
Misreporting Attacks in Software-Defined
Networking

Quinn Burke, Patrick McDaniel,
Thomas La Porta, Mingli Yu, and Ting He

The Pennsylvania State University, State College, PA 16801, USA
qkb5007@psu.edu,mcdaniel@cse.psu.edu,

{tfl12,mxy309}@psu.edu,t.he@cse.psu.edu

Abstract. Load balancers enable efficient use of network resources by
distributing traffic fairly across them. In software-defined networking
(SDN), load balancing is most often realized by a controller application
that solicits traffic load reports from network switches and enforces load
balancing decisions through flow rules. This separation between the control
and data planes in SDNs creates an opportunity for an adversary at a
compromised switch to misreport traffic loads to influence load balancing.
In this paper, we evaluate the ability of such an adversary to control the
volume of traffic flowing through a compromised switch by misreporting
traffic loads. We use a queuing theoretic approach to model the attack and
develop algorithms for misreporting that allow an adversary to tune attack
parameters toward specific adversarial goals. We validate the algorithms
with a virtual network testbed, finding that through misreporting the
adversary can draw nearly all of the load in the subnetwork (+750%, or
85% of the load in the system), or an adversary-desired amount of load
(a target load, e.g., +200%) to within 12% error of that target. This is
yet another example of how depending on untrustworthy reporting in
making control decisions can lead to fundamental security failures.

Keywords: network security · SDN · load balancing

1 Introduction

Today’s dynamic, cloud-centric marketplace demands faster and more reliable
services. In order to meet these demands and maintain a specified quality of
service, scaling out infrastructure has become a necessity. Key network functions,
like load balancing, then provide the support necessary to keep these larger
networks afloat. Load balancers split traffic fairly across equivalent backend
servers or links to enable more efficient use of available network resources. In
software-defined networking (SDN), however, load balancing typically manifests
differently. The load balancer is divided into two components: the application
logic (e.g., load balancing algorithm) that does the decision making and the
network switches that enforce the decisions via flow rules. Here, the network
switches are employed to report traffic loads (switch statistics) to the controller

2 Quinn Burke, Patrick McDaniel, Thomas La Porta, Mingli Yu, and Ting He

application to decide where to route incoming flows. While offering scalability and
reliability benefits, this separation also creates an opportunity for an adversary at
a compromised switch to misreport the traffic loads to influence load balancing.

In this paper, we evaluate an adversary’s ability to control the amount of traffic
flowing through the compromised switch (for eavesdropping and traffic analysis)
by misreporting traffic loads. We take a queuing theoretic approach to model the
attack and develop algorithms for misreporting that allow the adversary to tune
attack parameters toward specific adversarial goals. We introduce two attacks
against SDN load balancers: the max-flooding attack to draw as much load as
possible and the stealthy attack to draw a target amount (an adversary-desired
amount) of traffic through the compromised switch. We then evaluate them
against four widely used load balancing algorithms: least-loaded, weighted least-
loaded, least-connections, and weighted least-connections, which are included in
the widely used Floodlight’s [2] and OpenDayLight’s [3] load balancing modules,
and relied upon by several other specialized load balancing solutions [45, 34, 7, 25,
32, 38]. We note that most dynamic load balancers in practice inevitably perform
some form of least-X selection (e.g., least-loaded in bytes, least-connections) to
select the most suitable path or endpoint for a flow [35, 24]. The wide reliance on
this calculation provides motivation for its effectiveness in a setting where the
load balancer is subject to malicious inputs—in the form of false load reports.

Additionally, as the network traffic characteristics depend on the services
offered by a subnetwork, we consider in our analyses two distinct traffic models
that are representative of workloads most commonly found in modern cloud
and datacenter networks: short and long flows (in terms of flow duration) [10,
40]. The adversary must therefore calibrate the attack parameters appropriately
based on the environment. We validate the attack algorithms with a virtual
network testbed, finding that through misreporting the adversary can draw
750% additional load (85% of the load in the subnetwork) through aggressive
misreporting, or draw a target amount of additional load to within 12% error
of that target. We also find that the queuing model accurately describes the
network behavior in response to misreporting to within 12% of the predicted
throughput and 7% of the predicted number of misreports. Thus it is an effective
tool for performing reconnaissance and provides a means of planning attacks on
real SDNs. This demonstrates that misreporting extends to other services beyond
those discussed in prior work. This is yet another example of how depending on
collecting faithful information from untrustworthy sources leads to vulnerabilities,
the results here being potentially disastrous, besides being difficult to detect in
real-time. Our key contributions are:

– An attack model for analysis and planning of misreporting attacks against
SDN-based load balancers.

– Development of two attacks against SDN load balancers that allow an adver-
sary to control the volume of traffic through a compromised switch.

– Evaluation of misreporting attacks against four widely used load balancing
algorithms and two distinct traffic patterns.

Misreporting Attacks in Software-Defined Networking 3

Prior work has partially addressed the issue of compromised switches with
regards to eavesdropping, message integrity, and malicious link-discovery mes-
sages [44, 30, 26]; however, they have not considered the effects of malicious control
messages in the context of load balancing. Here, we evaluate the performance
of SDN-based dynamic load balancers in the presence of compromised switches
who may misreport traffic loads (by under-reporting them). Several questions
are raised concerning the performance of dynamic load balancers in adversarial
settings: (1) To what extent can an adversary degrade the performance of load
balancers by misreporting? (2) When must the adversary misreport? And (3),
by how much must they misreport in order to accomplish their goal? We seek
to address these key questions to highlight and quantify adversarial capabilities
with regards to critical SDN services such as load balancers.

2 Background

Software-defined networks provide a framework that allows a more reliable and
scalable alternative to traditional hardware- and software-based load balancers
which sit in front of network resources. In the following, we discuss how load
balancing is typically realized in SDNs.
Load-balancing algorithms. Existing load balancing solutions for traditional
networks come in two categories: static and dynamic. Static solutions implement
proactive techniques for splitting incoming flows evenly across network resources
(i.e., servers or links). Since the client mappings are known ahead of time, these
techniques cannot exploit run-time knowledge of bandwidth utilization, often
resulting in a negative impact on network performance (e.g., underutilization,
increased latency). Common implementations of static load balancing include
Randomized, Round-Robin, and hash-based solutions like equal-cost multipath
(ECMP) [7, 29, 42]. In contrast, dynamic solutions implement various reactive
techniques for connection assignment and provide a means for connection affinity
by maintaining a per-connection state. They allow more flexible and favorable
decision making by exploiting knowledge about resource utilization learned during
normal operation of the network. Widely used implementations of dynamic load
balancers include least-response-time, least-loaded, and least-connections, along
with their weighted counterparts [34, 33, 47, 2].
Load-balancing architecture in SDN. Dedicated software-based load bal-
ancers offer scalability and reliability benefits over traditional hardware-based
load balancers, which are often expensive and suffer from poor horizontal scala-
bility [5]. Previous work has already demonstrated the ability of load balancers
to be implemented as software running on commodity hardware [19, 36, 43, 1]. In
SDNs, however, load balancing typically manifests slightly differently. The load
balancer is abstracted from the physical infrastructure that it is deployed on by
moving the load balancing logic to the control plane and distributing decision to
network switches in the form of flow rules.

To enable dynamic load balancing in SDNs, the network administrator first
defines a pool : a list of switch ports connected to links to load balance for (see
Figure 1). These switch ports, or pool members, then become participants in

4 Quinn Burke, Patrick McDaniel, Thomas La Porta, Mingli Yu, and Ting He

Server�Farm

(b)

CRnWURlleU
LRad BalaQceU

(a)

Server Farm

(a)

(b)

Edge Layer

Aggregation Layer

Core Layer

Fig. 1. Pool members for SDN-based load balancing across (a) links and (b) servers.

the load balancing of the pool. The load balancer requests traffic load reports
from them at each time epoch t, where epochs may be separated by one or
more seconds. We will refer to this epoch length, the time between load-report
collections, as the collection interval.

