aggregation <house ,win > ag; Egress out;
/* 2. Create a pipeline. Connect operators */
Pipeline p; p.apply(in);
in.connect(w).connect(gb)

.connect(ag).connect(out);
/* 3. Execute the pipeline */
Runner r(/* config */); r.run(p);

(c) Simplified pseudo code declaring the above pipeline
Figure 2: Example stream data, operators, and a pipeline

atop TrustZone owns dedicated, trusted IO, a unique feature
that other TEE technologies such as Intel SGX [81] lack.
Trusted IO is a unique feature of ARM TrustZone, imple-
mented through hardware components including TrustZone
Address Space Controller (TZASC) and TrustZone Protec-
tion Controller (TZPC). TZASC allows privilege software to
logically partition DRAM between the normal and the secure
worlds. Similarly, TZPC allows to configure IO peripherals
accessible to either world. Any peripheral owned by the se-
cure world is completely enclosed in the secure world. We
use trusted IO to support the trusted source-edge links on the
cloud edge (§3.1).

2.2 Stream Analytics

Stream Model We target stream analytics over sensor data.
A data stream consists of sensor events that carry timestamps
defined by event occurrence, as illustrated in Figure 2(a).
Programmers specify a pipeline of continuous computations
called operators, e.g. Select and GroupBy, that are extensively
used for telemetry analytics [62, 90]. As data arrives at the
edge, a stream analytics engine ingests the data at the pipeline
ingress, pushes the data through the pipeline, and externalizes
the results at the pipeline egress.

We follow a generic stream model [14, 32, 69, 85, 122].
Operators execute on event-time scopes called windows. Data
sources emit special events called watermarks. A watermark
guarantees no subsequent events in the stream will have event
times earlier than the watermark timestamp. A pipeline’s
output delay is defined as the elapsed time starting from the
moment the ingress receives the watermark signaling the
completion of the current window to the moment the egress
externalizes the window results [82]. A pipeline may maintain
its internal states organized by windows at different operators.
See prior work [20] for a formal stream model.

Analytics example: Power load prediction Figure 2(b-c)
shows an example derived from an IoT scenario [62]: it pre-
dicts future household power loads based on power loads
reported by smart power plugs. The example pipeline ingests
a stream of power samples and groups them by 1-second fixed
windows and by houses. For each house in each window, it
aggregates all the loads and predicts the next-window load
as an exponentially weighted moving average over the re-
cent windows. At the egress, the pipeline emits a stream of
per-house load prediction for each window.

Stream analytics engines Stream pipelines are executed by
a runtime framework called a stream analytics engine [37, 42,
46,82,83,90]. A stream analytics engine consists of two types
of function: data functions for data move and computations;
control functions for resource management and computation
orchestration, e.g. creating and scheduling tasks. The bound-
ary between the two is often blurry. To amortize overheads,
control functions often organize data in batches and invoke
data functions to operate on the batches.

2.3 Security Threats & Design Objectives

The edge faces common threats in IoT deployment. i) IT ex-
pertise is weak. Edge platforms are likely managed by field
experts [58, 114, 118] rather than IT experts. Such lack of
professional supervision is known to result in weak configu-
rations [108, 117]. ii) The infrastructure is weak. Deployed in
the field, the edge often sees slow uplinks [84,114] and hence
much delayed software security updates. For cost saving, edge
analytics may need to share OS and hardware with other high-
risk, untrusted software such as web browsers [114].

Besides the common threats, existing edge software stacks
entrust IoT data with commodity OSes, analytics engines,
and language runtimes (e.g. JVM). However, these com-
ponents are incapable of offering strong security guaran-
tees due to their complexity and wide interfaces. Each
of them easily contains more than several hundreds of
KSLoC [116]. Exploitable vulnerabilities are constantly dis-
covered [3, 6, 23, 35, 38], making these components untrusted
in recent research [36, 54, 79, 80]. By exploiting these vul-
nerabilities, a local adversary as an edge user program may
compromise the kernel through the wide user/kernel inter-
faces [11, 12] or attack an analytics engine through IPC [7]; a
remote adversary, through the edge’s network services, may
compromise analytics engines [4] or the OS [10]. A successful
adversary may expose IoT data, corrupt the data, or covertly
manipulate the data. Taking the application in Figure 2(b)
as an example, the adversary gains access to the smart plug
readings, which may contain residents’ private information,
and injects fabricated data.

Objectives We aim three objectives for stream analytics over
telemetry data on an edge platform: i) confidentiality and
integrity of IoT data, raw or derived; ii) verifiable correctness

and freshness of the analytics results; iii) modest security
overhead and good performance.

3 Security Approach Overview

3.1 Scope

IoT scenarios We target an edge platform that captures and
analyzes telemetry data. We recognize the significance of
mission-critical IoT with tight control loops, but do not target
it. Our target scenario includes source sensors, edge platforms,
and a cloud server which we dub “cloud consumer”. All the
raw IoT data and analytics results are owned by one party. The
sensors produce trusted events, e.g. by using secure sensing
techniques [49, 73, 97]. The cloud consumer is trusted; it in-
stalls analytics pipelines to the edge and consumes the results
uploaded from the edge. We consider untrusted source-edge
links (e.g. public networks) which requires data encryption
by the source, as well as trusted source-edge links (e.g. direct
IO bus or on-premise local networks), and will evaluate the
corresponding designs (§9). We assume untrusted edge-cloud
links, which require encryption of the uploaded data.

In-scope Threats We consider malicious adversaries inter-
ested in learning IoT data, tampering with edge processing
outcome, or obstructing processing progress. We assume pow-
erful adversaries: by exploiting weak configurations or bugs
in the edge software, they already control the entire OS and
all applications on the edge.

Out-of-scope Threats We do not protect the confidentiality
of stream pipelines, in the interest of including only low-level
compute primitives in a lean TCB. We do not defend the fol-
lowing attacks. i) Attacks to non-edge components assumed
trusted above, e.g. sensors [111]. ii) Exploitation of TEE
kernel bugs [8, 9, 56]. iii) Side channel attacks: by observ-
ing hardware usage outside TEE, adversaries may learn the
properties of protected data, e.g. key skew [72]. Note that
controlled-channel attack [119] cannot be applied to ARM
TrustZone as it has separate page management within a sep-
arate secure OS unlike Intel SGX. iv) Physical attacks, e.g.
sniffing TEE’s DRAM access [18, 28]. Many of these attacks
are mitigated by prior work [39, 66, 123, 124] orthogonal to
SBT.

Note that TEE code authenticity and integrity are already
ensured by the TrustZone hardware, i.e. only code trusted by
the device vendor can run in TrustZone and its integrity is
protected by TrustZone.

3.2 Approach and Security Benefits
As shown in Figure 3, SBT protects its data functions in a
trusted data plane in TEE. SBT runs its untrusted control
plane in the normal world. The control plane invokes the data
plane through narrow, shared-nothing interfaces. The engine’s

Stream data & state

Audit
Log

Trusted
Primitives

EgressIngress

Operator
Pipeline

Worker
threads

Tr
us

te
d

U
nt

ru
st

ed

St
re

am
B

ox
-T

Z

TrustZone TEE

Job dispatch; Thread scheduling;
Synchronization; Perf monitoring…

Mem
mgmt

Libs glibc libstdc++
Boost libzmq … + OS Kernel

(D
at

a
pl

an
e)

(C
on

tro
l p

la
ne

)

Figure 3: StreamBox-TZ on an edge platform with ARM
TrustZone. Bold arrows show the protected data path.

TCB thus only consists of the TEE (including the data plane)
and the hardware.

Streaming data always flows in TEE. The data plane ingests
the data through TrustZone’s trusted IO. After ingestion, it
returns opaque references of the data batches to the control
plane. In turn, the control plane requests computations on the
protected data by invoking the data plane with the opaque
references. The data plane generates opaque references as
long, random integers. It tracks all live opaque references,
validates incoming opaque references, and only accepts ones
that exist. At the pipeline egress, the data plane encrypts,
signs, and sends the result to the cloud.

The analytics execution is continuously attested. SBT cap-
tures complete and deterministic dataflows of the stream an-
alytics as well as execution timing, and periodically reports
to the cloud server. The cloud server verifies if all ingested
data is processed according to the pipeline (correctness), and
if the edge incurs low delay (freshness).

Thwarted attacks SBT defeats the following attacks. i)
Breaking IoT data confidentiality or integrity. As the raw
and derived data enters and leaves the edge TEE through
trusted IOs, adversaries on the edge cannot touch, drop, or
inject data. When the data is off the edge transmitted over un-
trusted networks, it is protected by encryption against network-
level adversaries. ii) Breaking the data plane integrity. Any
fabricated opaque reference passed to the data plane will be
rejected, since all opaque references are validated before use.
Through the data plane’s interface, an adversary may exploit
bugs in the data plane and compromise it. By minimizing the
date plane codebase and hardening its interface, SBT substan-
tially reduces the data plane’s attack surface and potential
bugs that can be exploited. iii) Breaking analytics correct-
ness. A compromised control plane may request computations
deviating from pipeline declarations or the stream model. For
instance, it may invoke trusted computations on partial data,
wrong windows, or valid but undesirable opaque references.
SBT defeats these attacks through attestation: since the cloud
verifier possesses complete knowledge on ingested data and

OS

Libs

Engine

(a)

OS

Libs

(c)

data plane

Control
plane

OS

Control funcs
& libs

Data funcs
& libraries

(b)

Tr
us

te
d

Un
tru

st
ed

Engine and its
libs in TEE

StreamBox-TZPartitioning
as-is

Figure 4: Among alternative architectures for
secure stream analytics, StreamBox-TZ (c)
leads to the smallest TCB and the most opti-
mized data plane. Arrows indicate data flows.

System TEE Analytics SG Compute in TEE Memory Attestation
VC3 [99] SGX Batch CIVA- Mapper/reducer Heap Data lineage
Opaque [124] SGX Batch CIVAO Query plans unreported Data lineage
EnclaveDB [91] SGX Batch CI-A- Pre-compiled queries unreported TEE integrity
SafeBricks [89] SGX Pkt proc. CI-A- Net func. operators∗ unreported TEE integrity
SecureStream [53] SGX Stream CI— Lua programs unreported TEE integrity
StreamBox-TZ TZ Stream CIV– Vectorized primitives∗ uArray Log replay

SG: security guarantees.
C: data confidentiality; I: data integrity; V: verifiability; A: analytics confidentiality; O: obliviousness

* TEE encloses only low-level computations; otherwise TEE encloses whole analytics.
Table 1: Comparison to existing secure processing systems

Trusted Primitives Popular Spark Streaming Operators
Sort, Merge, Segment, SumCnt,

TopK, Concat, Join, Count, Sum,
Unique, FileterBand, Median, ...

