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Abstract

We propose unifying techniques from prob-

abilistic databases and relational embedding

models with the goal of performing complex

queries on incomplete and uncertain data. We

formalize a probabilistic database model with

respect to which all queries are done. This al-

lows us to leverage the rich literature of theory

and algorithms from probabilistic databases for

solving problems. While this formalization can

be used with any relational embedding model,

the lack of a well-defined joint probability distri-

bution causes simple query problems to become

provably hard. With this in mind, we introduce

TRACTOR, a relational embedding model de-

signed to be a tractable probabilistic database,

by exploiting typical embedding assumptions

within the probabilistic framework. Using a

principled, efficient inference algorithm that

can be derived from its definition, we empiri-

cally demonstrate that TRACTOR is an effec-

tive and general model for these querying tasks.

1 INTRODUCTION

Relational database systems are ubiquitous tools for data

management due to their ability to answer a wide variety

of queries. In particular, languages such as SQL allow one

to take advantage of the relational structure of the data

to ask complicated question to learn, analyse, and draw

conclusions from data. However, traditional database sys-

tems are poorly equipped to deal with uncertainty and

incompleteness in data. Meanwhile, techniques from the

machine learning community can successfully make pre-

dictions and infer new facts. In this work we marry ideas

from both machine learning and databases to provide a

framework for answering such queries while dealing with

uncertain and incomplete data.
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The first key question we need an answer for when dealing

with uncertain relational data is how to handle the fact that

our data is invariably incomplete. That is, there will al-

ways be facts that we do not explicitly see, but would like

to be able to infer. In the machine learning community,

this problem is known as link prediction, a task which has

garnered a lot of attention in recent years [31, 30, 24, 37]

using a variety of techniques [4, 15]. Recently, the most

common techniques for this problem are relational em-

bedding models, which embed relations and entities as

vectors and then use a scoring function to predict whether

or not facts are true. While these techniques are popular

and have proven effective for link prediction, they lack

a consistent underlying probabilistic semantics, which

makes their beliefs about the world unclear. As a result,

investigations into them have rarely gone beyond link

prediction [20, 26].

On the other hand, the databases community has pro-

duced a rich body of work for handling uncertainty via

probabilistic databases (PDBs). In contrast to relational

embedding models which are fundamentally predictive

models, PDBs [34, 39] are defined by a probabilistic se-

mantics, with strong and clearly specified independence

assumptions. With these semantics, PDBs provide us with

a wealth of theoretical and algorithmic research into com-

plex queries, including tractability results [11, 12, 13, 16]

and approximations [14, 18]. Recently there has even

been work in finding explanations for queries [9, 19], and

querying subject to constraints [6, 3, 17]. Where PDBs

fall short is in two major areas. Firstly, populating PDBs

with meaningful data in an efficient way remains a major

challenge, due to their brittleness to incomplete data, and

due to their disconnect from the statistical models that

can provide these databases with probability values. Sec-

ondly, while querying is well understood, certain types

of desirable queries are provably hard under standard

assumptions [13].

In this work, our goal will be to unify the predictive capa-

bility of relational embedding models with the sound un-



derlying probabilistic semantics of probabilistic databases.

The central question then becomes how should we do this

unification such that we maintain as many of the bene-

fits of each as possible, while finding ways to overcome

their limitations. As we will discover in Section 3, this is

not a question with an obvious answer. The straightfor-

ward option is to simply convert the relational embedding

model’s prediction into probabilities, and then use these

to populate a probabilistic database. While this does give

us a meaningful way to populate a PDB, the resulting

model is making some clearly problematic independence

assumptions, and moreover still struggles with making

certain queries tractable.

At its core, the reason this straightforward solution is

ineffective is as follows: while both PDBs and relational

embedding models make simplifying assumptions, these

assumptions are not being taken into account jointly. Each

is treating the other as a black box. To overcome this, we

incorporate the factorization assumption made by many

relational embedding models [41, 30] directly into our

probabilistic database. The resulting model, which we

call TRACTOR, thus takes advantages of the benefits of

both: it can efficiently and accurately predict missing

facts, but it also provides a probabilistic semantics which

we can use for complex probabilistic reasoning. Due to

its factorization properties, TRACTOR can even provide

efficient reasoning where it was previously difficult in a

standard PDB.