Under the OpenFlow [4] protocol, the reports come in the form of switch
statistics. The loads represent the total activity at the switch ports since the
last report, and may be measured in terms of Kb, number of active flows (or
connections), etc., depending on the algorithm in use. The loads are then used
to fairly route new incoming flows (that are destined for the resources offered by
the pool); for example, with a variant of least-X selection.

As shown in Figure 2, when a switch reports the minimum load at any epoch,
the load balancer will temporarily route new flows through it. For example, switch
(3) reports 1Kb of activity in the first epoch, has new flows routed through it
to a backend server or link, and reports 12Kb of activity in the following epoch.
Importantly, in the general case of the considered algorithms, all incoming flows
are routed through the same pool member until the next load report is collected1;
as the load balancer is removed from the data plane, it can only respond to the
information given in load reports.
Notation for load balancing. Consider a network composed of N pool mem-
bers, where the load balancer requests a load report Ri

t at each time epoch t for
each member 1 ≤ i ≤ N . For the case of least-loaded and least-connections [34],
the load balancer temporarily routes new flows through the member who reported
the minimum load (in bytes or number of active flows/connections), until the
next load report is collected. More formally, the new flows will be routed through
some member m in epoch t if:

Rm
t = min

1≤i≤N
Ri

t, (1)

If multiple members report the minimum load, random selection is done.
For weighted least-loaded and weighted least-connections, an exponentially

weighted moving average (EWMA [39]) of loads is used for balancing. Weights
are applied to the historical load values (α, where 0 ≤ α ≤ 1) and the current

1 We leave to future work analyzing more specialized variants of these algorithms.

Misreporting Attacks in Software-Defined Networking 5

Time

Load Reports over Time

10 Kb

 7 Kb

1 Kb

12 Kb

5 Kb

7 Kb

4 Kb

12 Kb

8 Kb

2 Kb

5 Kb

1 Kb

9 Kb

6 Kb

10 Kb

4 Kb

11 Kb

6 Kb

3 Kb

7 Kb

1 Kb

8 Kb

3 Kb

13 Kb

4 Kb

Po
ol

 m
em

be
rs

(1)

(2)

(3)

(4)

(5)
Epoch 1 Epoch 2 Epoch 4 Epoch 5Epoch 3

Fig. 2. Load reports (Ri
t) used for routing new incoming flows. Bolded reports are

where switches reported the minimum load to the load balancer.

load value (1− α), which are then summed together, allowing the load balancer
to smooth out sudden bursts which may lead to inefficient balancing. Then, the
new load Ri

t
′

computed for each member at time t is:

Ri
t

′
= αRi

t−1
′
+ (1− α)Ri

t, (2)

and new flows will be temporarily routed through the member with the minimum
load as in (1), with Rm

t and Ri
t replaced by Rm

t
′ and Ri

t
′
. Again, random selected

is applied in the case of multiple members with the minimum.
Related work. This work focuses on modelling and evaluating misreporting
attacks against load balancers in SDN. We draw from prior work on the security of
SDN services [15, 6, 41, 12] to identify vulnerable points in the control plane, which
observe that an adversary at a compromised switch can manipulate link-discovery
(LLDP) packets [26] to poison the topology information used by the controller
for tracking network hosts and performing routing functions. Moreover, other
works have found that adversaries can directly launch denial-of-service attacks
against the control plane to saturate functions at the controller, for example,
the service that computes routes for incoming flows [18]. Other works evaluate
other vulnerabilities, including data modification and leakage, malicious control
applications, lack of security features such as encryption, etc. [17]. Recent work
also proposed a load-balancer attack in more traditional network architectures
which requires sending probes from a network host [23]. Our work differs in that
we consider misreporting (switch statistics) in the context of load balancing.
problem Lastly, others have proposed defense systems to protect against some
of these different classes of attacks [31, 28, 17, 46], but these systems are not
applicable to this attack scenario.

3 Attacking the Load Balancer

Misreporting switch statistics allows adversaries to directly control the volume
of traffic flowing through a compromised switch for larger-scale eavesdropping

6 Quinn Burke, Patrick McDaniel, Thomas La Porta, Mingli Yu, and Ting He

and traffic analysis, which have been established as significant threats in modern
cloud networks (e.g., to uncover browsing histories [20]). Here, we introduce two
attack methods against two distinct network traffic patterns.

3.1 Threat Model and Overview

Threat model. We assume switches report aggregate (i.e., port-level) statistics
to a trusted load balancer, as balancing is typically done at a coarser level than
individual flows [8]. Of these switches, we assume that one becomes compromised.
If there is a single switch reporting for an entire pool (as with dedicated load
balancers) and the switch becomes compromised, then load balancing integrity
is clearly lost. We consider the situation where multiple switches faithfully
report statistics for the pool and one becomes compromised2. Switches may be
compromised by either an insider or external adversary [15, 6, 41, 12]; however,
methods for carrying out attacks are outside the scope of this work. The adversary
may also be located at either the edge (balancing across servers) or aggregation
layer (balancing across links) of the network.

In the context of load balancing, we define the general adversarial goal as
misreporting to induce the load balancer into sending a target volume of traffic (on
average) through the compromised switch. The adversary’s capabilities are limited
to recording its own load reports and sending misreports. Note that misreporting
is necessary to draw more traffic regardless if packets on the switch ports are
actually dropped; although, the adversary may drop an equivalent amount of
traffic to evade detection systems that may leverage downstream switches to find
inconsistencies in reports. We focus on adversaries under-reporting their true
load to obtain an unfair proportion of traffic, and we leave over-reporting attacks
(to deny service downstream or overload other switches) to future work.
Overview. Studies of modern datacenter and cloud networks have identified
two distinct patterns in network traffic among different cloud services. The first
consists of a majority of small (in bytes) and short (in seconds) flows that exist
only momentarily in the network. This traffic is representative of applications such
as web servers. The second consists of a majority of relatively longer and larger
flows that persist in the network for several seconds or minutes; for example, for
applications like video streaming. We draw from these studies [10, 40] to generate
packet traces for each pattern, consisting of flows with sizes and durations
randomly selected along two pareto curves (Section 4). Preliminary observations
shown in Figure 3 with the Floodlight [2] SDN controller are representative of
well-known traffic loads observed in the wild [10, 40]. Note that load balancing
occurs on a per-pool basis, and since pool members would be serving similar
kinds of services, they would see similar traffic characteristics [10]. Nonetheless,
our preliminary observations of these traffic patterns across a pool of servers
reveal two threat vectors for an adversary to compromise the load balancer.
Short flows. In the context of short flows, a majority (>80%) of flows entering
the network lasts less than one second [10, 27]. The result is network switches

2 Note that switches may have multiple pool members (ports), but here we just consider
a single pool member per switch and use switch and pool member interchangeably.

Misreporting Attacks in Software-Defined Networking 7

0 100 200 300 400 500 600

Time (s)

0

1000

2000

3000

4000

5000

L
oa

d
(K

b)

Member load over time (Short flows)

member[1]

0 100 200 300 400 500 600

Time (s)

0

200

400

600

800

1000

L
oa

d
(K

b)

Member load over time (Long flows)

member[1]

Fig. 3. 10-minute captures of load reports of a single switch in two different scenarios.
With traffic dominated by short flows (left) the switch observes momentary load spikes,
and for long flows (right) a more stable load over time as active flows persist.

periodically observing momentary load spikes [10] as batches of incoming flows
are temporarily routed through them. The load at such a switch will fall back
down to normal levels (i.e., only overhead from control traffic) within just a few
epochs (and load reports) as the flows expire quickly, and while the load balancer
selects a different member as the minimum. This can be seen in Figure 3 (left),
where the load may be very high at one epoch (e.g., 1000Kb) and then very low
by the next (e.g., <10Kb).

