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Abstract
Auxetic materials are structural systems with negative Poisson’s ratio. Such materials show unexpected
behavior when subjected to uni-axial compression or tension forces. For instance, they expand perpen-
dicular to the direction of an applied compressive force. This behavior is the result of their internal
structural geometry. These materials, with their unique behavior, have recently found many applications
in the fields of sensors, medical devices, sport wears, and aerospace. Thus, there is a lot of relevant re-
search in the artificial design of auxetic metamaterials and the prediction of their behavior [1]. Since the
behavior of these materials heavily relies on the geometry of their internal structure, the geometry-based
methods of structural design, known as graphic statics, are very well suited to derive their geometry or
describe their behavior. Nevertheless, graphic statics has never been used in the design of such materi-
als. For the first time, this paper provides an introduction to the use of graphic statics in the design and
form-finding of auxetic metamaterials. The paper explains multiple equilibrium states of various auxetic
structures using algebraic formulations of 2d/3d graphic statics [2, 3]. Moreover, it sheds light on the
geometric behavior of auxetic materials by changing the force diagram of graphic statics. Therefore, it
suggests a novel approach in predicting the changes in the geometry of the material under various loading
conditions by controlling the force equilibrium geometrically.

1 IntroductionMetamaterials are artificially structured materials with unusual properties. Recent break-
throughs in advanced micro- and nanofabrications allowed the construction of such previously–inaccessible
structures. These materials can be used to control and manipulate light, sound, and many other physi-
cal phenomena for a variety of applications including the construction of ultra-strong materials [4, 5],
shock-absorbing materials [6, 7, 8] and materials with negative Poisson-ratio [9, 10, 11, 12, 13, 14, 15].
Even though many applications have been found, currently, there is no systematic approach to design the
geometry of metamaterials (Figure 1).

In this paper, we propose a methodology to construct 2-dimensional metamaterials using geometry-based
structural design method based on 2-dimensional algebraic graphic statics proposed by Maxwell and
Rankine [16, 17, 18]. In graphic statics, the geometry of the structure and its equilibrium are represented
by the form and the force diagrams. The form diagram incorporates the location of the supports and the
applied loads, while the force diagram represents the equilibrium and the magnitude of the forces. These
two diagrams are reciprocal: nodes of one diagram correspond to faces of the other, and the edges of one
diagram correspond to geometrically perpendicular edges of the other [17].

Recently, an algebraic formulation using constrained equations was provided to explore the topological
and geometrical relationships between the reciprocal diagrams of 2D graphics statics (2DGS) [2, 20].
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Figure 1: (a) a 2D re-entrant structure based on honeycomb geometry; (b) a 3D structure made of similar
geometry [19].
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Figure 2: (a) A force diagram consisting of convex polyhedral cells with 377 number of faces resulting in
(b) a (synclastic) compression-only form with 133 degrees of freedom; (c) a different (anticlastic) shell
with both tension and compression members by assigning both negative and positive values to the edges
of the form (b) [22].

This construction allows the users to study and manipulate the diagrams interactively. This formulation
was later generalized to 3-dimensional reciprocal systems as well provided an interactive tool in the
3-dimensional case [21, 3].

Previously, the authors of this paper defined the notion of Geometric Degrees of Freedom (GDoF) de-
scribing the dimension of the family of possible form diagram corresponding to a given reciprocal dia-
gram [22]. Therefore, the GDoF describes in how many ways a structure can be manipulated so that the
reciprocal dual diagram remains the same. This idea was used in the form-finding of an anticlastic shell-
structure with non-convex polygonal faces (Figure 2). The non-convex faces as a result of this study are
very similar to the non-convex geometry of auxetic systems suggested in [23, 19] (See Figure 1). This
similarity suggests the potentials of using graphic statics in generating the geometry of auxetic systems
that have not been explored before.