GroupByKey, Windowing, AvgPerKey, Distinct, SumByKey,
AggregateByKey, SortByKey, TopKPerKey, CountByKey,

CountByWindow, Filter, MedianByKey, TempJoin, Union, ...

Table 2: Selected trusted primitives (23 in total) and operators they constitute.
These operators cover most listed in the Spark Streaming documentation [103].

pipelines, it detects such correctness violation and rejects
the edge analytics results. iv) Attacks on analytics perfor-
mance or availability. A compromised control plane may
delay or pause invoking of trusted computations, violating
the freshness guarantee. As the execution timing of trusted
computations is attested, the cloud verifier detects the attacks
and can choose to prompt further investigation. v) Attempting
to trigger data race or deadlock. By design, data race and
deadlocks will never happen inside the data plane: the trusted
computations do not share state concurrently and all locking
happens outside of the TEE.

4 Design Overview

4.1 Challenges

Our approach raises three challenges. i) Architecting the en-
gine with a proper protection boundary. This hinges on a
key trade-off among TEE functional richness, overhead of
TEE entry/exit, and TCB size. ii) Optimizing data functions
within a TEE. Processing of high-velocity data in a TEE
strongly favors simple algorithms and compact memory. Yet,
existing stream engines often operate numerous short-lived
objects indexed in hash tables or trees [32, 69, 82, 90, 122],
e.g. for grouping events by key. They manage these ob-
jects with generic memory allocators [82] or garbage collec-
tors [87,122]. Such designs poorly fit a TEE’s small TCB and
limited DRAM portion, e.g. typically tens of MB for Trust-
Zone TEE and up to 128 MB for Intel SGX enclave [31]. iii)
Verifying stream analytics results. This requires to track un-
bounded data flows in stream pipelines, validate if operators
respect the temporal properties, e.g. windows, and minimize
the resultant overhead in execution and communication.

Why are existing systems inadequate? First, many TEE-
based systems [22, 27, 112] pull entire user applications and
libraries to the TCB, as shown in Figure 4(a). However, as
we described in Section 2.2, a modern analytics engine and
its libraries are large, complex, and potentially vulnerable.
Second, partitioning applications to suit a TEE, as shown in

Figure 4(b) [71, 93, 101], is unsuitable for existing stream
engines: partitioning does not change their hash-based data
structures and algorithms, which by design mismatch a TEE.
Similarly, recent secure processing engines disfavor partition-
ing [89, 91]. Third, recent systems use TEE to protect data in
analytics or in network packet processing. As summarized in
Table 1, they lack support for stream analytics, key computa-
tion optimizations, or specialized memory allocation, which
we will demonstrate as vital to our objective.

Attesting TEE integrity [65, 91] is insufficient to assert
analytics correctness. VC3 [99] and Opaque [124] verify cor-
rectness of batch analytics by checking the history of compute
results, i.e. their data lineage [50, 102]. Without tracking data
being continuously ingested and lacking a stream model, data
lineages cannot assert whether all ingested data is processed
according to pipeline declarations, watermarks, and temporal
windows, which are critical to stream analytics.

4.2 StreamBox-TZ in a Nutshell

SBT builds on TrustZone [2] due to ARM’s popularity for the
edge and trusted IO benefiting stream analytics (§2).

Programmability Programming SBT is similar to program-
ming commodity engines such as Spark Streaming [122] and
Flink [19]. Analytics programmers assemble pipelines with
high-level, declarative operators as exemplified in Figure 2(c).
SBT provides most of the common operators offered by com-
modity engines, as summarized in Table 2. These stream oper-
ators are widely used for analytics over telemetry data [62,90].
SBT supports User Defined Functions (UDFs) that are cer-
tified by a trusted party, which is a common requirement in
TEE-based systems [91].

SBT architecture As shown in Figure 3, SBT’s data plane
incarnates as a TrustZone module. SBT runs its control plane
as a parallel runtime in the normal world. The control plane
invokes the data plane through a narrow interface (details
in Section 9). The control plane orchestrates the execution
of analytics pipelines. It creates plentiful parallelism among
and within operators. It elastically maps the parallelism to a

pool of threads it maintains. At a given moment, all threads
may simultaneously execute one operator as well as different
operators over different data.
Data plane & design choices SBT’s data plane consists of
only the trusted primitives and a runtime for them.

i) Trusted primitives are stateless, single-threaded func-
tions that are oblivious to synchronization. We do not enclose
whole stream pipelines in the data plane, because a stream
pipeline must be scheduled dynamically for parallelism and
handling high-velocity data. We do not enclose whole declara-
tive operators in the data plane, because one operator instance
has internal thread-level parallelism and hence requires thread
management logic. Our choice keeps the data plane lean,
leaving out all control functions including scheduling and
threading. This contrasts to many other engines pulling whole
analytics to TEE as shown in Table 1.

Although exporting low-level primitives entails more TEE
switches, the costs are lower on modern ARM [25, 56] and
can be amortized by data batching, as will be discussed soon.

ii) The data plane incorporates minimum runtime functions:
memory management and paging, which are critical to TEE
integrity; cache coherence of parallel primitives, which is
critical to parallelism. The data plane is agnostic to declarative
operators and pipelines being executed.

For attestation, the data plane generates audit records on
data ingress/egress, watermarks, and primitive executions. It
reduces overhead via data batching and record compression.
Coping with secure memory shortage When compute cost
or data ingestion rate is high, SBT may run short of secure
memory. To avoid data loss in such a situation, SBT adds
backpressure to source sensors, slowing down data ingestion.
In the current implementation, SBT triggers backpressure
when ingestion exceeds a user-defined threshold; we leave as
future work automatic flow control, i.e. tuning the threshold
online per available secure memory and backlog.

5 Trusted Primitives and Optimizations

Parallel execution inside a TEE SBT exploits task par-
allelism without bloating the TEE with a threading library.
The control plane invokes multiple primitives from multi-
ple worker threads, which then enter the TEE to execute the
primitives in parallel. All trusted primitives share one cache-
coherent memory address space in TEE, which simplifies data
sharing and avoids copy cost. This contrasts to existing secure
analytics engines that leave task parallelism untapped in a
single TEE [53, 99].
Array-based algorithms to suit TEE Unlike many pop-
ular stream engines using hash-based algorithms for lower
algorithmic complexity, we make a new design decision. We
strongly favor algorithms with simple logic and low memory
overhead, despite that they may incur higher algorithmic com-
plexity. Corresponding to contiguous arrays as the universal

data containers in TEE, most primitives use sequential-access
algorithms over contiguous arrays, e.g. executing Merge-Sort
over event arrays and scanning the resultant array to calculate
the average value per key.

Trusted primitives and vectorization SBT’s trusted primi-
tives are generic. They constitute most declarative stream op-
erators, often referred to as Select-Projection-Join-GroupBy
(SPJG) families, shown in Table 2. These operators are con-
sidered representative in prior research [44].

To speed up the array-based algorithms inside TEE without
TCB bloat, our insight is to map their internal data parallelism
to vector instructions of ARM [21]. Despite their well-known
performance benefit, vector instructions are rarely used to
accelerate data analytics within TEEs, to our knowledge. Vec-
torization incurs low code complexity as the performance
gain comes from a CPU feature that is already part of the
TCB.

Our optimization focuses on Sort and Merge, two core
primitives that dominate the execution of stream analytics
according to our observation. Inspired by vectorized sort and
merge on x86 [26,64], we build new implementations for SBT
by hand-writing ARMv8 NEON vector instructions. Our sort
outperforms the ones in the C/C++ standard libraries by more
than 2×, as will be shown in evaluation. This optimization is
crucial to the overall engine performance.

6 TEE Memory Management

Facing high-velocity streams in a TEE, SBT’s memory al-
locator addresses two challenges: space efficiency: it must
create compact memory layout and reclaim memory timely
due to limited physical memory; lightweight: the allocator
must be simple to suit a low TCB. The challenges disqualify
popular engines that organize events in hash tables (e.g. for
grouping events by key) and rely on generic memory alloca-
tors [32, 69, 82, 90, 122]. The reasons are two: a hash table’s
principle of trading space for time mismatches TEE’s lim-
ited memory; generic allocators often feature sophisticated
optimizations, adding tens of KSLoC to TCB [41, 59].

SBT specializes memory management for stream computa-
tions: it supports unbounded buffers as the universal memory
abstraction (§6.1); it places data by using (untrusted) con-
sumption hints and large virtual address space (§6.2).

6.1 Unbounded Array

We devise contiguous, virtually unbounded arrays called uAr-
rays, a new abstraction as the universal data containers used
by computations in TEE. uArrays encapsulate all the data in
a pipeline, including data flowing among trusted primitives
as well as operator states traditionally kept in hash tables.

An uArray is an append-only buffer in a contiguous mem-
ory region for same-type data objects. Their lifecycles closely

map to the producer/consumer pattern in streaming compu-
tations. One uArray can be in three states. Open: after an
uArray is created, it dynamically grows as the producer primi-
tive appends data objects to it. Produced: the data production
completes and the end position of the uArray is finalized. uAr-
ray becomes read-only and no data can be appended. Retired:
the uArray is no longer needed and its memory is subject to
reclamation. The memory allocator places and reclaims uAr-
rays regarding their states, as will be discussed in Section 6.2.

Types uArrays fall into different types depending on their
scopes and enclosed data. A streaming uArray encapsulates
data flowing from a producer primitive to a consumer primi-
tive. A state uArray encapsulates operator state that outlives
the lifespans of individual primitives. A temporary uArray
live within a trusted primitive’s scope.

Low abstraction overhead An uArray spans a contiguous
virtual memory region and grows transparently. The growth
is backed by the data plane’s on-demand paging that com-
pletely happens in the TEE. For most of the time, growing an
uArray only requires updating an integer index. Compared to
manually managed buffers, this mechanism waives bounds
checking of uArray in computation code and hence allows the
compiler to generate more compact loops. uArrays always
grow in place. This contrasts to common sequence containers
(e.g. C++ std::vector and java.util.ArrayList) that grow
transparently but require expensive relocation. We will exper-
imentally compare uArray with std::vector in Section 9.

6.2 Placing uArrays in uGroups

Co-locating uArrays The memory allocator co-locates mul-
tiple uArrays as a uGroup in order to reclaim them con-
secutively. Spanning a contiguous virtual memory region,
a uGroup consists of multiple produced or retired uArrays
and optionally an open uArray at its end, as shown in Figure 5.
The grouping is purely physical: it is at the discretion of the
allocator, orthogonal to stream computations, and therefore
transparent to the trusted primitives and the control plane.

openproducedretired

GrowReclaim
Figure 5: The uArrays in
one uGroup

With the grouping, the alloca-
tor reclaims consumed uArrays
by always starting from the be-
ginning of an uGroup, as shown
in Figure 5. To place a new uAr-
ray, the allocator decides whether
to create a new uGroup for the uArray, or append the uArray
to an existing uGroup. In doing so, the allocator seeks to i)
ensure that each uGroup holds a sequence of uArrays to be
consumed consecutively in the future; ii) minimize the total
number of live uGroups, in order to compact TEE memory
layout and minimizes the cost in tracking uGroups. To this
end, our key is to guide placement with the control plane’s
data consumption plan, as will be presented below.