The key insight here is that the load reported by pool members is constituted
by these momentary load spikes, as opposed to showing a more stable (or flatter)
observed load over time. The rest of the load reports will show low activity, until
more flows are routed through the switch. Thus, for an adversary to draw more
traffic through the compromised switch, they must misreport (under-report) to
induce more load spikes. Misreporting can exploit the load balancer’s least- X
calculation to cause the load balancer to immediately begin routing new flows
through the switch, creating another load spike. The challenge is determining an
appropriate number of misreports to draw the target load through the switch.

Long flows. In the context of long flows, the observed loads of pool members
are dominated by persistent activity of longer-lived flows rather than momentary
bursts. As a result, pool members observe a steadier (or flatter) load distribution
over time. The behavior in Figure 3 (right) is consistent with this. The key
insight here is that since the load reported by pool members is constituted by
longer-lived flows, drawing more load is based on increasing the number of flows
actively sending data through the compromised switch. The challenge here then
becomes finding a suitable number of times to misreport to induce a certain
number of active flows traversing the switch at any given moment.

We formalize misreporting in terms of a target utilization at a port on the
compromised switch. We will refer to this target as ρtar. We then introduce two
misreporting attacks with respect to ρtar. In the trivial attack, the max-flooding
attack, the goal is to draw as much traffic as possible (e.g., ρtar = 1.0 utilization)
through the switch port. In the stealthy attack, the goal is to draw a target
volume of traffic (e.g., ρtar = 0.2) through the switch. This allows the adversary

8 Quinn Burke, Patrick McDaniel, Thomas La Porta, Mingli Yu, and Ting He

to manage the risk they are exposing themselves to by only misreporting the
necessary amount to increase the utilization to the target.

With this formulation, the adversary must calibrate two parameters to draw
the target utilization. L is the average load, the meaning of which differs slightly
depending on the considered traffic pattern. It is used to determine how many
misreports must be sent in order to draw ρtar through the switch port. The
second parameter is δ, the misreported amount (e.g., in Kb) sent to the load
balancer. It determines by how much to misreport by, and the choice of which
will affect the success rate of misreporting; i.e., if the load balancer immediately
begins routing new flows through the switch.

3.2 Attack Model

We introduce an M/D/1-based discrete-time queueing model (following prior
work [23]) to approximate the behavior of the output switch port, and later
validate the model accuracy on an experimental network. Here, we assume flow
arrivals are determined by a Poisson process and service times are fixed (to
transmit each bit). The model allows the adversary to derive attack parameters
from model parameters for a given ρtar, and also serves to assess the effect of the
attack on network performance. We provide a table of parameters in Appendix A.

Under an M/D/1 model, the utilization ρ of the switch port is given by:

ρ =
λ

µ
, (3)

where λ is the arrival rate (in bits per second, or bps) at the network interface
card on the port, and µ is the service rate (in bps) of the card, fixed across all
pool members as they serve similar services. For a given target utilization ρtar,
there exists some target arrival rate of bits λtar that the adversary wishes to
draw through the switch port:

ρtar =
λtar
µ

(4)

The adversary must then estimate the necessary number of misreports to draw
λtar through the switch port.
Short flows. Let M denote the number of misreports required to achieve the
goal. As network traffic dominated by short flows is characterized by momentary
load spikes, whenever the member reports the minimum load, a load spike will
occur (see Figure 3). Note that a load spike occurs whether the reported value was
a misreport or not. However, a single successful misreport therefore corresponds
with a single load spike. Then, the required number of misreports M to draw λtar
can be approximated with knowledge of the amount of load (in bits or number of
flows) contained in a load spike, or its amplitude. If L is the average load spike
amplitude, then the number of misreports necessary to draw an average of λtar
on the switch port over an attack window of W epochs is given by:

M =
λtar ×W

L
(5)

Misreporting Attacks in Software-Defined Networking 9

For offline analysis, we can approximate L for the least-connections algorithms
by first considering an average flow inter-arrival rate of R flows per second [10].
Note that the adversary will compute the actual value at runtime. Since all of
the flows are temporarily routed through the compromised switch for the next
epoch, then the average load spike amplitude L = R flows. For the least-loaded
algorithms, we also consider that the network flows have an average size of f
bytes, based on characteristics of network flows observed in prior work [10]. Then,
the average load contained in any load spike is L = 8Rf bits.
Long flows. For network traffic dominated by long flows, the load in the network
depends more on the number of active flows sending data through a switch rather
than the amplitude of momentary load spikes, which are not as significant in
this scenario compared to the number of active flows. Here, a single successful
misreport corresponds with a set of long-lived flows being scheduled through the
compromised switch. We therefore propose a heuristic method to drawing λtar on
the port: batch misreporting. Specifically, the adversary will report consecutively
a fixed number of times starting at the beginning of every tlong-second time
slot, where tlong represents the average duration of the long-lived flows [40]. By
misreporting in batches, or in consecutive epochs, the adversary can influence
the load balancer to schedule an additional set of flows through the switch whose
lifespan will nearly overlap in time. Then, the next batch of misreports will
replace those expiring flows with new ones.

If we let L represent the average load observed at the switch port, the number
of consecutive misreports to send, or the batch size B, is computed as the
multiplicative factor of λtar over L:

B =
λtar

L
(6)

For example, if the target load is 2Mb/s, the average load is 1Mb/s, and flows
have an average duration of 10 seconds, the adversary will misreport in batches
of 2 at the beginning of every 10-second time slot to double the number of active
flows traversing the switch. The required number of misreports M is:

M =
B

tlong
×W (7)

where the adversary misreports B times out of every tlong seconds, for the
duration of the attack window.

We can approximate L for the least-connections algorithms by L = R×tlong/N
flows, where N is the number of pool members, and L represents the steady-state
average load at any pool member. Note that for short flows we assume an average
flow size f as the entire flow is consumed before the next epoch. If network flows
have an average flow rate of p bytes [10, 40], then for the least-loaded algorithms,
we have similarly: L = 8Rp× tlong/N bits. Note that the adversary will compute
the actual value of L at runtime.

3.3 Max-flooding Attack

In this attack, the goal of the adversary is to maximize the volume of traffic
flowing through the compromised switch (ρtar = 1.0). The adversary can trivially

10 Quinn Burke, Patrick McDaniel, Thomas La Porta, Mingli Yu, and Ting He

perform the attack by misreporting every time the load balancer requests a load
report. Specifically, here the number of misreports is M = W , each epoch for
the entire duration of the attack window. Without loss of generality, we denote
the compromised switch by switch N . To maximize the probability that the
misreported load will be the minimum in (1), the adversary will set δ to zero (0

bytes, 0 flows, etc.), sending a new load (RN
t
′′
) in each epoch:

RN
t

′′
= δ = 0 (8)

The goal is to draw all flows arriving during the attack window through the
compromised switch for larger scale eavesdropping and traffic analysis, and also
may create congestion at the server connected by the switch port. Although
feasible, the attack may also become readily observable.

3.4 Stealthy Attack

In the second attack, we generalize the max-flooding approach to allow the
adversary to more stealthily attack the load balancer. A stealthy attack is one in
which the adversary manages their detectability by drawing a λtar that is less
than the maximum (less than maximum utilization). It is up to the attacker to
assess the environment and decide what an appropriate undetectable load would
be; i.e., how much load can they misreport before they are observable to some
detection system. Thus, what we provide here is a method for configuring the
attack such that the adversary can target a specific load (to within reasonable
bounds) that they have decided is stealthy. Then, to meet the idea of stealthy,
the adversary must reduce the amount of misreporting to only that required to
draw λtar on the switch port. To accomplish this, we divide the attack into two
phases: the reconnaissance phase and the attack phase.