The rest of the paper is organized as follows. Section 2

provides the required technical background on PDBs and

their associated queries. In Section 3 we discuss using

(tuple-independent) PDBs as the technical framework for

relational embedding models, as well as giving a brief

formalization and discussion of challenges. Then, in Sec-

tion 4 we introduce TRACTOR, a relational embedding

model designed around PDBs to allow for a large range

of efficient queries. Section 5 provides an empirical eval-

uation of TRACTOR . Finally, Section 6 gives a broad

discussion on related work along with ties to future work.

2 PROBABILISTIC DATABASES

We now provide the necessary technical background on

probabilistic databases, which will serve as the foundation

for our probabilistic semantics and formalism for queries,

as well as the underlying inspiration for TRACTOR.

2.1 RELATIONAL LOGIC AND DATABASES

We begin with necessary background from function-free

finite-domain first-order logic. An atom R(x1, x2, ..., xn)
consists of a predicate R of arity n, together with n ar-

guments. These arguments can either be constants or

variables. A ground atom is an atom that contains no

variables. A formula is a series of atoms combined with

conjunctions (∧) or disjunctions (∨), and with quantifiers

∀, ∃. A substitution Q[x/t] replaces all occurrences of x
by t in a formula Q.

A relational vocabulary σ is composed of a set of predi-

cates R and a domain D. Using the Herbrand semantics

[21], the Herbrand base of σ is the set of all ground atoms

possible given R and D. A σ-interpretation ω is then an

assignment of truth values to every element of the Her-

brand base of σ. We say that ω is a model of a formula Q

whenever ω satisfies Q. This is denoted by ω |= Q.

Under the standard model-theoretic view [1], a relational

database for a vocabulary σ is a σ-interpretation ω. In

words: a relational database is a series of relations, each

of which corresponds to a predicate. These are made

up by a series of rows, also called tuples, each of which

corresponds to a ground atom being true. Any atom not

appearing as a row in the relation is considered to be false,

following the closed-world assumption [32]. Figure 1

shows an example database.

2.2 PROBABILISTIC DATABASES

To incorporate uncertainty into relational databases, prob-

abilistic databases assign each tuple a probability [34,

39].

Definition 1. A (tuple-independent) probabilistic

database (PDB) P for a vocabulary σ is a finite set

of tuples of the form 〈t : p〉 where t is a σ-atom and

p ∈ [0, 1]. Furthermore, each t can appear at most once.

Given such a collection of tuples and their probabilities,

we are now going to define a distribution over relational

databases. The semantics of this distribution are given by

treating each tuple as an independent random variable.

Definition 2. A PDB P for vocabulary σ induces a prob-

ability distribution over σ-interpretations ω:

PP(ω) =
∏

t∈ω

PP(t)
∏

t/∈ω

(1− PP(t))

where PP(t) =

{

p if 〈t : p〉 ∈ P

0 otherwise

Each tuple is treated as an independent Bernoulli random

variable, so the probability of a relational database in-

stance is given as a simple product, based on which tuples

are or are not included in the instance.

2.3 PROBABILISTIC QUERIES

Much as in relational databases, in probabilistic databases

we are interested in answering queries – the difference



Scientist

Einstein

Erdős

von Neumann

CoAuthor

Einstein Erdős

Erdős von Neumann

Figure 1: Example relational database. Notice that the

first row of the right table corresponds to the atom CoAu-

thor(Einstein, Erdős).