Consumption hints Upon invoking a trusted primitive T ,

the control plane may provide two optional hints concerning
the future consumption order for the output of T :
• Consumed-in-parallel (∥k): the control plane will schedule
k worker threads to consume a set of uArrays in parallel.
• Consumed-after (b1⇐b2): the control plane will schedule
worker threads for consuming uArray b2 after uArray b1. The
consumed-after relation is transitive. uArrays may form mul-
tiple consumed-after chains.

The control plane may specify these relations between new
output uArrays (yet to be created) and existing uArrays.

Hint-guided placement The hints assist the data plane to
generate compact memory layout and reclaim memory effec-
tively. Upon allocating a uArray, the allocator examines the
existing hints regarding to the uArray.
(⇐) prompts the allocator to place the uArrays on the same
consumed-after chain in the same uGroup. Starting from the
new uArray b under question, the allocator tracks back on its
consumed-after chain, and places b after the first uArray that
is both in state produced (i.e. its growth has finished) and is
located at the end of an uGroup. If no such uArray is available
on the chain, the allocator creates a new uGroup for b.
(∥k) prompts the allocator to place uArrays b1..k in separate
uGroups, so that delay in consuming any of the uArrays will
not block the allocator from reclaiming the other uArrays. Our
rationale is that despite b1..k are created at the same time, they
are often consumed at different moments in the future: i) since
SBT’s control plane threads independently fetch new uArrays
for processing as they become available (§4), the starting mo-
ments for processing b1..k may vary widely, especially when
the engine load is high; ii) even when k worker threads start
processing b1..k simultaneously, straggling workers are not
uncommon, due to non-determinism of a modern multicore’s
thread scheduling and memory hierarchy [24].

The impacts of misleading hints SBT detects misleading
hints in retrospect through remote attestation (§7). As the
hints only affect TEE memory placement policy on the edge,
misleading hints never result in data loss (§4.2) or violation
of data security and TEE integrity. Yet, such hints may slow
down analytics and therefore violate result freshness.

Managing virtual addresses All uGroups grow in place
within one virtual address space. To avoid collision and ex-
pensive relocation, the allocator places them far apart by lever-
aging the large virtual address space dedicated to a TrustZone
TEE. The space is 256TB on ARMv8, 10,000× larger than
the physical DRAM (a few GBs). Hence, the allocator simply
reserves for each uGroup a virtual address range as large as the
total TEE DRAM. We will validate this choice in Section 9.

7 Attestation for Correctness and Freshness

SBT collects evidences for cloud consumers to verify two
properties: correctness, i.e. all ingested data is processed ac-

Field Description Length
Ts Data plane timestamp 32 bits
Op Primitive type, including ingress/egress 16 bits
WinNo Monotonic window sequence number 16 bits
Data An uArray ID or a watermark value 32 bits
Hint An optional consumption hint 64 bits
Count Number of data/hint fields that follow 16 bits
In/Egress Op Ts Data

Op Ts Data WinNo Data

Op Ts Cnt Data… Cnt Data… Cnt Hints...

Windowing

Execution

Figure 6: Audit records: fields (top) and layout (bottom)

cording to the stream pipeline declaration; freshness, i.e. the
pipeline has low output delays.

The above objective has several notable aspects. i) We
verify the behaviors of untrusted control plane, i.e., which
primitives it invokes on what data and at what time. We do
not verify trusted primitives, e.g. if a Sort primitive indeed pro-
duces ordered data. ii) Verifying data lineages at the pipeline’s
intermediate operators or egress [50, 102] is insufficient to
guarantee correctness, i.e. all data ingested so far is processed
according to the stream pipeline. iii) The windows of stream
computations and watermarks triggering the computations
must be attested, which are keys to stream model (§2). iv) As
the volume of evidences can be substantial, evidences must
be compacted to save uplink bandwidth [84, 114].

Therefore, SBT provides the following verification mecha-
nism. Agnostic to the pipeline being executed, the data plane
monitors dataflows among primitive instances at the TEE
boundary, and then generates audit records. For low overhead,
it eschews building data lineages on-the-fly unlike much prior
work [50,74,99]. The data plane compresses audit records and
flushes to the cloud both periodically and upon externalizing
any analytics result. We describe details below.

Audit records As being invoked by the control plane, the
data plane generates audit records. As illustrated in Figure 6,
the records track i) ingested and externalized uArrays, ii)
associations between uArrays and windows, and iii) primitive
executions (with optional hints supplied by the control plane)
which establish derived-from relations among uArrays. The
records further include ingested watermark values, which are
crucial for determining output delays as will be discussed
below. The data plane timestamps all the records. It generates
monotonically increasing identifiers for recorded uArrays. We
will evaluate the overhead of audit records in Section 9.

Attesting analytics correctness The cloud verifier checks if
all ingested uArrays flow through the expected trusted primi-
tives. Such dataflows are deterministic given the arrivals of
input data (including their windows), the watermarks, and the
pipeline declaration. Hence, the verifier replays all ingestion
records on its local copy of the same pipeline. It checks if all
the records resulting from the replay match the ones reported
by the edge (except timestamps). The replay is symbolic with-
out actual computations and hence fast.

Note that the verification works for stateful operators as

well. The state of a stream operator (e.g. temporal join) is only
determined by all the inputs the operator has ever received.
Since the cloud can verify that all the ingested uArrays cor-
rectly flow through the expected trusted primitives and thus
stream operators, it knows that the operator’s current state
must be correct, and then all results derived from the operator
state must be correct.

Attesting result freshness The key for the verifier to calcu-
late the delay of an output result R is to identify the watermark
that triggers the externalization of R, according to the delay
definition in Section 2.2. From the egress record of R, the veri-
fier traces backward following the derived-from chain(s) until
it reaches an execution record indicating that a watermark W
triggers the execution. The verifier looks up the ingress record
of W . It calculates the difference between W ’s ingress time
and R’s egress time to be the delay of R.

Example In Listing 1, an uArray with identifier 0xF0 is
ingested and segmented into two uArrays (0xF1 and 0xF2) for
window 0 and 1 respectively. Sort consumes uArray 0xF1 and
produces uArray 0xF3. A watermark with value 100 arrives
and completes window 0. Triggered by the watermark, SUM
consumes uArray 0xF3 of window 0 and produces uArray
0xF5 as the result of window 0.

ts= 1 INGRESS data=0xF0
ts= 5 WND data_in =0xF0 win_no =0 data_out =0xF1
ts=10 SORT data_in =0xF1 data_out =0xF3
ts=15 INGRESS data=0xF4 (watermark =100)
ts=25 SUM data_in =0xF3 ,0xF4 data_out =0xF5
ts=28 WND data_in =0xF0 win_no =1 data_out =0xF6
ts=30 EGRESS data=0xF5

Listing 1: Sample audit records for the pipeline in Figure 2.
Format is simplified. ts means processing timestamp.

The cloud verifier replays the ingress records on its local
pipeline copy and learns that uArray 0xF1 is processed ad-
hering to the pipeline declaration while uArray 0xF2 is yet
to be processed. It will assert analytics incorrectness if 0xF2
remains unprocessed until a future watermark completes win-
dow 1 (not shown). To verify result freshness, the verifier
traces result 0xF5 backward to find its trigger watermark
0xF4 and calculates the output delay to be 15 (30−15).

Columnar compression of records The data plane com-
presses audit records by exploiting locality within one record
field and known data distribution in each field. The data plane
produces raw audit records in memory (with the format shown
in Figure 6) and in a row order, i.e. one record after the other.
Before uploading a sequence of records, it separates the record
fields (i.e. columns) and applies different encoding schemes
to individual columns: i) Huffman encoding for primitive
types and data counts, the two columns likely contain skewed
values; ii) delta encoding for timestamps, uArray identifiers,
and window numbers, which increment monotonically. Our
compression is inspired by columnar databases [107]. We will
evaluate the efficacy of compression in Section 9.

8 Implementation

We build SBT for ARMv8 and atop OP-TEE [70] (v2.3).
SBT reuses most control functions of StreamBox [82], an
open-source research stream engine for x86 servers. Yet, as
StreamBox mismatches a TEE (§4.1), SBT contributes a new
architecture and a new data plane. SBT communicates with
source sensors and cloud consumers over ZeroMQ TCP trans-
port [57] which is known for good performance. The new
implementation of SBT includes 12.4K SLoC.
Input batch size, a key parameter of SBT, trades off between
delays in executing individual primitives, the rate of TEE
entry/exit, and attestation cost. We empirically determine it
as 100K events and will evaluate its impact (§9). Opaque
references for uArrays are 64-bit random integers generated
by the data plane. It keeps the mappings from references to
uArray addresses in a table, and validates opaque references
by table lookup. This incurs minor overhead, as live opaque
references are often no more than a few thousands.

9 Evaluation

We answer the following questions through evaluation:
• Does SBT result in a small TCB? (§9.1)
• What is SBT’s performance and how is it compared to

other engines? What is the overhead? (§9.2)
• How do our key designs impact performance (§9.3)?

9.1 TCB Analysis

TCB size Table 4 shows a breakdown of the SBT source
code. Despite a sophisticated control plane, the data plane
only adds 5K SLoC to the TCB. SBT’s memory management
is in 740 SLoC, 9× fewer than glibc’s malloc and 20× fewer
than jemalloc [41]. The size of data plane is 42.5 KB, a small
fraction (16%) of the entire OP-TEE binary.

TCB interface The SBT’s data plane exports only four entry
functions: two for data plane initialization/finalization, one
for debugging, and one shared by all 23 trusted primitives.
The last function accepts and returns opaque references (§4).
No state is shared across the protection boundary.

Comparison with alternative TCBs Compared to enclos-
ing whole applications in TCB [22, 27, 112], SBT keeps
most of the engine out, shrinking the TCB by at least one
order of magnitude. Compared to directly carving out [71,93]
the original StreamBox’s data functions for protection, SBT
completely avoids sophisticated data structures (e.g. Atom-
icHashMap [47] used by StreamBox) that mismatch TCB.
Compared to VC3 [99] that implements Map/Reduce oper-
ators in a TCB with ∼9K SLoC, SBT supports much richer
stream operators within a 2× smaller TCB.