1.1 Problem statement and ObjectivesEven though many applications of metamaterials have been
found, currently, there is no systematic approach to design the geometry of metamaterials. The goal of
the paper is to develop a systematic approach to design metamaterials with a negative Poisson’s ratio
from space-filling polygonal diagrams using reciprocal diagrams of 2D graphic statics. This research is
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novel since the reciprocal diagrams and the methods of algebraic graphic statics have not been used in the
design and generation of the geometry of metamaterials. In this paper, we transform a doubly-periodic
polygonal system with convex faces into a network with non-convex, non-self-intersecting faces by uti-
lizing the Geometric Degrees of Freedom (GDoF) of the network. Explicitly, using GDoF, we change
the direction of the parallel edges into the opposite direction without changing the equilibrium in the
system which results in a network with re-entrant faces for the same force diagram. In this method, there
are several challenges: (a) not any network can be transformed into a non-convex, non-self-intersecting
network and a proper methodology is needed to adjust the topological properties of the network; (b)
the directions along which the network can be manipulated should be identified; and, (c) transformation
parameters should be controlled such that the faces of the non-convex network do not self-intersect.

1.2 ContributionsIn this paper, we propose a generalizable, unconventional approach in the design of
auxetic metamaterials using geometry-based structural design method based on 2-dimensional algebraic
graphic statics. This research uses a unique approach in design. It utilizes the topological modeling
technique which uses the dual space of the actual structural geometry as a medium for design and trans-
formation. With this method, we transform the input geometry of any known convex tessellation of the
two-dimensional space into an auxetic configuration: a re-entrant, non-convex geometry with negative
Poisson’s ratio.

2 MethodologyIn general, convex polyhedral systems, and space packing systems have been explored
extensively. However, non-convex aggregations have not been addressed adequately in the literature. In
this research, we transform convex tessellations into non-convex, non-self-intersecting polygonal sys-
tems that can be used as the geometry of auxetic materials. Our methodology uses an unconventional,
unique topological modeling method, we utilize the dual space of the input geometry to transform it into
an auxetic configuration. This method is a two-step process. First, we utilize the dual space to transform
a convex tessellation into a tessellation on which a trapezoid grid can be imposed (Section 2.6). Second,
we use the Geometric Degrees of Freedom (GDoF) of this system to convert the convex tessellation into
a re-entrant system by flipping certain parallel edges (Sections 2.4, 2.5).

2.1 Overview of 2DGSIn 2D graphic statics, the geometry of a structure and its equilibrium are rep-
resented by two perpendicular reciprocal diagrams referred to as the form and force diagrams. In this
context, we call the starting diagram the primal, and the reciprocal diagram the dual diagram. These two
diagrams are topologically dual, meaning that vertices (v), edges (e) and faces ( f ) of the primal diagram
correspond to faces ( f †), edges (e†) and vertices (v†) of the dual diagram (in this order). Moreover, each
edge of the primal diagram is perpendicular to its corresponding edge in the dual diagram (see Figure 3).

Recently, an algebraic formulation was provided to construct the dual diagram in 2-dimensional space
using the primal as an input [2, 20]. In this formulation, each vertex (vi) and its connected edges (e j) of
the primal diagram provides equations for the construction of the dual diagram. The vertex vi corresponds
to a closed polygon ( f †

i ) in the dual diagram, hence the sum of the edge vectors e j
† of f †

i has to be the
zero vector. Thus, each vertex vi provides a vector equation

∑
e†

j

u j
†q j = 0

where the sum runs over the edges e†
j of the face f †

i , u†
j denotes the unit edge vector of the edge e†

j ,
and the q j are the variables representing the lengths of the edges e†

j in the dual diagram. Writing these
equations around every face f †

i provides a linear equation system with the variable being the vector of
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Figure 3: The form diagram (a) and the force dia-
gram (b) and their dual reciprocal elements.
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Figure 4: (a) Initial form diagram with the GDoF
of 4 where the lengths of two parallel edges have
been changed from positive value to negative value
(b).

edge lengths q. The equation system can be described by a [2v×e] matrix, called the equilibrium matrix
A:

Aq = 0. (1)

The solutions of the equilibrium matrix provide the edge lengths of the dual diagram, from which the
diagram can be constructed.