Phase 1: Reconnaissance. In contrast to the max-flooding attack, here, L
plays the critical role in determining the number of misreports that must be
sent for a given λtar. Depending on what traffic conditions are present in the
network—which we assume the adversary has some knowledge of or can infer
from its own load distribution—L is computed in one of two ways. With an
estimate for L, the adversary must then find an appropriate δ.

Estimating L: Short flows. To estimate the amplitude of any load spike, we
propose a heuristic method for detecting load spikes, then take the average as
the estimate. The adversary first must select a threshold P at which an observed
load should be considered a load spike. For example, if an observed load is greater
than the 99th percentile of all observed loads seen thus far, it will be considered
a load spike, since the majority of observed loads are much lower (and spikes are
short-lived). We first let the adversary perform a warm-up phase (e.g., 10 minutes)
to fill a list observed loads of observed loads before detecting load spikes. Then,
the adversary maintains a list S of load values considered load spikes (see Alg. 1,
lines 5-9, in Appendix B), until D load spikes have been detected. The average is
then taken as the estimated amount of load concentrated in any momentary load
spike whenever a pool member reports the minimum load. If the list of detected

Misreporting Attacks in Software-Defined Networking 11

load spikes S has size D, then the average load spike amplitude L is given by:

L =

∑D
i=1 Si

D
(9)

Given the average load spike amplitude (Kb or number of new flows) calculated
during reconnaissance, the adversary computes the required number of misreports
with (5). Note that misreports can be spaced out evenly with a misreporting
period of Tm, or randomized with an average misreporting period of Tm:

Tm =
L

λtar
(10)

After the period is set, the adversary exits the reconnaissance phase (see Alg. 1,
line 13, in Appendix B).
Estimating L: Long flows. In this network setting, to draw more load, the
adversary must increase the number of active flows sending packets through the
switch. L can similarly be computed as simply the average load observed over an
arbitrary window of time. If this window for reconnaissance is D epochs long,
then L is given by:

L =

∑D
i=1 observed loadsi

D
(11)

Given this, the number of misreports required to draw λtar through the switch is
then given by (7). Unlike the network dominated by short flows, here misreports
must be batched to have the target number of flows active as soon as possible.
Estimating δ. We previously assumed that whenever the adversary sent a
misreport, the load balancer would certainly begin routing new flows through
the compromised switch. Although guaranteeing a 100% misreporting success
rate is difficult, sending a load of zero in each misreport will provide the highest
probability of success. However, sending a load of zero in each misreport may
likely raise alarms, especially if the desired load is very high (e.g., +500% load
than usual) and thus so is the misreporting frequency. To meet the idea of
stealthy, a better approach is for the adversary to simulate activity at the switch
by misreporting (setting δ) to very low loads which have been observed previously
and which have nearly the same probability of drawing a load spike as a load of
zero. This is less likely to raise flags as it would be difficult to discern a legitimate
report from a falsified one in this case.

To this end, we first observe that the observed-load distributions of all pool
members (for either network traffic pattern) show small differences, which reflects
observations made in prior work [11, 10] of network switches observing similar
traffic characteristics. Given this, we approximate the load distribution observed
at other pool members by that observed and recorded by the adversary during
reconnaissance. Then, if we first let U denote a cumulative probability of the load
distribution, then there is an associated load value UL (in Kb/s or number of
flows) with that cumulative probability: U percent of observed loads fall within
[0, UL]. Then, if there are N pool members, we can express the number of switches

12 Quinn Burke, Patrick McDaniel, Thomas La Porta, Mingli Yu, and Ting He

expected to report within some [0, UL] at any given time epoch as a binomial
experiment on random variable X, with probability U of reporting within [0, UL]:

E(X) = (N − 1) ∗ U, U > 0 (12)

For example, if N = 100 and U = 0.01, approximately 1 switch (not the adversary)
is expected to report within the given range (or percentile) any time the load
balancer requests a report. The goal of the adversary then becomes selecting a
sufficiently low U to misreport to within, to reduce the expectation and therefore
have a higher probability of (mis)reporting the minimum load. The adversary will
randomly set δ to a previously observed load in [0, UL]. Note that the adversary
may not know the pool size; in this case, they should assume a large pool (and a
small U), which will still be advantageous if the pool is actually smaller.
Phase 2: Sending the misreport. After determining L, then with a suitable
misreporting period Tm or batch size B, along with a proper δ that should provide
a reasonably high misreporting success rate, the adversary can then send the
misreport. The adversary would first verify that the current load report collection
time epoch falls at the beginning of a tlong time-slot for the case of long flows,
or if it falls on a misreporting period (Tm) boundary for short flows. If so, the
adversary may update the load to an under-reported value satisfying δ ∈ [0, UL]:

RN
t

′′
= δ (13)

If the actual load at the switch port is already below the determined threshold
load UL, the adversary will simply report that amount instead of modifying it.
The key idea here is that that the adversary can significantly reduce (to nearly a
minimum) the amount of misreporting that must be done to reach the target
load rate via simple analyses of the steady-state behavior.

3.5 Assessing the Impact

To assess the effects of the proposed attacks, we first want to measure the direct
impact of misreporting. We then evaluate the effects of the attack on network
performance across the compromised switch using an analytical attack model.
Measuring attack effectiveness. To describe the direct impact of the attack
with regards to drawing more traffic through the switch, we define a damage
metric D. It represents the ratio of the average load on the compromised switch
during the attack window to the average load observed under normal conditions.
If we denote the average load during the attack by Lattack, and under normal
conditions by Lnormal, then the relative damage is:

D =
Lattack

Lnormal
− 1 (14)

To concretely quantify misreporting effectiveness, we introduce a potency
metric P that represents the average load increase obtained per misreport:

P =
D

misreports
(15)

Misreporting Attacks in Software-Defined Networking 13

Note that M is an upper bound for the number of misreports, as the actual load
may be within the misreporting range and the adversary can send the report
without modification. Nonetheless, we also measure the rate and success rate
of misreporting, which describes how often a misreport resulted in more traffic
being routed through the compromised switch.
Measuring the impact on network performance. A natural effect of shifting
a large volume of traffic onto the switch port is congestion at the port, which
will have a large impact on the throughput of flows traversing the switch port.
However, as the utilization is significantly lower (less than 5%) on the servers
or links in subnetworks dominated by many short flows, even shifting all of the
traffic onto the link will not cause measurable impacts on throughput. Here, we
just consider the effect of the attack on the changes in throughput for the long
traffic pattern, where the servers and links are continuously being stressed by
persistent flows. We measure the throughput as a function of the target ρtar, as
well as a function of the number of misreports.

For a specified ρtar, the average time spent waiting in an M/D/1 system for
each bit (delay per bit) is given by:

Tw =
1

µ
+

ρtar
2µ(1− ρtar)

(16)

Since we know the number of misreports in this network scenario from (7), we
can now measure the throughput changes as the target utilization increases.

4 Evaluation

With the formulation of the reconnaissance and attack phases, here, we explore
the effects on the performance of the load balancer in several scenarios (shown in
Table 1) and address the last research question: to what extent can the adversary
degrade the performance of the load balancer? We consider 4 widely used load-
balancing algorithms: least-loaded, weighted least-loaded, least-connections, and
weighted least-connections. We then provide an analysis of the effectiveness of
the two attacks in each scenario and the effects on the network performance
when considering long-lived flows (for example, in video streaming applications).

4.1 Experimental Setup

Network setup. For experimentation, we employ the latest version of the widely
used Floodlight [2] SDN controller, along with its load balancing module. To
configure the virtual network, we use the popular Mininet emulator [16] to create
a similar topology of virtual switches and hosts to that shown in Figure 1. New
flows will originate from a source connected to the “top-most” switch in the
figure, which represents a common gateway from which flows split paths in the
network (e.g., an aggregation switch in a three-tiered network). Each switch runs
the latest version of Open vSwitch (v2.12.0) and is invoked to connect to and
receive forwarding instructions from the Floodlight controller. And the directly
connected hosts act as sinks for the incoming network flows. The attacks are
then carried out by designating one switch as the adversary.