SoC HiSilicon Kirin 620, TDP 36W CPU 8x ARM Cortex-A53@1.2 GHz

Mem 2GB LPDDR3@800 MHz OS Normal: Debian 8 (Linux 4.4)
Secure: OP-TEE 2.3

Table 3: The test platform used in experiments

Data Plane (Trusted)
Primitives* Mem Mgmt* Misc* Total

3.7K (32.5 KB) 0.7K (6 KB) 0.6K (4 KB) 5K (42.5 KB)
	

Control Plane (Untrusted)
Control Data types* Operators* Test* Misc* Total

23K 1.3K 4.1K 1K 1K 31K (348 KB)
	

Major Libraries (Untrusted)
glibc 2.19 libstdc++ 3.4.2 libzmq 2.2 boost 1.54 Total

1135K 110K 13K 37K 1.3M (3.1 MB)

* New implementations of this work. Total = 12.4K SLoC.

Table 4: A breakdown of the StreamBox-TZ source, of which
5K SLoC are in TCB. Binary code sizes shown in parentheses

9.2 Performance & Overhead

Methodology We evaluate SBT on a HiKey board as sum-
marized in Table 3. We chose HiKey for its good OP-TEE
support [70] and that it is among the few boards with Trust-
Zone programmable by third parties. We built Generator, a
program sends data streams over ZeroMQ TCP transport [57]
to SBT. We run the cloud consumer on an x86 machine. Data
streams are encrypted with 128-bit AES.

In the face of HiKey’s platform limitations, we set up the
engine ingestion as follows. i) Although Gigabit Ethernet
on edge platforms is common [5, 88], Hikey’s Ethernet in-
terface (over USB) only has 20MB/sec bandwidth. We have
verified that the interface is saturated by SBT with 4 cores.
Hence, we report performance when SBT and Generator both
run on HiKey communicating over ZeroMQ TCP, which still
fully exercise the TCP/IP stack and data copy. ii) Although
HiKey’s TEE is capable of directly operating Ethernet in-
terface as trusted IO, our OP-TEE version lacks the needed
drivers. Hence, we emulate SBT’s direct data ingestion to TEE
by running the ingestion in a privileged process in the normal
world, and bypassing data copy across the TEE boundary.
Our test harness continuously replays pre-allocated secure
memory buffers populated with events.

As summarized in Table 5, we test SBT as well as three
modified versions: SBT ClearIngress ingests data in cleart-
ext; this is allowed if source-edge links are trusted as defined
in our threat model (§3). SBT IOviaOS does not exploit Trust-
Zone’s trusted IO: the untrusted OS ingested (encrypted) data
and copies the data across TEE boundary to the data plane.
Insecure completely runs in the normal world with ingress
and egress in cleartext, showing native performance. This
is basically StreamBox [82] with SBT’s optimized stream
computations (§5). We report the engine performance as its
maximum input throughput when the pipeline output delay
(defined in §2.2) remains under a target set by us.
Benchmarks We employ six benchmarks of processing sen-
sor data streams from prior work [32, 62, 63, 67, 82]. They

 0

 1

 2

 3

 4

 5

2c 4c 8c
 0

 10

 20

 30

 40

 50

T
h
ro

u
g
h
p
u
t

(M
E
v
e
n
ts

/s
)

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

TopK (500ms)

64MB 64MB

80MB

 0

 2

 4

 6

 8

 10

2c 4c 8c
 0

 20

 40

 60

 80

 100

T
h
ro

u
g

h
p

u
t

(M
E
v
e
n
ts

/s
)

T
h
ro

u
g

h
p

u
t

(M
B

/s
)

Distinct (200ms)

88MB
96MB

132MB

 0

 1.5

 3

 4.5

 6

 7.5

2c 4c 8c
 0

 10

 20

 30

 40

 50

T
h
ro

u
g

h
p

u
t

(M
E
v
e
n
ts

/s
)

T
h
ro

u
g

h
p

u
t

(M
B

/s
)

Join (250 ms)

88MB

108MB

124MB

 0

 6

 12

 18

 24

 30

2c 4c 8c
 0

 60

 120

 180

 240

 300

T
h
ro

u
g

h
p

u
t

(M
E
v
e
n
ts

/s
)

T
h
ro

u
g

h
p

u
t

(M
B

/s
)

WinSum (20ms)

58MB

68MB

80MB

 0

 6

 12

 18

 24

 30

2c 4c 8c
 0

 60

 120

 180

 240

 300

T
h
ro

u
g

h
p

u
t

(M
E
v
e
n
ts

/s
)

T
h
ro

u
g

h
p

u
t

(M
B

/s
)

Filter (10ms)

54MB
58MB 58MB

 0

 2

 4

 6

 8

 10

2c 4c 8c
 0

 30

 60

 90

 120

 150

T
h
ro

u
g

h
p

u
t

(M
E
v
e
n
ts

/s
)

T
h
ro

u
g

h
p

u
t

(M
B

/s
)

Power (600ms)

22MB

40MB

64MB

Figure 7: StreamBox-TZ throughput (lines, left/right y-axes) as a function of CPU cores (x-axis) under given output delays (above
each plot). Steady consumptions of TEE memory as columns with annotated values. See Table 5 for legends and explanations.

Legend & Version Data
Plane

In/Egress
Path

Ingress
Data

Egress
Data

StreamBox-TZ in TEE Trusted IO* Encrypted Encrypted
SBT ClearIngress in TEE Trusted IO* ClearTxt Encrypted
SBT IOviaOS in TEE via OS Encrypted Encrypted
Insecure♯ out TEE in OS ClearTxt ClearTxt

* Through TrustZone Trusted IO directly to TEE
♯ Equivalent to a StreamBox invoking StreamBox-TZ’s optimized stream compute

Table 5: Engine versions for comparison (plots in Figure 7)

cover major stream operators and a variety of pipelines. We
use fixed windows, each encompassing 1M events and span-
ning 1 second of event time. Each event consists of 3 fields
(12 Bytes) unless stated otherwise. (1) Top Values Per Key
(TopK) groups events based on keys and identifies the K
largest values in each group in each window. (2) Counting
Unique Taxis (Distinct) identifies unique taxi IDs and counts
them per window. For input events, we use a dataset of taxi trip
information containing 11 K distinct taxi IDs [63]. (3) Tem-
poral Join (Join) joins events that have the same keys and fall
into same windows from two input streams. (4) Windowed
Aggregation (WinSum) aggregates input values within each
window. We use the Intel Lab Data [75] consisting of real
sensor values as input. (5) Filtering (Filter) filters out input
data, of which field falls into to a given range in each window.
We set 1% selectivity as done in prior work [67]. (6) Power
Grid (Power), derived from a public challenge [62], finds out
houses with most high-power plugs. Ingesting a stream of per-
plug power samples, it calculates the average power of each
plug in a window and the average power over all plugs in all
houses in the window. For each house, it counts the number of
plugs that have a higher load than average. It emits the houses
that have most high-power plugs in the window. The event
for this benchmark is composed of 4 fields (16 Bytes).

Benchmark 2, 4, and 6 use real-world datasets; others use
synthetic data sets of which fields are 32-bit random integers.
Note that SBT’s GroupBy operator bases on sort and merge

and is insensitive to key skewness [15].

End-to-end performance Figure 7 shows the throughputs
of all benchmarks as a function of hardware parallelism. SBT
can process up to multiple millions of events within sub-
second output delays (labeled atop each plot). For simpler
pipelines such as WinSum and Filter, SBT processes around
12M events/sec (140 MB/sec). This throughput saturates one
GbE link which is common on IoT gateways [88]. Overall,
SBT can use all 8 cores in a scalable manner.

SBT’s absolute performance is state of the art. We test
three popular, insecure stream engines: Flink [19], designed
for distributed environment and known for good single-node
performance [68]; Esper [46], designed for a single machine;
SensorBee [90], designed for sensor data processing on a
single device. As shown in Figure 8, on the same hardware
(HiKey) and the same benchmark (WinSum), we have mea-
sured that SBT’s throughput is at least one order of magnitude
higher than the others. This is because i) our Insecure baseline
has high performance for its rich task parallelism (inherited
from StreamBox [82]) and native, vectorized stream compu-
tations (new contributions); ii) SBT only imposes modest
security overhead, as will be shown later.

Comparison to secure stream engines The comparison is
challenged by that TrustZone was rarely exploited for pro-
tecting data-intensive computations. To our knowledge, i) no
analytics engines use TrustZone for data protection and ii) no
systems can partition an insecure stream engine for TrustZone.
Note that popular secure analytics engines, e.g. VC3 [99] and
Opaque [124], not only require SGX but also target batch
processing instead of stream analytics. To this end, we quali-
tatively compare SBT with SecureStreams [53], the closest
system we are aware of. Designed for an x86 cluster, Secure-
Streams uses SGX to protect stream operators and targets
strong data security. On a benchmark similar to WinSum it

10-1 100 101 102 103

Throughput (MB/s)
(logarithmic)

SensorBee

Flink

Esper

StreamBox-TZ

Figure 8: StreamBox-TZ achieves much
higher throughput than commodity in-
secure engines [19, 46, 90] on HiKey.
Benchmark: windowed aggregation; tar-
get output delay: 50ms.

Figure 9: Run time breakdown of oper-
ator GroupBy under different input batch
sizes. The control plane runs 8 threads to
execute GroupBy in parallel. Total execu-
tion time is normalized to 100%.

 0 20 40 60 80 100
Memory usage (MB)

Filter

WinSum

TopK

 0
 2

0
 4

0
 6

0
 8

0
 1

00
Me

m
or

y
us

ag
e

(M
B)

Fil
te

r

W
in

Su
m

To
pK

w/ hint
w/o hint

Figure 10: Without consumption hints,
the allocator uses more TEE memory.
Since memory usage fluctuates at run
time, the error bars show two standard
deviations below and above the average.

was reported to achieve 10 MB/sec, one magnitude lower
than SBT on WinSum. Furthermore, SecureStreams achieved
such performance on a small x86 cluster which has much
richer resource than HiKey: the former has faster CPUs (8x
i7-6700@3.4GHz versus 8x Cortex-A53@1.2GHz), larger
DRAM (16 GB versus 2 GB), higher power (130W versus
36W), and higher cost ($600 versus $65).

SBT’s advantage comes from i) data exchange via coherent
memory inside one TEE, instead of exchanging encrypted
messages among workers; ii) memory management special-
ized for streaming, and iii) vectorized computations.