2.2 Geometric Degrees of Freedom (GDoF)The Geometric Degrees of Freedom (GDoF) of one di-
agram is the number of edge lengths that can be chosen independently to find a unique solution of the
equilibrium equations. For instance, the geometric degrees of freedom of the force diagram can be de-
fined as the number of edge lengths that can be independently chosen to construct the force diagram
with the same topology and parallel edges to its initial configuration. In the case of the form diagram,
the GDoF is the dimension of the family of networks with parallel edges but different edge lengths that
are in equilibrium. In other words, this number represents the number of ways the geometry can be
manipulated without breaking the perpendicular reciprocity with the dual diagram.

In 2D graphic statics, the GDoF of the dual diagram equals e− r where e is the number of edges of
the primal diagram and r is the rank of the equilibrium matrix A. If the GDoF is one, scaling the
diagram is the only possible manipulation without breaking the reciprocity. If the GDoF is more than
one, the diagram can be modified in many significantly different ways within the equilibrium state. This
observation is illustrated in Figure 4 where the force diagram is a hexagon. The GDoF of the hexagon
is e− 2 = 6− 2 = 4, thus, the hexagon can be manipulated in many significantly different ways. In
particular, by changing the lengths of its vertical edges from positive to negative. In fact, any value can
be given to the length of the vertical edges. More importantly, the edges may flip into their negative edge
lengths without breaking the equilibrium or the reciprocity with its dual diagram.

Comparing the geometry of a hexagon with the non-convex geometry of the Figure 4 suggests a method
by which the convex geometry can be turned into a non-convex (re-entrant) geometry for the design of
auxetic structures. However, not any polygon can be transformed into a non-convex geometry. In the
next sections, we provide a technique to check whether a network can be transformed into an auxetic
configuration using GDoF.

2.3 2D Trapezoid Arrangements with a Direction (TAD)We say that an aggregation of polygons in
the two-dimensional space is a two-dimensional Trapezoid Arrangement with a Direction (TAD) if every
polygon is a trapezoid, whose two parallel sides are parallel to a given direction d. We call a convex
quadrilateral with at least one pair of parallel sides a trapezoid, thus a rectangle is also considered a
trapezoid in this definition. Moreover, we require from a TAD that every interior vertex has valency four,
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and every interior edge is the edge of exactly two neighboring trapezoids (Figure 5a provides an example
of a TAD with a vertical direction). This direction d represents the parallel lines of the trapezoids in the
grid. In this paper, we require the TAD to be periodic in two perpendicular directions: in the direction
of d and d⊥ (Figure 5a is an example of a doubly-periodic TAD which is periodic both in the horizontal
and the vertical directions). In this section, we show that the dual diagram of a TAD is also a TAD with
the direction given by d⊥ which is perpendicular to d.
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Figure 5: (a) A TAD, Ξ, as a form diagram and (b)
its reciprocal force diagram Ξ†.
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Figure 6: A single trapezoid with positive edge
lengths and its transformation into another trape-
zoid with two negative edge lengths.

Every vertex vi of a TAD, Ξ, has valency four, hence, the corresponding face f †
i of Ξ† is a quadrilateral

(Figure 5b). Moreover, two of the four edges connected to vi are parallel to the direction d; thus two
of the four sides of f †

i are parallel to the direction perpendicular to d. Similarly, every face f j of Ξ is
a trapezoid, hence the corresponding vertices v†

j have valency four and two of the edges connected to
v†

j are perpendicular to d. As a result, Ξ† is a TAD with direction, d⊥. This phenomenon is illustrated
by Figure 5b, the interior network of the reciprocal diagram (excluding the triangles) is a TAD with a
horizontal direction.