Scientist Pr

Einstein 0.8

Erdős 0.8

von Neumann 0.9

Shakespeare 0.2

CoAuthor Pr

Einstein Erdős 0.8

Erdős von Neumann 0.9

von Neumann Einstein 0.5

Figure 2: Example probabilistic database. Tuples are

now of the form 〈t : p〉 where p is the probability of the

tuple t being present. These tuples are assumed to be

independent, so the probability both Einstein and Erdős

are scientists is 0.8 · 0.8 = 0.64.

being that we are now interested in probabilities over

queries. In particular, we study the theory of queries

that are fully quantified and with no free variables or

cosntants, also known as fully quantified Boolean queries

– we will see later how other queries can be reduced to

this form. On a relational database, this corresponds to a

fully quantified query that has an answer of True or False.

For example, on the database given in Figure 1, we might

ask if there is a scientist who is a coauthor:

Q1 = ∃x.∃y.S(x) ∧ CoA(x, y)

Which there clearly is, by taking x to be Einstein and y
to be Erdős. If we instead asked this query of the PDB

in Figure 2, we would be computing the probability by

summing over the worlds in which the query is true:

PP(Q1) =
∑

ω|=Q1

PP(ω)

Queries of this form that are a conjunction of atoms are

called conjunctive queries. They are commonly shortened

as:

Q1 = S(x),CoA(x, y).

A disjunction of conjunctive queries is known as a union

of conjunctive queries (UCQ). While they capture a rather

complex set of queries, the algorithmic landscape of

UCQs is remarkably well understood.

Theorem 1. Dalvi and Suciu [13] Let Q be a UCQ and

P be a tuple-independent probabilistic database. Then

the query Q is either:

• Safe: PP(Q) can be computed in time polynomial in

|P| for all probabilistic databases P using the stan-

dard lifted inference algorithm (see Section 2.3.2);

• Unsafe: Computing PP(Q) is a #P -hard problem.

Furthermore, we can efficiently determine whether Q is

safe or unsafe.

In much of the literature of probabilistic databases

[34, 13], as well as throughout this paper, UCQs (and

consequently conjunctive queries) are the primary query

object studied.

2.3.1 Reduction to Fully Quantified Boolean

Queries

In general, one is not always interested in computing fully

quantified queries. For example, in Section 5 one of the

queries we are interested in computing will be of the form

∃x, y.R(A, x) ∧ S(x, y) ∧ T (y,B) (1)

For relations R,S, T and constants A,B. To convert this

query to a fully quantified one, we need to shatter the

query [39]. In this case, we replace the binary relation

R(A, x) by the unary query RA(x), where ∀x.RA(x) =
R(A, x). A similar procedure for T gives us the following

query:

H0 = ∃x, y.RA(x) ∧ S(x, y) ∧ TB(y) (2)

This is now a fully quantified query, and is also a simple

example of an unsafe query. That is, for an arbitrary

probabilistic database P we cannot compute PP(Q) in

time polynomial in |P| given our current independence

and complexity assumptions.

2.3.2 Efficient Query Evaluation

In addition to providing an underlying probabilistic se-

mantics, one of the motivations for exploring probabilistic

databases as the formalism for relational embedding mod-

els was to be able to evaluate complex queries efficiently.

Algorithm 1 does this in polynomial time for all safe

queries. We now explain the steps in further detail.

We begin with the assumption that Q has been processed

to not contain any constant symbols, and that all variables

appear in the same order in repeated predicate occurrences

in Q. This can be done efficiently [13].

Step 0 covers the base case where Q is simply a tuple, so it

looks it up in P . Step 1 attempts to rewrite the UCQ into a

conjunction of UCQs to find decomposable parts. For ex-

ample, the UCQ (R(x)∧S(y, z))∨ (S(x, y)∧T (x)) can



Algorithm 1 Lift
R(Q,P), abbreviated by L(Q)

Require: UCQ Q , prob. database P with constants T .