Security overhead We investigate the overhead of the new
security mechanism contributed by SBT – its isolated data
plane. We assess the overhead as the throughput loss of SBT
ClearIngress as compared to Insecure (i.e. native performance
as StreamBox [82] invoking SBT’s stream computations),
both paying same costs for data ingress. The target output
delays are the same (labeled atop each plot in Figure 7). The
security overhead is less than 25% in all benchmarks. This
is similar to or lower than the reported overhead (20–70%)
in recent TEE systems [22, 71, 112]. Overhead analysis: The
security overhead mostly comes from world switch, among
operators and inside each operator. To understand the switch
cost within an operator, we profile GroupBy, one of the most
costly operators. We test different input batch sizes, which
have a strong impact on TEE entry/exit rates and hence iso-
lation overhead (§4). Figure 9 shows a run time breakdown.
When each input batch contains 128K (close to the value we
set for SBT) or more events, more than 90% of the CPU time
is spent on actual computations in TEE. The CPU usage of
TEE memory management is as low as 1–2%. In the extreme
case where each input batch contains as few as 8K events,
the overhead of world switch starts to dominate. Most of the
world switch overhead comes from OP-TEE instead of the
CPU hardware (a few thousand cycles per switch), suggesting
room for OP-TEE optimization.

Impact of decrypting ingress data Decrypting ingress data
is needed if source-edge links are untrusted (§3) and source
must send encrypted data. It has substantial performance im-
pact. By comparing SBT to SBT ClearIngress, turning on/off

ingress decryption leads to 4% – 35% throughput difference
when all 8 cores are in use. The performance gap is more
pronounced for simple pipelines, which has higher ingestion
throughput leading to higher decryption cost.

TEE memory usage While sustaining high throughput, SBT
consumes a moderate amount of physical memory, ranging
from 20 MB to 130 MB as shown in Figure 7. The memory
usage is as low as 1–6% of the total system DRAM. The
virtual memory usage is also low, often 1–5% of the entire vir-
tual address space in OP-TEE. The memory usage increases
with the throughput, since there will be more in-flight data.
On the same platform, Flink’s memory consumption is 3×
higher, due to its hash-based data structures and the use of
JVM. This validates our choice of uArrays.

Attestation overhead Attestation incurs minor overhead to
both the edge and the cloud. We measured that SBT produces
300–400 audit records per second across all our benchmarks,
and spends a few hundred cycles on producing each record.
Compressing such record streams on HiKey consumes 0.2%
of total CPU time. Our consumer written in Python on a 4-
core i7-4790 machine replays 57K records per second with
a single core, suggesting a capability of attesting near 500
SBT instances simultaneously. We will evaluate the efficacy
of record compression in Section 9.3.

9.3 Validation of Key Design Features

Exploitation of trusted IO As shown in Figure 7, a com-
parison between SBT and SBT IOviaOS demonstrates the
advantage of directly ingesting data into TEE and bypassing
the OS: SBT outperforms the latter by up to 20% in through-
put due to reduction in moving ingested data.

Trusted primitive vectorization (§5) Our optimizations
with ARM vector instructions are crucial. To show this, we
examine GroupBy, one of the top hotspot operators. When
we replace the vectorized Sort that underpins GroupBy with
two popular implementations (qsort() from the the OP-TEE’s
libc and std::sort() from the standard C++ library), we mea-
sured the throughput of GroupBy drops by up to 7× and 2×,

 0

 1

 2

 3

 4

128-way merge

E
xe

cu
ti

o
n
 t

im
e
 (

se
c) std::vector

uArray

Figure 11: On-
demand growth
of uArrays vs.
std::vector

 0

 20

 40

 60

 80

WinSum Power

K
B

y
te

s/
s

Raw
Compressed

(a) 10K events/batch

 0

 2

 4

 6

 8

WinSum Power

K
B

y
te

s/
s

Raw
Compressed

(b) 100K events/batch

Figure 12: Compression of audit records
saves uplink bandwidth substantially.

respectively. We have similar observation on other operators.

Efficacy of hint-guided memory placement (§6.2) We
compare to an alternative design: the modified allocator acts
based on the heuristics that all the uArrays produced by the
same primitive belong to the same generation and are likely to
be reclaimed altogether. Accordingly, the modified allocator
places these uArrays in the same uGroup. As shown in Fig-
ure 10, in three benchmarks, the modified allocator increases
memory usage by up to 35%. This is because, without hints,
it cannot place uArrays based on future consumption.

uArray on-demand growth (§6.1) We compare uArray to
std::vector, a widely used C++ sequence container with on-
demand growth. We run a microbenchmark of N-way merge,
an intensive procedure in trusted primitives. It iteratively
merges 128 buffers (uArrays or vectors), each containing 512
KB (128K 32-bit random integers) until obtaining a mono-
lithic buffer; as merge proceeds, buffers grow dynamically.
As shown in Figure 11, uArrays is 4× faster than std::vector,
because the allocation and paging in TEE that back uArray
growth is much faster than that of a commodity OS.

Compression of audit records (§7) The compression signif-
icantly saves the uplink bandwidth. We test two benchmarks
(WinSum and Power) on two extremes of the spectrum of
computation cost, and test two very different input batch sizes.
This is because simpler computations and smaller batch sizes
generate audit records at higher rates. Figure 12 shows that
SBT compresses audit records by 5×–6.7×. In an offline test
using gzip to compress the same records, we find our com-
pression ratios are 1.9× higher than gzip. 2–40 KB/sec of
uplink bandwidth is saved, which is significant compared to
the uploaded analytics results, which are 144 bytes/sec for
WinSum and 400 bytes/sec for Power.

10 Related Work

Secure data analytics DARKLY [61] protects sensor data by
isolating computations in an OS process, resulting in a large
TCB. VC3 [99] and SecureStreams [53] use SGX to protect
the operators in distributed analytics. They lack optimizations
for parallel execution in one TEE on the edge. To process data
confidentiality, STYX [106] computes over encrypted data,

a method likely prohibitively expensive to edge platforms.
Opaque [124] protects data access patterns of distributed
operators, targeting a threat out of our scope.

TCB minimization Minimizing TCB is a proven approach
towards a trustworthy system. Flicker [80] directly exe-
cutes security-sensitive code on baremetal hardware. Trustvi-
sor [79] shrinks its TCB to a specialized hypervisor. Sharing a
similar goal, SBT addresses unique challenges in supporting
data-intensive computation on a minimal TCB.

Trusted Execution Environments Much work isolates
security-sensitive software components. Terra [48] supports
isolation with a virtual machine. Many systems used Trust-
Zone and SGX [81] for TEE. Some systems enclose in TEE
whole applications [22, 27, 51, 112], while others partition
existing programs for TEE [71, 93, 101]. These approaches
often result in larger TCBs and/or higher overhead than SBT
and are thus less desirable for SBT. TEE also sees various
novel usage, including protecting mobile app classes [96],
enforcing security policies [30], remote attestation of applica-
tion control flows [13], and controlling data access [34]. None
addresses data-intensive computation as SBT does.
Edge processing evolves from a vision [98, 100] to prac-
tice [37, 42, 83]. Most works focused on programming
paradigms [94], developing and deploying application [29,
52, 114], and resource management [86]. Complementary to
them, SBT focuses on secure analytics on the edge.
Stream processing systems, in response to big data chal-
lenges, evolve from single-threaded [33, 40, 78, 105, 110] to
massive parallel systems [14,69,85,92,92,113,122]. The exist-
ing systems focus on challenges, such as fault tolerance [122],
fast reconfiguration [115], high parallelism [32, 82], and the
use of GPUs [67]. Few systems achieve data security and
performance simultaneously as SBT does.

11 Conclusions

This paper presents StreamBox-TZ (SBT), a secure stream
analytics engine designed and optimized for a TEE on an edge
platform. SBT offers strong data security, verifiable results,
and competitive performance. On an octa core ARM machine,
SBT processes up to tens of millions of events per second; its
security mechanisms incur less than 25% overhead.

Acknowledgments

The authors thank the anonymous reviewers and our shepherd,
Eyal de Lara, for their insightful comments. For this project:
the authors affiliated with Purdue ECE were supported in part
by NSF Award #1718702, #1619075, Purdue University CP-
S/IoT Seed Grant Program, and a Google Faculty Award; the
author affiliated with Northeastern University was supported
in part by NSF Award #1748334.

References

[1] Apache Beam. https://beam.apache.org/.

[2] ARM TrustZone. http://www.arm.com/
products/processors/technologies/trustzone/
index.php.

[3] CVE-2010-3190: Untrusted search path vulnerability
in the microsoft foundation class (mfc) library. https:
//nvd.nist.gov/vuln/detail/CVE-2010-3190.

[4] CVE-2017-12629: Remote code execution occurs in
apache solr. https://nvd.nist.gov/vuln/detail/
CVE-2017-12629.

[5] Marvell Armada 8K family processors.
http://www.marvell.com/embedded-processors/
armada-80xx/.

[6] CVE-2008-0171: Boost.regex allows context-
dependent attackers to cause failed assertion and crash.
https://nvd.nist.gov/vuln/detail/CVE-2008-
0171s, 2008.

[7] CVE-2009-2493: Active template library does not
properly restrict use of oleloadfromstream in instan-
tiating objects from data streams, which allows re-
mote attackers to execute arbitrary code. https://
nvd.nist.gov/vuln/detail/CVE-2009-2493, 2009.

[8] CVE-2015-4421: in huawei mate7. https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2015-4421, 2015.

[9] CVE-2015-4422: in huawei mate7. https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2015-4422, 2015.

[10] CVE-2016-10229: udp.c in the linux kernel before
4.5 allows remote attackers to execute arbitrary
code. https://nvd.nist.gov/vuln/detail/CVE-
2016-10229, 2016.

[11] CVE-2017-11176: The mq_notify function in the
linux kernel allows attackers to cause a denial
of service or possibly have unspecified other im-
pact. https://nvd.nist.gov/vuln/detail/CVE-
2017-11176, 2017.

[12] CVE-2018-8822: Incorrect buffer length handling in
the ncp_read_kernel function could be exploited by
malicious ncpfs servers to crash the kernel or ex-
ecute code. https://nvd.nist.gov/vuln/detail/
CVE-2018-8822, 2017.

[13] T. Abera, N. Asokan, L. Davi, J.-E. Ekberg, T. Ny-
man, A. Paverd, A.-R. Sadeghi, and G. Tsudik. C-flat:

control-flow attestation for embedded systems soft-
ware. In Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security
(CCS), 2016.

[14] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak,
R. J. Fernández-Moctezuma, R. Lax, S. McVeety,
D. Mills, F. Perry, E. Schmidt, and S. Whittle. The
dataflow model: A practical approach to balancing cor-
rectness, latency, and cost in massive-scale, unbounded,
out-of-order data processing. Proceedings of the VLDB
Endow., 8(12):1792–1803, 2015.

[15] M.-C. Albutiu, A. Kemper, and T. Neumann. Massively
parallel sort-merge joins in main memory multi-core
database systems. Proceedings of the VLDB Endow.,
5(10):1064–1075, 2012.

[16] M. P. Andersen and D. E. Culler. Btrdb: Optimizing
storage system design for timeseries processing. In
Proceedings of the 14th USENIX Conference on File
and Storage Technologies (FAST), 2016.