The doubly-periodic dual diagram, Ξ† can be constructed in two steps. First, by constructing the dual
diagram of the fundamental domain of Ξ. The fundamental domain is a subset of Ξ which generates Ξ

under the double periodicity. As a result, Ξ† can be generated from the dual of the fundamental domain
which is our second step. In this way, we can ensure that the dual doubly-periodic TAD, Ξ† has no
self-intersecting faces. Indeed, since Ξ† is generated by a small part of it (the dual of the fundamental
domain), it is only needed to ensure that the faces in this part are non-self-intersecting. This can be
guaranteed by changing the length of the parallel sides (Figure 6). We summarize the discussion of this
section with the following Lemma.

Lemma 2.1 For a doubly-periodic TAD, Ξ, there exists a dual diagram, Ξ†, which is a doubly-periodic
TAD without self-intersecting faces. �

2.4 Using GDoF in transforming a TADConsider a doubly-periodic space-filling TAD, Ξ, and its dual
TAD, Ξ†. The key observation of this paper is that Ξ can be transformed along its direction d without
breaking the reciprocity with Ξ†. In particular, there exists a parallel TAD, Ξ, dual to the TAD Ξ†, whose
edges are parallel to the edges of Ξ, but the edges parallel to the direction d of the TAD are flipped. In
other words, in the construction of Ξ we assign negative values to the signed edge lengths parallel to d.
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The construction of Ξ can be done in a sequential process. First, we consider a single trapezoid cell f1 of
Ξ. The GDoF of the trapezoid is e−2 = 4−2 = 2, therefore, the trapezoid can be manipulated in a non-
trivial way: by changing the lengths of its parallel edges (Figure 6). In fact, any value can be given to the
length of any of the parallel edges; importantly, these edges can be flipped without breaking the duality
with its dual diagram. In this way, we obtain a non-self-intersecting trapezoid cell with flipped edges.
Then, we take the next trapezoid cell, f2, connected to f1. We flip the parallel edges of f2 obtaining
a non-self-intersecting trapezoid. We continue this process until we flip the edges parallel to d of all
trapezoids in the fundamental domain of Ξ. We extend the construction of Ξ using the doubly-periodic
property of the network.

2.5 Re-entrant arrangements using TAD’sIn this section, we show our main methodology to con-
struct re-entrant geometries from convex, doubly-periodic network Γ. We assume that Γ has an over-
laying TAD structure, meaning that there exists a doubly-periodic TAD, Ξ, so that all edges of Γ can be
covered by the edges of Ξ. In other words, by adding extra edges to Ξ parallel to the direction d we
obtain a TAD, Ξ. Figure 7a provides an example of the hexagonal tessellation with an overlaying TAD
structure. The extra edges are highlighted with dashed arrows. Note that the overlaying TAD is the one
in Figure 5a.

Consider the overlaying TAD of Γ, Ξ. Using Section 2.4, we construct a parallel network Ξ such that
the edges of Ξ parallel to d are flipped in Ξ. Since Γ is a sub-network of Ξ, in this process, along Ξ, we
manipulated the diagram Γ as well. The signed edges of Γ covered by the edges of Ξ parallel to d are
assigned negative values in this process. The process described above significantly changes the initial
geometry. A convex tessellation with an overlaying TAD structure can be transformed into an auxetic
configuration with re-entrant faces.
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Figure 7: (a) The hexagonal tessellation with an overlaying TAD structure, (b)-(e) the transformation of
the hexagonal tesselation into an auxetic configuration.

2.6 Construction of overlaying TADs for general networksIn general, not every doubly-periodic
tessellation Γ has an overlaying TAD. If a general network does not have an overlaying TAD, then the
method previously described cannot be used to transform it into a non-convex doubly-periodic tessella-
tion. In the following section, we briefly describe a framework to transform a general initial tessellation
into a tessellation with an overlaying TAD structure.