Ensure: The probability PP(Q)
1: Step 0 Base of Recursion

2: if Q is a single ground atom t
3: if 〈t : p〉 ∈ P return p else return 0

4: Step 1 Rewriting of Query

5: Convert Q to conjunction of UCQ: Q∧= Q1 ∧
· · · ∧ Qm

6: Step 2 Decomposable Conjunction

7: if m > 1 and Q∧ = Q1 ∧ Q2 where Q1 ⊥ Q2

8: return L(Q1) · L(Q2)

9: Step 3 Inclusion-Exclusion

10: if m > 1 but Q∧ has no independent Qi

11: (Do Cancellations First)

12: return
∑

s⊆[m](−1)|s|+1 · L
(
∨

i∈s Qi

)

13: Step 4 Decomposable Disjunction

14: if Q = Q1 ∨ Q2 where Q1 ⊥ Q2

15: return 1− (1− L(Q1)) · (1− L(Q2))

16: Step 5 Decomposable Existential Quantifier

17: if Q has a separator variable x
18: return 1−

∏

c∈T (1− L(Q[x/c]))

19: Step 6 Fail (the query is #P-hard)

be written as the conjunction of (R(x))∨(S(x, y)∧T (x))
and (S(y, z)) ∨ (S(x, y) ∧ T (x)). When multiple con-

juncts are found this way, there are two options. If they are

symbolically independent (share no symbols, denoted ⊥),

then Step 2 applies independence and recurses. Otherwise,

Step 3 recurses using the inclusion-exclusion principle,

performing cancellations first to maintain efficiency [13].

If there is only a single UCQ after rewriting, Step 4 tries

to split it into independent parts, applying independence

and recursing if anything is found.

Next, Step 5 searches for a separator variable, one which

appears in every atom in Q. If x is a separator variable

for Q, and a, b are different constants in the domain of

x, this means that Q[x/a] and Q[x/b] are independent.

This independence is again recursively exploited. Finally,

if Step 6 is reached, then the algorithm has failed and

the query provably cannot be computed efficiently [13],

under standard complexity assumptions.

3 RELATIONAL EMBEDDINGS AS

PROBABILISTIC DATABASES

We now tackle the primary goal of this work: to use proba-

bilistic databases as the formalism for doing probabilistic

reasoning with relational embeddings. We begin with

R(x, y) Score

A B -0.6

B C 0.2

A C 2.3

=⇒

R(x, y) Pr

A B 0.35

B C 0.55

A C 0.91

Figure 3: An example of mapping a relational embedding

to a probabilistic database using the sigmoid function.

some background.

3.1 RELATIONAL EMBEDDING MODELS

Suppose we have a knowledge base K consisting of triples

(hi, Ri, ti), denoting a head entity, relation, and tail en-

tity (equivalently Ri(hi, ti) in probabilistic database no-

tation). Relational embedding models aim to learn contin-

uous representations for both entities and relations, which

together can be used to predict the presence of a triple.

More formally:

Definition 3. Suppose we have a knowledge base K con-

sisting of triples (hi, Ri, ti), with entities E and relations

R. Then a relational embedding model consists of

• Real vectors vR, ve for all relations R ∈ R and

entities e ∈ E

• A scoring function f(vh, vR, vt) → R which in-

duces a ranking over triples

In general, these vectors may need to be reshaped into

matrices or tensors before the scoring function can be

applied. Table 1 gives some examples of models with

the form their vector representations take, as well as their

scoring functions.

3.2 PROBABILISTIC INTERPRETATIONS OF

RELATIONAL EMBEDDINGS

Given a relational embedding model from Definition 3, if

we want to give it a clear probabilistic semantics using our

knowledge of probabilistic databases from Section 2, we

need to find a way to interpret the model as a probability

distribution.

The simplest approach is to choose some mapping func-

tion g : R → [0, 1] which converts all the scores produced

by the model’s scoring function into probabilities. This

provides us marginal probabilities, but no obvious joint

distribution. Again, we can make the simplest choice and

interpret these probabilities as being independent. That

is, we can construct a probabilistic database where the

probabilities are determined using our mapping function.

Figure 3 gives an example of such a conversion, using the

sigmoid function as the mapping.