[17] M. P. Andersen, S. Kumar, C. Brooks, A. von Meier,
and D. E. Culler. Distil: Design and implementation of
a scalable synchrophasor data processing system. In
2015 IEEE International Conference on Smart Grid
Communications (SmartGridComm), 2015.

[18] R. Anderson and M. Kuhn. Low cost attacks on tam-
per resistant devices. In International Workshop on
Security Protocols, 1997.

[19] Apache. Apache flink: Scalable stream and batch data
processing. https://flink.apache.org/, 2017.

[20] A. Arasu, S. Babu, and J. Widom. The cql continuous
query language: Semantic foundations and query exe-
cution. Proceedings of the VLDB Journal, 15(2):121–
142, 2006.

[21] Arm. Arm neon technology. https://
developer.arm.com/technologies/neon, 2018.

[22] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin,
C. Priebe, J. Lind, D. Muthukumaran, D. O’Keeffe,
M. L. Stillwell, D. Goltzsche, D. Eyers, R. Kapitza,
P. Pietzuch, and C. Fetzer. Scone: Secure linux contain-
ers with intel sgx. In Proceedings of the 12th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI), 2016.

[23] Art Manion. CERT/CC Blog – Anatomy of Java Ex-
ploits. https://insights.sei.cmu.edu/cert/2013/
01/anatomy-of-java-exploits.html/, 2013.

[24] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Efficient
system-enforced deterministic parallelism. Proceed-
ings of Commun. of the ACM, 55(5):111–119, 2012.

https://beam.apache.org/
http://www.arm.com/products/processors/technologies/trustzone/index.php
http://www.arm.com/products/processors/technologies/trustzone/index.php
http://www.arm.com/products/processors/technologies/trustzone/index.php
https://nvd.nist.gov/vuln/detail/CVE-2010-3190
https://nvd.nist.gov/vuln/detail/CVE-2010-3190
https://nvd.nist.gov/vuln/detail/CVE-2017-12629
https://nvd.nist.gov/vuln/detail/CVE-2017-12629
http://www.marvell.com/embedded-processors/armada-80xx/
http://www.marvell.com/embedded-processors/armada-80xx/
https://nvd.nist.gov/vuln/detail/CVE-2008-0171s
https://nvd.nist.gov/vuln/detail/CVE-2008-0171s
https://nvd.nist.gov/vuln/detail/CVE-2009-2493
https://nvd.nist.gov/vuln/detail/CVE-2009-2493
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4421
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4421
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4421
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4422
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4422
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4422
https://nvd.nist.gov/vuln/detail/CVE-2016-10229
https://nvd.nist.gov/vuln/detail/CVE-2016-10229
https://nvd.nist.gov/vuln/detail/CVE-2017-11176
https://nvd.nist.gov/vuln/detail/CVE-2017-11176
https://nvd.nist.gov/vuln/detail/CVE-2018-8822
https://nvd.nist.gov/vuln/detail/CVE-2018-8822
https://flink.apache.org/
https://developer.arm.com/technologies/neon
https://developer.arm.com/technologies/neon
https://insights.sei.cmu.edu/cert/2013/01/anatomy-of-java-exploits.html/
https://insights.sei.cmu.edu/cert/2013/01/anatomy-of-java-exploits.html/

[25] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar,
G. Ganesh, J. Ma, and W. Shen. Hypervision across
worlds: Real-time kernel protection from the arm trust-
zone secure world. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communica-
tions Security (CCS), 2014.

[26] C. Balkesen, G. Alonso, J. Teubner, and M. T. Özsu.
Multi-core, main-memory joins: Sort vs. hash revisited.
Proceedings of the VLDB Endow., 7(1):85–96, 2013.

[27] A. Baumann, M. Peinado, and G. Hunt. Shielding
applications from an untrusted cloud with haven. In
Proceedings of the 11th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI),
2014.

[28] A. Becher, Z. Benenson, and M. Dornseif. Tampering
with motes: Real-world physical attacks on wireless
sensor networks. In Proceedings of the 3rd Interna-
tional Conference on Security in Pervasive Computing,
2006.

[29] K. Bhardwaj, M. W. Shih, P. Agarwal, A. Gavrilovska,
T. Kim, and K. Schwan. Fast, scalable and secure
onloading of edge functions using airbox. In 2016
IEEE/ACM Symposium on Edge Computing (SEC),
2016.

[30] F. Brasser, D. Kim, C. Liebchen, V. Ganapathy,
L. Iftode, and A.-R. Sadeghi. Regulating arm trust-
zone devices in restricted spaces. In Proceedings of
the 14th International Conference on Mobile Systems,
Applications, and Services (MobiSys), 2016.

[31] S. Brenner, C. Wulf, D. Goltzsche, N. Weichbrodt,
M. Lorenz, C. Fetzer, P. Pietzuch, and R. Kapitza. Se-
curekeeper: Confidential zookeeper using intel sgx. In
Proceedings of the 17th International Middleware Con-
ference, 2016.

[32] B. Chandramouli, J. Goldstein, M. Barnett, R. DeLine,
D. Fisher, J. C. Platt, J. F. Terwilliger, and J. Wernsing.
Trill: A high-performance incremental query processor
for diverse analytics. Proceedings of the VLDB Endow.,
8(4):401–412, 2014.

[33] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy,
S. R. Madden, F. Reiss, and M. A. Shah. Telegraphcq:
continuous dataflow processing. In Proceedings of
the 2003 ACM SIGMOD international conference on
Management of data, 2003.

[34] F. Chen. Cross-platform data integrity and confiden-
tiality with graduated access control. PhD thesis, The
University of British Columbia, 2016.

[35] H. Chen, Y. Mao, X. Wang, D. Zhou, N. Zeldovich, and
M. F. Kaashoek. Linux kernel vulnerabilities: State-of-
the-art defenses and open problems. In Proceedings
of the 2nd Asia-Pacific Workshop on Systems (APSys),
2011.

[36] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam,
C. A. Waldspurger, D. Boneh, J. Dwoskin, and D. R.
Ports. Overshadow: A virtualization-based approach to
retrofitting protection in commodity operating systems.
In Proceedings of the 13th International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2008.

[37] CISCO. White paper: The cisco edge analyt-
ics fabric system. http://www.cisco.com/c/
dam/en/us/products/collateral/analytics-
automation-software/edge-analytics-fabric/
eaf-whitepaper.pdf, 2016.

[38] R. Clapis. Go get my/vulnerabilities: an in-depth anal-
ysis of go language. https://www.blackhat.com/
docs/asia-17/materials/asia-17-Clapis-
Go-Get-My-Vulnerabilities-An-In-Depth-
Analysis-Of-Go-Language-Runtime-And-
The-New-Class-Of-Vulnerabilities-It-
Introduces.pdf, Blackhat Asia 2017.

[39] P. Colp, J. Zhang, J. Gleeson, S. Suneja, E. de Lara,
H. Raj, S. Saroiu, and A. Wolman. Protecting data
on smartphones and tablets from memory attacks. In
Proceedings of the 20th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2015.

[40] C. Cranor, T. Johnson, O. Spataschek, and
V. Shkapenyuk. Gigascope: a stream database
for network applications. In Proceedings of the
2003 ACM SIGMOD international conference on
Management of data, 2003.

[41] J. E. David Goldblatt, Dave Watson. Jemalloc memory
allocator. http://http://jemalloc.net/, 2017.

[42] Dell. Dell further democratizes advanced
analytics with latest release of statistica.
http://www.dell.com/learn/us/en/uscorp1/
press-releases/2016-04-14-dell-further-
democratizes-advanced-analytics, 2016.

[43] Documentation. "a new reality for oil
& gas". https://www.cisco.com/c/dam/
en_us/solutions/industries/energy/docs/
OilGasDigitalTransformationWhitePaper.pdf,
2017.

http://www.cisco.com/c/dam/en/us/products/collateral/analytics-automation-software/edge-analytics-fabric/eaf-whitepaper.pdf
http://www.cisco.com/c/dam/en/us/products/collateral/analytics-automation-software/edge-analytics-fabric/eaf-whitepaper.pdf
http://www.cisco.com/c/dam/en/us/products/collateral/analytics-automation-software/edge-analytics-fabric/eaf-whitepaper.pdf
http://www.cisco.com/c/dam/en/us/products/collateral/analytics-automation-software/edge-analytics-fabric/eaf-whitepaper.pdf
https://www.blackhat.com/docs/asia-17/materials/asia-17-Clapis-Go-Get-My-Vulnerabilities-An-In-Depth-Analysis-Of-Go-Language-Runtime-And-The-New-Class-Of-Vulnerabilities-It-Introduces.pdf
https://www.blackhat.com/docs/asia-17/materials/asia-17-Clapis-Go-Get-My-Vulnerabilities-An-In-Depth-Analysis-Of-Go-Language-Runtime-And-The-New-Class-Of-Vulnerabilities-It-Introduces.pdf
https://www.blackhat.com/docs/asia-17/materials/asia-17-Clapis-Go-Get-My-Vulnerabilities-An-In-Depth-Analysis-Of-Go-Language-Runtime-And-The-New-Class-Of-Vulnerabilities-It-Introduces.pdf
https://www.blackhat.com/docs/asia-17/materials/asia-17-Clapis-Go-Get-My-Vulnerabilities-An-In-Depth-Analysis-Of-Go-Language-Runtime-And-The-New-Class-Of-Vulnerabilities-It-Introduces.pdf
https://www.blackhat.com/docs/asia-17/materials/asia-17-Clapis-Go-Get-My-Vulnerabilities-An-In-Depth-Analysis-Of-Go-Language-Runtime-And-The-New-Class-Of-Vulnerabilities-It-Introduces.pdf
https://www.blackhat.com/docs/asia-17/materials/asia-17-Clapis-Go-Get-My-Vulnerabilities-An-In-Depth-Analysis-Of-Go-Language-Runtime-And-The-New-Class-Of-Vulnerabilities-It-Introduces.pdf
http://http://jemalloc.net/
http://www.dell.com/learn/us/en/uscorp1/press-releases/2016-04-14-dell-further-democratizes-advanced-analytics
http://www.dell.com/learn/us/en/uscorp1/press-releases/2016-04-14-dell-further-democratizes-advanced-analytics
http://www.dell.com/learn/us/en/uscorp1/press-releases/2016-04-14-dell-further-democratizes-advanced-analytics
https://www.cisco.com/c/dam/en_us/solutions/industries/energy/docs/OilGasDigitalTransformationWhitePaper.pdf
https://www.cisco.com/c/dam/en_us/solutions/industries/energy/docs/OilGasDigitalTransformationWhitePaper.pdf
https://www.cisco.com/c/dam/en_us/solutions/industries/energy/docs/OilGasDigitalTransformationWhitePaper.pdf

[44] M. Drumond, A. Daglis, N. Mirzadeh, D. Ustiugov,
J. Picorel, B. Falsafi, B. Grot, and D. Pnevmatikatos.
The mondrian data engine. In Proceedings of the 44th
International Symposium on Computer Architecture
(ISCA), 2017.