14 Quinn Burke, Patrick McDaniel, Thomas La Porta, Mingli Yu, and Ting He

We configure the load balancer to have a single pool consisting of 10 SDN-
enabled switches, which is a realistic pool size for small clusters based on real
configurations used in the wild [37]. We note that our experimentation with
larger pool sizes yielded qualitatively similar results, where the load is scaled
proportionately for the same arrival rate of flows. The switches are directly
connected to a single backend resource (which represent either servers, or more
switches). We also configure the load balancer to have a load-report collection
period of 1 second, which is suitable for providing reasonably low load-error
rates [8, 22, 14]. We then consider an average arrival rate of 250 flows/s and
100 flows/s for short and long flows, respectively. Note that smaller or larger
arrival rates yielded qualitatively similar results. We set the load spike detection
percentile for the short-flow traffic pattern to P = 0.9, the 90th percentile load.
We set the load threshold for misreporting U = 0.01, meaning the adversary will
misreport to within the bottom 1th percentile of loads (over a training window of
10 minutes). Note that the success rate decreases with a power-law relationship
to the threshold U , and therefore flexibility in parameter choice is limited (see
Appendix C). We also set the attack window to W = 300 epochs. Simulations
are averaged over 25 independent executions. Without loss of generality, the
adversary is designated by switch number N .
Traffic models. In evaluating our attacks, we draw from prior work to generate
packet traces for each of the short and long traffic patterns. The sizes and
durations of flows are randomly distributed amongst the probability distribution
defined by two pareto curves, which are widely accepted approximations for
network traffic behavior [11, 13]. Following these prior works, for the short traffic
pattern we generate a set of flows with an average size of about 1KB and
average duration of about 100ms. For longer flows, we generate flows with an
average duration of about 10 seconds (for a flow size of about 10KB). Note that
experiments with longer flows (and therefore larger in terms of total size) yielded
qualitatively similar results. Flow packets are transmitted at an average rate
equal to the flow size divided by the duration.

Note that while switches may observe many flows of different types and
patterns at any given time, load balancing is application-based (or switch-port
based). Therefore, the load reports are only collected from those switch ports in
the load balancing pool. Thus, we assume the same traffic pattern across pool
members (i.e., either short or long flows) as downstream resources may serve
similar services and should therefore see similar traffic patterns [10].

4.2 Experimental results

Short flows. In the first part of the evaluation, we considered short traffic
flows. In this scenario, the adversary performed reconnaissance on the load spike
amplitude (averaged over 10 load spikes) to compute the required number of
misreports to draw the target load through the compromised switch. In Table 1,
compared to the average load observed under normal conditions (the control
experiment), running the max-flooding attack against the load balancer (using
the least-loaded algorithm) was able to effectively draw nearly 85% of the load
in the system (i.e., across the pool members) toward the adversary. In fact, the

Misreporting Attacks in Software-Defined Networking 15

Short flows Long flows

LL WLL LC WLC LL WLL LC WLC

Control Average load
251.42
Kb/s

247.64
Kb/s

26
flows/s

27
flows/s

1017
Kb/s

929.6
Kb/s

83
flows/s

84
flows/s

Max- Average load
2142
Kb/s

2104
Kb/s

206
flows/s

209
flows/s

8277
Kb/s

8210
Kb/s

694
flows/s

688
flows/s

flooding Misreport rate 100% 100% 100% 100% 100% 100% 100% 100%

Success rate 100% 100% 100% 100% 100% 100% 100% 100%

Damage +752% +749% +692% +674% +714% +783% +736% +719%

Potency +2.51% +2.49% +2.31% +2.25% +2.38% +2.61% +2.45% +2.39%

Stealthy Target load
750
Kb/s

750
Kb/s

75
flows/s

75
flows/s

3000
Kb/s

3000
Kb/s

250
flows/s

250
flows/s

Average load
866.70
Kb/s

834.67
Kb/s

93
flows/s

72
flows/s

2630
Kb/s

2650
Kb/s

223
flows/s

220
flows/s

Misreport rate 32.3% 32.0% 30.3% 29% 23.7% 23% 24.8% 23.1%

Success rate 96.9% 94.1% 98.6% 96.1% 97.1% 94.3% 98% 97.4%

Damage +245% +237% +244% +167% +159% +157% +169% +162%

Potency +2.53% +2.47% +2.69% +1.92% +2.23% +2.23% +2.27% +2.34%

Table 1. Experimental network results with the Floodlight [2] SDN controller.

max-flooding attack proved to be successful across all four of the considered load
balancing algorithms, drawing from 600-800% additional load through the switch
compared to normal conditions. The misreporting rate for each was 100% of
the attack window, and since the misreported load was zero (and loads must
be non-negative), the misreporting success rate was also maximal. This means
that each misreport resulted in at least one new flow being routed through the
compromised switch, although multiple pool members may have all shared the
minimum load at some time epochs.

The stealthy attack showed similar results with respect to misreporting success.
Nearly all misreports resulted in the load balancer routing new flows through
the compromised switch, allowing the adversary to maintain approximately the
target amount of load at the switch port for the duration of the attack, to within
13% of the target (and almost always above the target). We note that the target
load was specified to be three times that observed under normal conditions,
although the adversary is not restricted to just that. Depending on the choice of
P , the computed load spike amplitude may have been lower or higher, resulting
in either more or less misreports (respectively). A persistent adversary may take
a dynamic approach to misreporting by analyzing the effects and re-calibrating
P appropriately to better meet the target.

Interestingly, the misreporting success remained the same even in the case
of weighted load balancing. Even with a significantly high weight factor α for
weighted balancing (e.g., α = 0.5) [9], where the misreported load only has half
the significance toward the smoothed value, the adversary was able to misreport
low enough for the load balancer to consider it the minimum and begin routing
flows through it. Certainly, a much higher α would place more weight on the
historical load value and thus dampen the effects of misreporting.

In terms of direct damage to the system, the results indicate that the attack
was successful in drawing approximately the target amount of traffic through the

16 Quinn Burke, Patrick McDaniel, Thomas La Porta, Mingli Yu, and Ting He

switch. Regardless of the algorithm in use, the adversary computed a required
number of misreports (or alternatively, the misreporting period) that was nearly
the same across all algorithms at approximately 30% of the attack window. It
follows that the potency of misreports was also approximately the same across
all algorithms at about 2% average increase in load per misreport, revealing that
neither attack proved to be more or less resistant to the misreporting attack.

Long flows. Next we consider a network dominated by longer flows. At runtime
the adversary computed a batch size B = 3 from the given target and average
load observed. As with short flows, the max-flooding attack shifted nearly 83%
of the load in the system toward the compromised switch for an increase of more
than 700% load than under normal conditions. The success rate was also at a
maximum against each algorithm.

The stealthy attack in the context of long flows also proved to be successful
against all four load balancing algorithms. In this case, the adversary was able
to draw an amount of load through the switch to within 12% of the target. As
with short flows, using the results as a feedback mechanism for a more dynamic
attack is possible for adjusting parameters to better meet the goal. However,
there is one difference here from the case of short flows: the average load was
always under the target. In contrast to short flows, where the attack exploited
the fact that load was concentrated in load spikes, here the fact that a fixed
(average) number of flows arrive each second means that the batch misreporting
will take longer to reach steady-state at the target load. This delayed effect of
misreporting also scales up as the target (and therefore batch size) increases.
Regardless, with a longer attack, the adversary would be able to reduce the error
rate, although our evaluated attack window proves to be effective still.