Table 1: Example relational embedding scoring functions for d dimensions

Method Entity Embedding Relation Embedding Triple Score

TransE [5] vh, vt ∈ R
d vR ∈ R

d ||vh + vR − vt||
DistMult [41] vh, vt ∈ R

d vR ∈ R
d 〈vh, vR, vt〉

Rescal [30] vh, vt ∈ R
d vR ∈ R

d×d vTh vRvt
ComplEx [37] vh, vt ∈ C

d vR ∈ C
d Re(〈vh, vR, v̄t〉)

After doing this conversion, we can directly use Algo-

rithm 1 to efficiently evaluate any safe query. This is

a step in the right direction, but there are still two big

issues here: firstly, as a simplifying assumption this triple-

independence presents potential issues as discussed in

Meilicke et al. [28]. For example, suppose we have a

relational model containing Works-In(Alice, London) and

Lives-In(Alice, London): clearly these triples should not

be independent. The second issue, which is perhaps even

more critical for our purposes, is that even this assumption

is not sufficient for all queries to be tractable:

Theorem 2. Suppose we have a knowledge base K with

entities E and relations R. Then, suppose we have a

mapping function g and a relational embedding model

represented by a scoring function f which is fully expres-

sive. That is, for any configuration of marginal prob-

abilities P (R(h, t)) over all possible triples, there is

some assignment of entity and relation vectors such that

∀R, h, t. g(f(vh, vR, vt)) = P (R(h, t)).

Then for any unsafe query Q, evaluating P (Q) is a #P -

hard problem.

4 TRACTOR

The main takeaway from Section 3 is that although useful,

interpreting relational embedding models as providing

marginals for probabilistic databases still has major chal-

lenges. While we do now have a probabilistic semantics

for our relational embedding model, the fact that we used

the model as a black box means that we wind up treat-

ing all triples as independent.The resulting expressiveness

and tractability limitations motivate the search for a model

which will not be treated as a black box by our probabilis-

tic database semantics. Rather than simply having an

arbitrary statistical model which fills in our probabilistic

database, we would like to actually exploit properties of

this statistical model. To put it another way: a fundamen-

tal underpinning of relational embedding models such as

DistMult [41] or TransE [5] is that they make simplify-

ing assumptions about how entity and relation vectors

relate to link prediction. In Section 3, our probabilistic

interpretations of these models had no way of knowing

about these simplifying assumptions: now we are going

to express them in the language of PDBs.

4.1 FACTORIZING IN PROBABILISTIC

DATABASES

Relational embedding models such as DistMult [41] and

ComplEx [37], or indeed any model derived from the

canonical Polyadic decomposition [22] are built on an

assumption about the way in which the tensor representing

all triples factorizes. A similar idea has been used in the

context of probabilistic first-order logic, where Boolean

matrices representing binary relations are rewritten in

terms of unary relations to make inference tractable [38].

We will now apply this technique of rewriting binary

relations into unary relations as the basis for our relational

embedding model.

Suppose we have a binary relation R(x, y), and our model

defines a single random variable E(x) for each entity

x ∈ E as well as a random variable T (R) for relation R.

Then we assume that the relation R decomposes in the

following way:

∀x, y.R(x, y) ⇐⇒ E(x) ∧ T (R) ∧ E(y) (3)

We are assuming that all of the model’s newly defined

variables in E and T are independent random variables,

so Equation 3 implies that

P (R(x, y)) = P (E(x)) · P (T (R)) · P (E(y))

Figure 4 gives an example of probabilities for E and T ,

with corresponding probabilities for R subject to Equa-

tion 3. For example, we compute P (R(A,B)) by:

P (R(A,B)) = P (E(A)) · P (T (R)) · P (E(B))

= 0.04

To incorporate a relation S, we would define an additional

T (S) – no new random variable per entity is needed.