[45] Eclipse IoT Working Group. IoT Developer Survey
2018. https://https://blogs.eclipse.org/
post/benjamin-cab%C3%A9/key-trends-iot-
developer-survey-2018, 2018.

[46] EsperTech. Esper. http://www.espertech.com/
esper/, 2017.

[47] Facebook. Folly. https://github.com/facebook/
folly#folly-facebook-open-source-library,
2017.

[48] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and
D. Boneh. Terra: A virtual machine-based platform for
trusted computing. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles (SOSP),
2003.

[49] P. Gilbert, J. Jung, K. Lee, H. Qin, D. Sharkey, A. Sheth,
and L. P. Cox. Youprove: Authenticity and fidelity
in mobile sensing. In Proceedings of the 9th ACM
Conference on Embedded Networked Sensor Systems
(SenSys), 2011.

[50] B. Glavic, K. Sheykh Esmaili, P. M. Fischer, and N. Tat-
bul. Ariadne: Managing fine-grained provenance on
data streams. In Proceedings of the 7th ACM Inter-
national Conference on Distributed and Event-based
Systems (DEBS), 2013.

[51] L. Guan, P. Liu, X. Xing, X. Ge, S. Zhang, M. Yu, and
T. Jaeger. Trustshadow: Secure execution of unmodi-
fied applications with arm trustzone. In Proceedings of
the 15th International Conference on Mobile Systems,
Applications, and Services (MobiSys), 2017.

[52] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and
M. Satyanarayanan. Towards wearable cognitive assis-
tance. In Proceedings of the 12th International Con-
ference on Mobile Systems, Applications, and Services
(MobiSys), 2014.

[53] A. Havet, R. Pires, P. Felber, M. Pasin, R. Rouvoy, and
V. Schiavoni. Securestreams: A reactive middleware
framework for secure data stream processing. In Pro-
ceedings of the 11th ACM International Conference on
Distributed and Event-based Systems (DEBS), 2017.

[54] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and
E. Witchel. Inktag: Secure applications on an untrusted

operating system. In Proceedings of the 18th Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASP-
LOS), 2013.

[55] hortonworks. "iot and predictive big data analyt-
ics for oil and gas". https://hortonworks.com/
solutions/oil-gas/, 2017.

[56] Z. Hua, J. Gu, Y. Xia, H. Chen, B. Zang, and H. Guan.
vtz: Virtualizing ARM trustzone. In Proceedings of
the 26th USENIX Conference on Security Symposium
(USENIX Security), 2017.

[57] iMatix Corporation. Zeromq. http://zeromq.org/,
2018.

[58] M. G. Institute. The internet of things: Mapping the
value beyond the hype.

[59] Intel. Intel threading building blocks. https://
software.intel.com/en-us/intel-tbb, 2017.

[60] Intel. "iot solutions for upstreamoil and gas".
https://www.intel.com/content/dam/www/
public/us/en/documents/solution-briefs/oil-
and-gas-iot-brief.pdf, 2017.

[61] S. Jana, A. Narayanan, and V. Shmatikov. A scanner
darkly: Protecting user privacy from perceptual appli-
cations. In Proceedings of the 34th IEEE Symposium
on Security and Privacy (S&P), 2013.

[62] Z. Jerzak and H. Ziekow. The debs 2014 grand chal-
lenge. In Proceedings of the 8th ACM International
Conference on Distributed and Event-Based Systems
(DEBS), 2014.

[63] Z. Jerzak and H. Ziekow. The debs 2015 grand chal-
lenge. In Proceedings of the 9th ACM International
Conference on Distributed and Event-Based Systems
(DEBS), 2015.

[64] C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D.
Nguyen, N. Satish, J. Chhugani, A. Di Blas, and
P. Dubey. Sort vs. hash revisited: Fast join imple-
mentation on modern multi-core cpus. Proceedings of
the VLDB Endow., 2(2):1378–1389, 2009.

[65] S. Kim, J. Han, J. Ha, T. Kim, and D. Han. Enhancing
security and privacy of tor’s ecosystem by using trusted
execution environments. In Proceedings of the 14th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2017.

[66] G. Klein, K. Elphinstone, G. Heiser, J. Andronick,
D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and

https://https://blogs.eclipse.org/post/benjamin-cab%C3%A9/key-trends-iot-developer-survey-2018
https://https://blogs.eclipse.org/post/benjamin-cab%C3%A9/key-trends-iot-developer-survey-2018
https://https://blogs.eclipse.org/post/benjamin-cab%C3%A9/key-trends-iot-developer-survey-2018
http://www.espertech.com/esper/
http://www.espertech.com/esper/
https://github.com/facebook/folly#folly-facebook-open-source-library
https://github.com/facebook/folly#folly-facebook-open-source-library
https://hortonworks.com/solutions/oil-gas/
https://hortonworks.com/solutions/oil-gas/
http://zeromq.org/
https://software.intel.com/en-us/intel-tbb
https://software.intel.com/en-us/intel-tbb
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/oil-and-gas-iot-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/oil-and-gas-iot-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/oil-and-gas-iot-brief.pdf

S. Winwood. sel4: Formal verification of an os ker-
nel. In Proceedings of the 22nd ACM Symposium on
Operating Systems Principles (SOSP), 2009.

[67] A. Koliousis, M. Weidlich, R. Castro Fernandez, A. L.
Wolf, P. Costa, and P. Pietzuch. Saber: Window-based
hybrid stream processing for heterogeneous architec-
tures. In Proceedings of the 2016 International Con-
ference on Management of Data, 2016.

[68] A. Krettek and M. Winters. "the curi-
ous case of the broken benchmark: Revisit-
ing apache flink® vs. databricks runtime".
https://data-artisans.com/blog/curious-
case-broken-benchmark-revisiting-apache-
flink-vs-databricks-runtime, 2017.

[69] W. Lin, H. Fan, Z. Qian, J. Xu, S. Yang, J. Zhou, and
L. Zhou. Streamscope: Continuous reliable distributed
processing of big data streams. In Proceedings of the
13th Usenix Conference on Networked Systems Design
and Implementation (NSDI), 2016.

[70] Linaro. Op-tee: Open portable trusted execution envi-
ronment. https://www.op-tee.org/, 2017.

[71] J. Lind, C. Priebe, D. Muthukumaran, D. O’Keeffe, P.-
L. Aublin, F. Kelbert, T. Reiher, D. Goltzsche, D. Ey-
ers, R. Kapitza, C. Fetzer, and P. Pietzuch. Glamdring:
Automatic application partitioning for intel sgx. In Pro-
ceedings of the 2017 USENIX Conference on Usenix
Annual Technical Conference (ATC), 2017.

[72] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and
S. Mangard. Armageddon: Cache attacks on mobile de-
vices. In Proceedings of the 25th USENIX Conference
on Security Symposium (USENIX Security), 2016.

[73] H. Liu, S. Saroiu, A. Wolman, and H. Raj. Software
abstractions for trusted sensors. In Proceedings of
the 10th International Conference on Mobile Systems,
Applications, and Services (MobiSys), 2012.

[74] S. Ma, X. Zhang, and D. Xu. Protracer: Towards practi-
cal provenance tracing by alternating between logging
and tainting. In Proceedings of 23rd Network and
Distributed System Security Symposium (NDSS), 2016.

[75] S. Madden. Intel lab data. http://db.csail.mit.edu/
labdata/labdata.html, 2004.

[76] Magazine. "smart grids: Everything you need
to know". https://www.cleverism.com/smart-
grids-everything-need-know/, 2014.

[77] Magazine. "internet of things: A data-
driven future for manufacturing". https://
www.themanufacturer.com/wp-content/uploads/

2017/01/IoT_FutureofManuf_ebook_final.pdf,
2017.

[78] D. Maier, J. Li, P. Tucker, K. Tufte, and V. Papadimos.
Semantics of data streams and operators. In Proceed-
ings of the 10th International Conference on Database
Theory (ICDT), 2005.

[79] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta,
V. Gligor, and A. Perrig. Trustvisor: Efficient tcb reduc-
tion and attestation. In Proceedings of the 31st IEEE
Symposium on Security and Privacy (S&P), 2010.

[80] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter,
and H. Isozaki. Flicker: An execution infrastructure
for tcb minimization. In Proceedings of the 3rd ACM
European Conference on Computer Systems (EuroSys),
2008.

[81] F. McKeen, I. Alexandrovich, A. Berenzon, C. V.
Rozas, H. Shafi, V. Shanbhogue, and U. R. Sava-
gaonkar. Innovative instructions and software model
for isolated execution. In Proceedings of the 2Nd In-
ternational Workshop on Hardware and Architectural
Support for Security and Privacy, 2013.

[82] H. Miao, H. Park, M. Jeon, G. Pekhimenko, K. S.
McKinley, and F. X. Lin. Streambox: Modern stream
processing on a multicore machine. In Proceedings
of the 2017 USENIX Conference on Usenix Annual
Technical Conference (ATC), 2017.

[83] Microsoft. Microsoft azure iot edge– ex-
tending cloud intelligence to edge devices.
https://azure.microsoft.com/en-us/services/
iot-edge/, 2017.

[84] Mohammad Marashi, Tech Crunch. Satellites
are critical for IoT sector to reach its full poten-
tial. https://techcrunch.com/2017/06/08/
satellites-are-critical-for-iot-sector-to-
reach-its-full-potential/, 2017.

[85] D. G. Murray, F. McSherry, R. Isaacs, M. Isard,
P. Barham, and M. Abadi. Naiad: A timely dataflow
system. In Proceedings of the 24th ACM Symposium
on Operating Systems Principles (SOSP), 2013.

[86] S. Nastic, H. L. Truong, and S. Dustdar. A middleware
infrastructure for utility-based provisioning of iot cloud
systems. In 2016 IEEE/ACM Symposium on Edge
Computing (SEC), 2016.