The misreporting success showed a similar pattern across all of the algorithms,
where none proved to be more or less resistant to misreporting. The potency of
misreports also aligned with that observed under the short flows scenario.

4.3 Effects on Network Performance

As flow throughputs can be significantly larger in a long-flow environment (av-
erage throughputs generally >5Mbps [21]), for example when streaming media,
utilization on the switch port increases significantly relative to the available ca-
pacity (typically 100Mb [11]). Higher utilizations begin to impose non-negligible
delay overheads for active flows. Therefore, the adversary can directly control
the congestion at the server connected by the switch port. Note that the goal is
not to cause denial-of-service at the switch itself.

As the imposed delay increases with a power-law (under an M/D/1 system) as
utilization increases, the throughputs for flows traversing the port thus decrease
similarly as the adversary draws more load toward the compromised switch.
We configure a network with a larger arrival rate of 10K new flows per second
and show in Figure 4 (left) how the average throughput for flows changes as
the adversary’s target utilization increases and more traffic is shifted onto the
compromised switch. We also plot the predicted changes according to the proposed
queuing model, demonstrating that the model is a reasonable approximator of
the shape and scale of the plot from the experimental results.

Misreporting Attacks in Software-Defined Networking 17

0.0 0.2 0.4 0.6 0.8 1.0

Target utilization (ρtar)

0

20

40

60

80

100

T
h
ro
u
gh

p
u
t
(M

b
/s
)

Experimental results

Queuing model

0 50 100 150 200 250

Number of misreports (M)

0

20

40

60

80

100

T
h
ro
u
gh

p
u
t
(M

b
/s
)

Experimental results

Queuing model

Fig. 4. Throughput vs. target utilization and number of misreports for least-loaded.

The results demonstrate that throughput loss becomes significant quickly.
At 20% utilization, flows suffer a nearly 20% throughput loss; similarly, at 40%
utilization, which is not uncommon in modern cloud and datacenter networks [10],
nearly 40% of throughput is lost. Although, the extent to which an adversary
can degrade the throughput for active flows depends heavily on the number and
arrival rate of flows in the network. Nonetheless, the ability of the adversary
to impose throughput losses on flows in the network exists. In Figure 4 (right),
we measure the throughput changes as a function of the number of misreports
sent. Note that pool members observed an average utilization of 10% under
normal conditions in this scenario, therefore a goal of either 0% or 10% utilization
resulted in approximately the same throughput although a single misreport was
sent once every tlong seconds when the goal is 10% utilization.

Throughput loss is related to utilization. For example, the adversary misre-
ports in batches of 2 consecutive misreports at the beginning of every 10-second
time window (tlong), for a total of about 60 misreports over the 300-second attack
window to draw nearly 20% utilization and induce a 20% throughput loss. As the
steady-state load is already significantly high (about 10% utilization), misreport-
ing will indeed draw more and heavier flows through the switch, meaning that
the throughput loss per misreport is significant. In contrast, in networks with a
lower flow inter-arrival rate and a smaller number of active flows in the network,
the throughput loss per misreport is significantly less, and thus the adversary
would have to misreport significantly more to cause a similar effect.

The key insight from Figure 4 is that the proposed attack model (with the
approximated L) accurately describes the network behavior as a function of
misreporting, to within 12% and 7% of the predicted behavior, respectively. In
the least-connections case in Figure 5, the model was within 10% and 5% error,
respectively. In this way, we show that the attack model is an effective tool
for performing reconnaissance and planning attacks on real networks, besides
providing a means for further analysis defensively.

4.4 Discussion

The key insight from our experimentation is that an adversary can in fact feasibly
subvert the load balancer by sending false load values in the load reports collected

18 Quinn Burke, Patrick McDaniel, Thomas La Porta, Mingli Yu, and Ting He

0.0 0.2 0.4 0.6 0.8 1.0

Target utilization (ρtar)

0

20

40

60

80

100

T
h
ro
u
gh

p
u
t
(M

b
/s
)

Experimental results

Queuing model

0 50 100 150 200 250

Number of misreports (M)

0

20

40

60

80

100

T
h
ro
u
gh

p
u
t
(M

b
/s
)

Experimental results

Queuing model

Fig. 5. Throughput vs. target utilization and number of misreports for least-connections.

by the load balancer. Note that the chosen heuristics (for computing the number
of misreports) are not necessarily optimal, and a persistent threat can tune attack
parameters dynamically to meet their goals. However, the chosen heuristics still
prove to be effective as a first exploration into misreporting attacks in general.

We also found that the analytical model accurately reflects what we observed
experimentally, which makes the model an effective tool for both planning attacks
and defensive analysis (without having to test the attack in a real network).
Further, the need for a general security framework becomes obvious. Recent
advances in SDN-based anomaly detection have tried to address this problem,
however, the approaches are not designed to detect this attack [31, 28, 17, 46].
The state-of-the-art detection system Sphinx [17] relies on trusting edge switches
to detect inconsistencies along flow paths, and it operates only at flow-level where
load balancing is typically done at port-level (and thus inconsistencies cannot be
traced along specific paths due to many flows combining and splitting at switch
ports). Other defenses are designed to thwart specific attacks, namely: DDoS,
link-flooding, or topology poisoning attacks [26]. Additionally, the systems have
design constraints (e.g., monitoring only hosts for malicious behavior) that make
them not applicable to the proposed misreporting attacks.

As discussed in Appendix C, flexibility in parameter choice is limited for the
adversary, as small changes lead to a less-effective attack. Therefore, adversarial
strategies are constrained to nearly-static behavior for a fixed target load, which
serves as a starting point for identifying misreporting attacks. Another potential
avenue is leveraging switch neighbors to vet the accuracy of reports.

5 Conclusion

As load balancers are a key feature of modern networks, protecting the integrity of
their decisions is critical. To provide this, it is necessary that traffic measurements
accurately reflect the true state of the network. In this paper, we proposed a
new model and methods for attacking SDN-based load balancers. Our analytical
model very accurately described the network conditions as a function of different
attack parameters, providing both a means of planning attacks for the adversary,
as well as a tool for analysis defensively.

Misreporting Attacks in Software-Defined Networking 19

A Model Parameters

Table 2. Model parameters.

Parameter Description

ρtar Target utilization on switch port

λtar Target load (e.g., Kb/s) on switch port

W Attack length (in epochs)

L Average load

M Number of misreports

Tm Misreporting period (short flows)

P Percentile for detecting load spikes

B Misreport batch size (long flows)

tlong Average flow duration (long flows)

U Misreporting load threshold

δ Chosen misreported load

N Number of pool members

R Flow arrival rate

Ri
t Load report value sent

B Reconnaissance Algorithm

Algorithm 1 RecordLoadSpikes ():
Inputs: current load, observed loads, load spike detection over, S, L, P
Outputs: n/a

1: if load spike detection over then
2: return
3: end if
4: if S.size() < D then
5: sort(observed loads)
6: s← S.get(P ∗ observed loads.size())
7: if current load ≥ s then
8: S.add(current load)
9: end if

10: else if S.size() == D then
11: L← mean(S)
12: Tm ← L/λtar

13: load spike detection over ← true
14: end if
15: return

20 Quinn Burke, Patrick McDaniel, Thomas La Porta, Mingli Yu, and Ting He

C Experimental Accuracy and Parameter Sensitivity

Experimental accuracy. The experimental results aligned very closely to what
was predicted by the attack model (with the approximations for L based on the
traffic type). Although the throughput in the virtual network seemed to decrease
slightly faster than the queuing model predicted, the shape remains the same
and further analysis in a larger system (perhaps, with hardware SDN switches)
may close that gap. The number of misreports sent during the attack was nearly
exactly what was predicted by the model with the approximated L, to within
less than 7% error for either algorithm. This is important for either the adversary
or the defender, as the accuracy of the model makes it an effective tool for both
planning attacks and defensive analysis (without having to test the attack in a
real network).