There are a few immediate takeaways from the rewrite

presented in Equation 3. Firstly, as a result of sharing de-

pendencies in the model, we no longer have that all triples

are independent of each other. For example R(A,B) and

S(A,C) are not independent as they share a dependency

on the random variable E(A). Secondly, although these

tuples are no longer independent (which would normally

make query evaluation harder), their connection via new



E(x) Pr

A 0.2

B 0.4

C 0.8

T Pr

R 0.5
=⇒

R(x, y) Pr

A B 0.04

B C 0.16

A C 0.08

Figure 4: Example model tables E, TR and a few corre-

sponding predictions for R

latent variables E, T actually helps us. By assuming the

latent E, T -tuples to be tuple independent, instead of the

non-latent R,S-tuples, we are no longer subject to the

querying limitations described by Theorem 2. In fact, any

UCQ can now be computed efficiently over the relations

of interest. This will be proven in Section 4.4, but intu-

itively binary relations must be involved for Algorithm 1

to get stuck, and our rewrite allows us to avoid this.

Of course, the major drawback is that Equation 3 de-

scribes an incredibly simple and inexpressive embedding

model – we can only associate a single probability with

each entity and relation! We address this next.

4.2 MIXTURES & TRACTOR

In a situation such as ours where we have a simple model

which is efficient for some task but not expressive, the

standard machine learning approach is to employ a mix-

ture model. For example, while tree-shaped graphical

models [10] provide efficient learning and inference, they

are limited in their expressive capability: so a commonly

used alternative is a mixture of such models [27]. Simi-

larly, while Gaussians are limited in their expressiveness,

mixture of Gaussian models [36] have found widespread

use throughout machine learning. These mixtures can

typically approximate any distribution given enough com-

ponents.

In our case, we will take the model described in Equa-

tion 3 as our building block, and use it to create TRAC-

TOR.

Definition 4. TRACTOR with d dimensions is a mixture

of d models each constructed from Equation 3. That is,

it has tables Ti, Ei analagous to T and E above for each

element i of the mixture. Then, for each element i we

have

∀x, y.Ri(x, y) ⇐⇒ Ei(x) ∧ Ti(R) ∧ Ei(y)

The probability of any query is then given by TRACTOR

as the average of the probabilities of the d mixture com-

ponents.

Figure 5 gives an example 2-dimensional TRACTOR

model, including probabilities for E1, E2, T1, T2, and cor-

responding probabilities for materialized relation R. For

example, we compute P (R(A,B)) by:

P (R(A,B)) =
1

2
(P (E1(A)) · P (T1(R)) · P (E1(B))

+ P (E2(A)) · P (T2(R)) · P (E2(B)))

= 0.17

We see that the components of the mixture form what

we typically think of as dimensions of the vectors of

embeddings. For example, in Figure 5 the embedding of

entity A is (E1(A), E2(A)) = (0.2, 0.6).

4.3 EQUIVALENCE TO DISTMULT

The first question we need to ask about TRACTOR is how

effective it is for link prediction.

Theorem 3. Suppose we have entity embeddings vh, vr ∈
R

d and relation embedding vR ∈ R
d. Then TRACTOR

and DistMult will assign identical scores (within a con-

stant factor) to the triple (h,R, t) (equivalently R(h, t)).

We already know from Yang et al. [41] that DistMult is

effective for link prediction, so TRACTOR must also be.

4.3.1 Positive and Negative Weights

While we have seen that the computation used for link pre-

diction in TRACTOR is identical to that of DistMult, there

remains a key difference: TRACTOR has a probabilistic

semantics, and thus all parameters must be probabilities.

One option here is to indeed force all parameters to be

positive, and live with any performance loss incurred. An-

other option is allowing for negative probabilities in E, T
meaning that we can achieve exactly the same link predic-

tion results as DistMult, whose predictive power is well

documented [41]. It has been previously shown that prob-

ability theory can be consistently extended to negative

probabilities [2], and their usefulness has also been docu-

mented in the context of probabilistic databases [23, 40].

Furthermore, by adding a simple disjunctive bias term,

we can ensure that all fact predictions are indeed positive

probabilities. In Section 5 we will explore both options.

4.4 QUERY EVALUATION

Finally, we explore query evaluation for the TRACTOR

model. Suppose we have some arbitrary UCQ Q over

binary and unary relations, and we would like to compute

P (Q) where all binary relations are given by a TRACTOR

model. First, we substitute each binary relation according

to Equation 3 using TRACTOR tables E and T . What

remains is a query Q′ which contains only unary relations.