[87] K. Nguyen, K. Wang, Y. Bu, L. Fang, J. Hu, and G. Xu.
Facade: A compiler and runtime for (almost) object-
bounded big data applications. In Proceedings of the
20th International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems (ASPLOS), 2015.

https://data-artisans.com/blog/curious-case-broken-benchmark-revisiting-apache-flink-vs-databricks-runtime
https://data-artisans.com/blog/curious-case-broken-benchmark-revisiting-apache-flink-vs-databricks-runtime
https://data-artisans.com/blog/curious-case-broken-benchmark-revisiting-apache-flink-vs-databricks-runtime
https://www.op-tee.org/
http://db.csail.mit.edu/labdata/labdata.html
http://db.csail.mit.edu/labdata/labdata.html
https://www.cleverism.com/smart-grids-everything-need-know/
https://www.cleverism.com/smart-grids-everything-need-know/
https://www.themanufacturer.com/wp-content/uploads/2017/01/IoT_FutureofManuf_ebook_final.pdf
https://www.themanufacturer.com/wp-content/uploads/2017/01/IoT_FutureofManuf_ebook_final.pdf
https://www.themanufacturer.com/wp-content/uploads/2017/01/IoT_FutureofManuf_ebook_final.pdf
https://azure.microsoft.com/en-us/services/iot-edge/
https://azure.microsoft.com/en-us/services/iot-edge/
https://techcrunch.com/2017/06/08/satellites-are-critical-for-iot-sector-to-reach-its-full-potential/
https://techcrunch.com/2017/06/08/satellites-are-critical-for-iot-sector-to-reach-its-full-potential/
https://techcrunch.com/2017/06/08/satellites-are-critical-for-iot-sector-to-reach-its-full-potential/

[88] NXP Semiconductors. i.MX 7Dual Family of
Applications Processors Datasheet, howpublished
= https://www.nxp.com/docs/en/data-sheet/
imx7dcec.pdf, year = 2017.

[89] R. Poddar, C. Lan, R. A. Popa, and S. Ratnasamy.
Safebricks: Shielding network functions in the cloud.
In Proceedings of the 15th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI),
2018.

[90] Preferred networks. Sensorbee: Lightweight stream
processing engine for iot. http://sensorbee.io/,
2017.

[91] C. Priebe, K. Vaswani, and M. Costa. Enclavedb: A
secure database using SGX. In Proceedings of the
39th IEEE Symposium on Security and Privacy (S&P),
2018.

[92] Z. Qian, Y. He, C. Su, Z. Wu, H. Zhu, T. Zhang,
L. Zhou, Y. Yu, and Z. Zhang. Timestream: Reliable
stream computation in the cloud. In Proceedings of the
8th ACM European Conference on Computer Systems
(EuroSys), 2013.

[93] K. Rubinov, L. Rosculete, T. Mitra, and A. Roychoud-
hury. Automated partitioning of android applications
for trusted execution environments. In Proceedings of
the 38th International Conference on Software Engi-
neering (ICSE), 2016.

[94] H. P. Sajjad, K. Danniswara, A. Al-Shishtawy, and
V. Vlassov. Spanedge: Towards unifying stream pro-
cessing over central and near-the-edge data centers.
In 2016 IEEE/ACM Symposium on Edge Computing
(SEC), 2016.

[95] J. H. Saltzer and M. D. Schroeder. The protection of
information in computer systems. Proceedings of the
IEEE, 63(9):1278–1308, 1975.

[96] N. Santos, H. Raj, S. Saroiu, and A. Wolman. Using
arm trustzone to build a trusted language runtime for
mobile applications. In Proceedings of the 19th In-
ternational Conference on Architectural Support for
Programming Languages and Operating Systems (AS-
PLOS), 2014.

[97] S. Saroiu and A. Wolman. I am a sensor, and i approve
this message. In Proceedings of the 11th Workshop on
Mobile Computing Systems & Applications (HotMo-
bile), 2010.

[98] M. Satyanarayanan, P. Simoens, Y. Xiao, P. Pillai,
Z. Chen, K. Ha, W. Hu, and B. Amos. Edge analytics in
the internet of things. Proceedings of IEEE Pervasive
Computing, 14(2):24–31, 2015.

[99] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis,
M. Peinado, G. Mainar-Ruiz, and M. Russinovich. Vc3:
Trustworthy data analytics in the cloud using sgx. In
Proceedings of the 36th IEEE Symposium on Security
and Privacy (S&P), 2015.

[100] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge
computing: Vision and challenges. Proceedings of
IEEE Internet of Things Journal, 3(5):637–646, 2016.

[101] S. Shinde, D. L. Tien, S. Tople, and P. Saxena. Panoply:
Low-tcb linux applications with sgx enclaves. In Pro-
ceedings of 24th Network and Distributed System Se-
curity Symposium (NDSS), 2017.

[102] Y. L. Simmhan, B. Plale, and D. Gannon. A survey of
data provenance in e-science. Proceedings of SIGMOD
Rec., 34(3):31–36, 2005.

[103] A. Spark. "spark streaming programming
guide". https://spark.apache.org/docs/latest/
streaming-programming-guide.html, 2016.

[104] S. Sponseller. "the importance of the edge for the
industrial internet of things in the energy industry".
https://www.datascience.com/blog/predictive-
analytics-in-industrial-iot, 2017.

[105] M. C. Stanley Zdonik, Michael Stonebraker. Stream-
base systems. http://www.tibco.com/products/
tibco-streambase, 2017.

[106] J. J. Stephen, S. Savvides, V. Sundaram, M. S.
Ardekani, and P. Eugster. Styx: Stream processing
with trustworthy cloud-based execution. In Proceed-
ings of the 7th ACM Symposium on Cloud Computing
(SoCC), 2016.

[107] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden,
E. O’Neil, P. O’Neil, A. Rasin, N. Tran, and S. Zdonik.
C-store: A column-oriented dbms. In Proceedings of
the 31st International Conference on Very Large Data
Bases (VLDB), 2005.

[108] Symantec. Internet Security Threat Report.
https://www.symantec.com/content/dam/
symantec/docs/reports/istr-22-2017-en.pdf,
2017.

[109] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai.
Bug characteristics in open source software. Proceed-
ings of Empirical Software Engineering, 19(6):1665–
1705, 2014.

[110] W. Thies, M. Karczmarek, and S. P. Amarasinghe.
Streamit: A language for streaming applications. In
Proceedings of the 11th International Conference on
Compiler Construction, 2002.

https://www.nxp.com/docs/en/data-sheet/imx7dcec.pdf
https://www.nxp.com/docs/en/data-sheet/imx7dcec.pdf
http://sensorbee.io/
https://spark.apache.org/docs/latest/streaming-programming-guide.html
https://spark.apache.org/docs/latest/streaming-programming-guide.html
https://www.datascience.com/blog/predictive-analytics-in-industrial-iot
https://www.datascience.com/blog/predictive-analytics-in-industrial-iot
http://www.tibco.com/products/tibco-streambase
http://www.tibco.com/products/tibco-streambase
https://www.symantec.com/content/dam/symantec/docs/reports/istr-22-2017-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-22-2017-en.pdf

[111] T. Trippel, O. Weisse, W. Xu, P. Honeyman, and K. Fu.
WALNUT: Waging doubt on the integrity of MEMS
accelerometers with acoustic injection attacks. In Pro-
ceedings of the 2nd Annual IEEE European Symposium
on Security and Privacy, 2017.

[112] C.-C. Tsai, D. E. Porter, and M. Vij. Graphene-sgx:
A practical library os for unmodified applications on
sgx. In Proceedings of the 2017 USENIX Conference
on Usenix Annual Technical Conference (ATC), 2017.

[113] Twitter. Heron. https://twitter.github.io/
heron/, 2017.

[114] D. Vasisht, Z. Kapetanovic, J. Won, X. Jin, R. Chandra,
S. Sinha, A. Kapoor, M. Sudarshan, and S. Stratman.
Farmbeats: An iot platform for data-driven agriculture.
In Proceedings of 14th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI),
2017.

[115] S. Venkataraman, A. Panda, K. Ousterhout, M. Arm-
brust, A. Ghodsi, M. J. Franklin, B. Recht, and I. Stoica.
Drizzle: Fast and adaptable stream processing at scale.
In Proceedings of the 26th ACM Symposium on Oper-
ating Systems Principles (SOSP), 2017.

[116] J. W. Voung, R. Jhala, and S. Lerner. Relay: Static race
detection on millions of lines of code. In Proceedings
of the the 6th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Sym-
posium on The Foundations of Software Engineering,
2007.

[117] Wind River. SECURITY IN THE INTERNET OF
THINGS – Lessons from the Past for the Connected Fu-
ture. https://www.windriver.com/whitepapers/
security-in-the-internet-of-things/
wr_security-in-the-internet-of-things.pdf,
2017.

[118] X. Wu, R. Dunne, Q. Zhang, and W. Shi. Edge com-
puting enabled smart firefighting: Opportunities and
challenges. In Proceedings of the 5th ACM/IEEE Work-
shop on Hot Topics in Web Systems and Technologies
(HotWeb), 2017.

[119] Y. Xu, W. Cui, and M. Peinado. Controlled-channel
attacks: Deterministic side channels for untrusted op-
erating systems. In Proceedings of the 36th IEEE
Symposium on Security and Privacy (S&P), 2015.

[120] D. Yarmoluk and C. Truempi. "predic-
tive analytics in industrial iot". https:
//www.datascience.com/blog/predictive-
analytics-in-industrial-iot, 2018.

[121] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasun-
daram, and S. Pasupathy. An empirical study on config-
uration errors in commercial and open source systems.
In Proceedings of the 23rd ACM Symposium on Oper-
ating Systems Principles (SOSP), 2011.

[122] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and
I. Stoica. Discretized streams: Fault-tolerant streaming
computation at scale. In Proceedings of the 24th ACM
Symposium on Operating Systems Principles (SOSP),
2013.

[123] N. Zhang, K. Sun, W. Lou, and Y. T. Hou. Case: Cache-
assisted secure execution on arm processors. In Pro-
ceedings of the 37th IEEE Symposium on Security and
Privacy (S&P), 2016.

[124] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E.
Gonzalez, and I. Stoica. Opaque: An oblivious and en-
crypted distributed analytics platform. In Proceedings
of the 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2017.

https://twitter.github.io/heron/
https://twitter.github.io/heron/
https://www.windriver.com/whitepapers/security-in-the-internet-of-things/wr_security-in-the-internet-of-things.pdf
https://www.windriver.com/whitepapers/security-in-the-internet-of-things/wr_security-in-the-internet-of-things.pdf
https://www.windriver.com/whitepapers/security-in-the-internet-of-things/wr_security-in-the-internet-of-things.pdf
https://www.datascience.com/blog/predictive-analytics-in-industrial-iot
https://www.datascience.com/blog/predictive-analytics-in-industrial-iot
https://www.datascience.com/blog/predictive-analytics-in-industrial-iot

	Introduction
	Background & Motivation
	ARM for Cloud Edge
	Stream Analytics
	Security Threats & Design Objectives

	Security Approach Overview
	Scope
	Approach and Security Benefits

	Design Overview
	Challenges
	StreamBox-TZ in a Nutshell

	Trusted Primitives and Optimizations
	TEE Memory Management
	Unbounded Array
	Placing uArrays in uGroups

	Attestation for Correctness and Freshness
	Implementation
	Evaluation
	TCB Analysis
	Performance & Overhead
	Validation of Key Design Features

	Related Work
	Conclusions