The fact that misreporting attacks from just a single switch are effective
to within a 12% bound of the target load raises important concerns regarding
multiple colluding switches. The attack model would still apply in the case of
multiple switches in the load balancing pool misreporting. In fact, this scenario
would be even more favorable, as any single switch would not have to misreport as
much to draw the same target load (in aggregate). Importantly, we note here that
the attack is independent of the controller platform and depends only on the load
balancing algorithm and network traffic patterns. Although here we distinguish
between two distinct traffic patterns found in real networks, in future work we will
investigate mixed traffic models (where a pool may serve broad/heterogeneous
services) and the limits to both attacks under such conditions.

The other facet of this problem is how effective an over-reporting attack
could be in denying service to endpoints connected by the adversary, i.e., the
endpoint would never be selected by the load balancer. Similarly, if over-reporting
combined with other attacks like spoofing can be used to deny service to arbitrary
portions of the network. Future work could also investigate over-reporting to
prevent the adversary from receiving new flows at epochs before and after batches
or during the misreporting period. As the adversary may naturally receive new
flows without misreporting (if the reported load is already low), these flows may
skew the estimate for L, although this did not prove to be problematic in our
evaluation.

There are some limitations of the work which warrant some additional experi-
mentation. Certainly, there are any number of ways an adversary could approach
a misreporting attack, and here we just explored two variants which can deny
service to other pool members and exploit a steady-state analysis to guide the
load rate toward some target. The main purpose of this work was to demonstrate
the feasibility of mounting such an attack under real network conditions and
quantifying how accurate and effective it could be. Specialized load balancing
variants of the evaluated algorithms may introduce difficulty for the attack in
some cases, for example, by keeping counters on the number of flows scheduled
through a switch for least-connections balancing. Additionally, the granularity
of the misreporting period and batch size is limited to discrete epochs (e.g., the

Misreporting Attacks in Software-Defined Networking 21

attacker cannot misreport every 1.3 seconds). Therefore, close by target loads
may have Tm or B rounded to similar values.

As with the under-reporting attack, identifying to what extent an adversary
can control network services—like load balancers—by manipulating control infor-
mation is a large concern that has not been thoroughly investigated. Prior work
has discussed methods for an adversary to compromise an SDN switch [15, 6, 41,
12]. Mounting a misreporting attack can be done by simply swapping out the
OpenFlow-agent binary with a modified one on the switch. Thus, the need for
a general security framework becomes obvious. Recent advances in SDN-based
anomaly detection have tried to address this problem, however, we discover that
these solutions are not robust enough to detect this attack in practice [31, 28,
17, 46]. Most defenses are designed to thwart specific attacks, namely, DDoS,
link-flooding, or topology poisoning attacks. Additionally, these systems have
design constraints (e.g., only able to detect host-based adversaries) that make
them not applicable to the proposed misreporting attacks.

Parameter sensitivity. With respect to the parameters introduced in Ta-
ble 2 (see Appendix A), the attack may be negatively affected in a few ways for
either long or short flows. In terms of the stealthy attack against short flows, a
lower P may cause certain lower load values to be considered load spikes, skewing
the average load spike amplitude estimate downward and therefore increasing
the number of misreports unnecessarily. For long flows, computing the average
load before the system reaches a steady state may also increase or decrease the
misreporting batch size to a sub-optimal choice that leads to larger error rates
with respect to the target load. Lastly, for either traffic type, higher choices
of U will cause the adversary to misreport to within a large range of values.
The success rate decreases with a power-law relationship to the threshold U
(i.e., the probability of all other switches reporting higher than the adversary is
≈ (1−U)(N−1)). Hence, misreporting within a larger range requires a significantly
higher misreporting rate for the same target load, and therefore for an effective
attack the flexibility in parameter choice is limited. Experiments with different
pool sizes and longer collection periods yielded qualitatively similar results.

With respect to the traffic distribution, here we considered two distinct types
of traffic that reflects what is observed in real networks. The assumption is that
switches connected to similar downstream services will observe similar patterns.
In a mixed-traffic model, although misreporting is still effective, the accuracy
of M is affected by the ratio of short and long network flows, which means that
the drawn amount of load may have a larger margin from the target (e.g., a 20%
error). However, as the ratio of traffic shifts toward more short flows or more
long flows (the more realistic case [10, 40]), then the drawn load will more closely
approach the goal.

Acknowledgements

This research was sponsored by the U.S. Army Combat Capabilities Development
Command Army Research Laboratory and was accomplished under Cooperative

22 Quinn Burke, Patrick McDaniel, Thomas La Porta, Mingli Yu, and Ting He

Agreement Number W911NF-13-2-0045 (ARL Cyber Security CRA). The views
and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied,
of the Combat Capabilities Development Command Army Research Laboratory
or the U.S. Government. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright
notation here on. This work was also supported in part by the National Science
Foundation under award CNS-1946022.

References

1. The netfilter.org project (1998), https://www.netfilter.org/
2. Project floodlight. http://www.projectfloodlight.org/floodlight/ (2011), [Online;

accessed 19-October-2018]
3. Opendaylight project. https://www.opendaylight.org/ (2013), [Online; accessed

19-October-2018]
4. Openflow switch specification. https://www.opennetworking.org/software-defined-

standards/specifications/ (2015), [Online; accessed 19-October-2018]
5. Araújo, J.T., Saino, L., Buytenhek, L., Landa, R.: Balancing on the edge: Transport

affinity without network state. In: 15th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 18). pp. 111–124 (2018)

6. Arbettu, R.K., Khondoker, R., Bayarou, K., Weber, F.: Security analysis of open-
daylight, onos, rosemary and ryu sdn controllers. In: 2016 17th International
Telecommunications Network Strategy and Planning Symposium (Networks). pp.
37–44 (Sept 2016). https://doi.org/10.1109/NETWKS.2016.7751150

7. Aslam, S., Shah, M.A.: Load balancing algorithms in cloud computing: A survey of
modern techniques. In: 2015 National Software Engineering Conference (NSEC).
pp. 30–35. IEEE (2015)

8. Aslan, M., Matrawy, A.: On the impact of network state collection on the perfor-
mance of sdn applications. IEEE Communications Letters 20(1), 5–8 (2016)

9. Aweya, J., Ouellette, M., Montuno, D.Y., Doray, B., Felske, K.: An adaptive load
balancing scheme for web servers. International Journal of Network Management
12(1), 3–39 (2002)

10. Benson, T., Akella, A., Maltz, D.A.: Network traffic characteristics of data centers
in the wild. In: Proceedings of the 10th ACM SIGCOMM conference on Internet
measurement. pp. 267–280. ACM (2010)

11. Benson, T., Anand, A., Akella, A., Zhang, M.: Understanding data center traffic
characteristics. In: Proceedings of the 1st ACM workshop on Research on enterprise
networking. pp. 65–72. ACM (2009)

12. Benzekki, K., El Fergougui, A., Elbelrhiti Elalaoui, A.: Software-defined networking
(sdn): a survey. Security and communication networks 9(18), 5803–5833 (2016)

13. Chandrasekaran, S.S.: Understanding traffic characteristics in a server to server
data center network (2017)

14. Curtis, A.R., Mogul, J.C., Tourrilhes, J., Yalagandula, P., Sharma, P., Banerjee,
S.: Devoflow: Scaling flow management for high-performance networks. In: ACM
SIGCOMM Computer Communication Review. vol. 41, pp. 254–265. ACM (2011)

15. Dargahi, T., Caponi, A., Ambrosin, M., Bianchi, G., Conti, M.: A survey on the
security of stateful sdn data planes. IEEE Communications Surveys & Tutorials
19(3), 1701–1725 (2017)