Consider the network Γ of Figure 8a. Given the vertical direction, d, we create a grid parallel to d
overlaying Γ covering all the vertices of the network. This grid cuts the faces of Γ into triangles and
quadrilaterals (Figure 9a). The GDoF of a triangle is e−2 = 1 meaning that the only possible manipula-
tion of the triangle without breaking the duality is scaling. As a result, we cannot manipulate the triangle
into a non-convex geometry. Thus, the methodology described in the previous sections cannot be applied
immediately, and the triangles of the network need to be replaced by trapezoidal cells.
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To construct these trapezoid cells, the dual diagram Γ† of Γ is modified (see Figure 8a-b). In order to
eliminate the triangles given by the parallel grid (Figure 9a), extra edges (showed by dashed lines) are
added to Γ† perpendicular to d obtaining a new dual geometry (Figure 9b). Consequently, the primal
diagram corresponding to the new dual diagram can have an overlaying TAD with direction d (Figure
10a). This process changes the geometry of the doubly-periodic network Γ by transforming its topology
into a network that can have an overlaying TAD structure. Changing the signed edge lengths of the new
network in the direction of d transforms the network into a re-entrant aggregation with auxetic properties
based on the method proposed in Section 2.5 (See Figure 12a,b). Figure 11 and Figure 12 show the initial
network, its dual diagram and its re-entrant version and the corresponding dual diagram with additional
edges.

Figure 13a-e show multiple examples of doubly-periodic convex tessellations and their related non-
convex, auxetic geometry. In particular, the most studied auxetic material in the literature as shown
in Figure 13a1 can be constructed with our methodology ([24, 25, 26, 27]). The input of Figure 13b1
is the very same geometry of Figure 10. Figure 13c1 is the subdivided version of the sample of Figure
13b1 where the force diagram is subdivided into smaller internal polygons [28]. Figure 13d1 is a net-
work consisting of octagons and pentagons while Figure 13e1 is a network consisting of quadrilaterals,
pentagons, hexagons, and octagons. This example is special in the sense that the overlaying TAD does
not have parallel edges, meaning that in the construction of the auxetic geometry we flip all the edges
which are close enough to be vertical. This property will be investigated thoroughly in the near future
and its versatility will help to generalize the methodology of this paper to almost all space-filling periodic
networks.

The auxetic behavior of the systems is illustrated in column (3) of Figure 13. Obviously, rigorous quan-
titative approaches such as the numerical homogenization method should be used to precisely measure
the negative Poisson’s ratio for each sample. And, a further thorough investigation is needed to precisely
report their auxetic properties and behavior. We will address such characteristics in a future research.

3 Future directionsThe current methodology provides a framework for creating re-entrant networks
from doubly-periodic convex polygonal systems. However, the explicit auxetic properties are not inves-
tigated in this paper and will be explored in future research. A robust computational implementation to
deal with any 2D periodic input geometry should be developed in a future research. This will include
transformation and modification of the dual diagram of the network and all the necessary adjustments to
turn the network into a subset of a doubly-periodic TAD.
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Figure 8: The hexagonal tessellation (a) with its
dual diagram (b).
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Figure 9: (a) Hexagonal grid with an imposed verti-
cal grid on it, (b) the dual diagram with an imposed
horizontal grid on it.
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Figure 10: (a) A tessellation of squares and octagons; (b)-(e) the transformation of this network into an
auxetic system.

Another interesting future direction is the generalization of the current framework to three dimensions.
There are multiple directions to extend the current methodology into three dimensions. For instance,
reciprocal polyhedral diagrams suggested by Rankine can be used in three-dimensions [16, 29]. The
methodology described in Section 2.5 can be applied to polyhedral networks on which a network of
trapezoidal polyhedrons can be imposed. In this way, we can obtain a re-entrant 3D structure similar
to Figure 1b. Another possibility is to consider a 2D network in a plane of a three-dimensional space
and add an extra vertex in the space to which every vertex of the 2D network is connected. Figure 2a
provides such an example. The methodology of Section 2.5 can be applied to the dual diagram providing
a methodology to create anticlastic surfaces from synclastic forms (Figure 2b-c).
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