Misreporting Attacks in Software-Defined Networking 23

16. De Oliveira, R.L.S., Schweitzer, C.M., Shinoda, A.A., Prete, L.R.: Using mininet
for emulation and prototyping software-defined networks. In: 2014 IEEE Colombian
Conference on Communications and Computing (COLCOM). pp. 1–6. IEEE (2014)

17. Dhawan, M., Poddar, R., Mahajan, K., Mann, V.: Sphinx: Detecting security
attacks in software-defined networks. (2015)

18. Dridi, L., Zhani, M.F.: Sdn-guard: Dos attacks mitigation in sdn networks. In: 2016
5th IEEE International Conference on Cloud Networking (Cloudnet). pp. 212–217.
IEEE (2016)

19. Eisenbud, D.E., Yi, C., Contavalli, C., Smith, C., Kononov, R., Mann-Hielscher, E.,
Cilingiroglu, A., Cheyney, B., Shang, W., Hosein, J.D.: Maglev: A fast and reliable
software network load balancer. In: 13th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 16). pp. 523–535 (2016)

20. Feghhi, S., Leith, D.J.: A web traffic analysis attack using only timing information.
IEEE Transactions on Information Forensics and Security 11(8), 1747–1759 (2016)

21. Fowler, S., Sarfraz, J., Abbas, M.M., Bergfeldt, E., Angelakis, V.: Evaluation and
prospects from a measurement campaign on real multimedia traffic in lte vs. umts.
In: 2014 4th International Conference on Wireless Communications, Vehicular
Technology, Information Theory and Aerospace Electronic Systems (VITAE). pp. 1–
5 (May 2014). https://doi.org/10.1109/VITAE.2014.6934475

22. Greenberg, A., Hamilton, J.R., Jain, N., Kandula, S., Kim, C., Lahiri, P., Maltz,
D.A., Patel, P., Sengupta, S.: Vl2: a scalable and flexible data center network. In:
ACM SIGCOMM computer communication review. vol. 39, pp. 51–62. ACM (2009)

23. Guirguis, M., Bestavros, A., Matta, I., Zhang, Y.: Reduction of quality (roq)
attacks on dynamic load balancers: Vulnerability assessment and design tradeoffs.
In: IEEE INFOCOM 2007-26th IEEE International Conference on Computer
Communications. pp. 857–865. IEEE (2007)

24. Guo, Z., Su, M., Xu, Y., Duan, Z., Wang, L., Hui, S., Chao, H.J.: Improving the
performance of load balancing in software-defined networks through load variance-
based synchronization. Computer Networks 68, 95–109 (2014)

25. Handigol, N., Seetharaman, S.: Plug-n-serve: Load-balancing web traffic using
openflow (2009)

26. Hong, S., Xu, L., Wang, H., Gu, G.: Poisoning network visibility in software-defined
networks: New attacks and countermeasures. (2015)

27. Kandula, S., Sengupta, S., Greenberg, A., Patel, P., Chaiken, R.: The nature of
data center traffic: measurements & analysis. In: Proceedings of the 9th ACM
SIGCOMM conference on Internet measurement. pp. 202–208. ACM (2009)

28. Kang, M.S., Gligor, V.D., Sekar, V., et al.: Spiffy: Inducing cost-detectability
tradeoffs for persistent link-flooding attacks. (2016)

29. Kang, N., Ghobadi, M., Reumann, J., Shraer, A., Rexford, J.: Niagara: Scalable
load balancing on commodity switches. Tech. rep., Technical Report (TR-973-14),
Princeton (2014)

30. Khan, S., Gani, A., Wahab, A.W.A., Guizani, M., Khan, M.K.: Topology discov-
ery in software defined networks: Threats, taxonomy, and state-of-the-art. IEEE
Communications Surveys & Tutorials 19(1), 303–324 (2016)

31. Lee, S., Kim, J., Shin, S., Porras, P., Yegneswaran, V.: Athena: A framework for
scalable anomaly detection in software-defined networks. In: 2017 47th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).
pp. 249–260. IEEE (2017)

32. Li, J., Chang, X., Ren, Y., Zhang, Z., Wang, G.: An effective path load balancing
mechanism based on sdn. In: 2014 IEEE 13th International Conference on Trust,
Security and Privacy in Computing and Communications. pp. 527–533. IEEE (2014)

24 Quinn Burke, Patrick McDaniel, Thomas La Porta, Mingli Yu, and Ting He

33. Mahmood, A., Rashid, I.: Comparison of load balancing algorithms for clustered
web servers. In: ICIMU 2011: Proceedings of the 5th international Conference on
Information Technology & Multimedia. pp. 1–6. IEEE (2011)

34. Mesbahi, M., Rahmani, A.M.: Load balancing in cloud computing: a state of the
art survey (2016)

35. Neghabi, A.A., Jafari Navimipour, N., Hosseinzadeh, M., Rezaee, A.: Load
balancing mechanisms in the software defined networks: A systematic and
comprehensive review of the literature. IEEE Access 6, 14159–14178 (2018).
https://doi.org/10.1109/ACCESS.2018.2805842

36. Patel, P., Bansal, D., Yuan, L., Murthy, A., Greenberg, A., Maltz, D.A., Kern, R.,
Kumar, H., Zikos, M., Wu, H., et al.: Ananta: Cloud scale load balancing. In: ACM
SIGCOMM Computer Communication Review. vol. 43, pp. 207–218. ACM (2013)

37. Qian, H., Medhi, D.: Server operational cost optimization for cloud computing
service providers over a time horizon. In: Hot-ICE (2011)

38. Qilin, M., Weikang, S.: A load balancing method based on sdn. In: 2015 Seventh
International Conference on Measuring Technology and Mechatronics Automation.
pp. 18–21. IEEE (2015)

39. Raghavan, B., Vishwanath, K., Ramabhadran, S., Yocum, K., Snoeren, A.C.:
Cloud control with distributed rate limiting. In: ACM SIGCOMM Computer
Communication Review. vol. 37, pp. 337–348. ACM (2007)

40. Rao, A., Legout, A., Lim, Y.s., Towsley, D., Barakat, C., Dabbous, W.: Network
characteristics of video streaming traffic. In: Proceedings of the Seventh COnference
on emerging Networking EXperiments and Technologies. pp. 1–12 (2011)

41. Scott-Hayward, S., O’Callaghan, G., Sezer, S.: Sdn security: A survey. In: 2013
IEEE SDN For Future Networks and Services (SDN4FNS). pp. 1–7. IEEE (2013)

42. Wang, R., Butnariu, D., Rexford, J., et al.: Openflow-based server load balancing
gone wild. (2011)

43. Williams, J.: Introducing the github load balancer (Sep 2016),
https://githubengineering.com/introducing-glb/

44. Yoon, C., Lee, S., Kang, H., Park, T., Shin, S., Yegneswaran, V., Porras, P., Gu,
G.: Flow wars: Systemizing the attack surface and defenses in software-defined
networks. IEEE/ACM Transactions on Networking (TON) 25(6), 3514–3530 (2017)

45. Zhang, J., Yu, F.R., Wang, S., Huang, T., Liu, Z., Liu, Y.: Load balancing in
data center networks: A survey. IEEE Communications Surveys & Tutorials 20(3),
2324–2352

46. Zhang, Y.: An adaptive flow counting method for anomaly detection in sdn. In:
Proceedings of the ninth ACM conference on Emerging networking experiments
and technologies. pp. 25–30. ACM (2013)

47. Zhou, Y., Zhu, M., Xiao, L., Ruan, L., Duan, W., Li, D., Liu, R., Zhu, M.: A load
balancing strategy of sdn controller based on distributed decision. In: 2014 IEEE
13th International Conference on Trust, Security and Privacy in Computing and
Communications. pp. 851–856. IEEE (2014)