Theorem 4. Suppose that Q′ is a UCQ consisting only

of unary relations. Then Q′ is safe.



E1(x) Pr

A 0.2

B 0.4

C 0.8

T1 Pr

R 0.5
+

E2(x) Pr

A 0.6

B 0.5

C 0.2

T2 Pr

R 1
=⇒

R(x, y) Pr

A B 0.17

B C 0.13

A C 0.10

Figure 5: Example TRACTOR model tables E1, E2, T1, T2 and a few corresponding predictions for R

Proof. We prove this by showing that Algorithm 1 never

fails on Q′. Consider if Q′ cannot be rewritten as a con-

junction of UCQs. Then each CQ must contain only a

single quantified variable, or else that CQ would contain

2 separate connected components (due to all relations

unary). Thus, if we ever reach Step 5 of Algorithm 1,

each CQ must have a separator. So Q′ is safe.

5 EMPIRICAL EVALUATION

We will now empirically investigate the effectiveness of

TRACTOR as a relational embedding model. As dis-

cussed in Section 4.3, for the purposes of link prediction

TRACTOR actually turns out to be equivalent to DistMult.

While it does have certain limitations regarding asymmet-

ric relations, the overall effectiveness of DistMult for link

prediction has been well documented [41], so we will not

be evaluating TRACTOR on link prediction. Instead, we

will focus on evaluating TRACTOR’s performance when

computing more advanced queries.1 While training the

models we evaluated, we confirmed that training TRAC-

TOR and DistMult produced the same embeddings and

link prediction performance.

5.1 QUERIES & COMPARISON TARGET

As our comparison for evaluation, we will use the graph

query embeddings (GQE) [20] framework and evaluation

scheme. Fundamentally, GQE differs from TRACTOR in

its approach to query prediction. Where TRACTOR is a

distribution representing beliefs about the world which

can then be queried to produce predictions, GQE treats

queries as their own separate prediction task and defines

vector operations to specifically be used for conjuctive

query prediction. The consequence of this is that where

TRACTOR has a single correct way to answer any query

(the answer induced by the probability distribution), a

method in the style of GQE needs to find a new set of

linear algebra tools for each type of query.

In particular, GQE uses geometric transformations as

representations for conjunction and existential quantifiers,

allowing it to do query prediction via repeated application

1Code is available at https://github.com/

ucla-starai/pdbmeetskge

Table 2: Example CQs and UCQs

Q1(t) = R(A, t)

Q2(t) = ∃x.R(A, x)

Q3(t) = ∃x.R(A, x) ∧ S(x, t)

Q4(t) = ∃x, y.R(A, x) ∧ S(x, y) ∧ T (y, t)

Q5(t) = R(A, t) ∧ S(B, t)

Q6(t) = R(A, t) ∧ S(B, t) ∧ T (C, t)

Q7(t) = ∃x.R(A, x) ∧ S(x, t)

∨∃y.R(A, y) ∧ T (y, t)

Q8(t) = ∃x.R(A, x) ∧ S(x, t) ∧ T (B, t)

Q9(t) = ∃x.R(A, x) ∧ S(B, x) ∧ T (x, t)

Q10(t) = ∃x1, y1.R(A, x1) ∧ S(x1, y1)

∨∃x2, y2.S(x2, y2) ∧ T (y2, t)

Q11(t) = ∃x, y, z.R(A, x) ∧ S(x, y) ∧ T (y, z)

of these geometric transformations. Hamilton et al. [20]

detail further exactly which queries are supported, but put

simply it is any conjunctive query that can be represented

as a directed acyclic graph with a single sink.

To evaluate these models, the first question is which

queries should be tested. We describe a query template as

follows: R,S, T are placeholder relations, A,B,C place-

holder constants, x, y, z quantified variables, and t is the

parameterized variable. That is, the goal of the query is

to find the entity t which best satisfies the query (in our

framework gives the highest probability). Table 5.1 gives

a series of example template CQs and UCQs. In Figure 6,

we categorize each of these query templates based on

their hardness under standard probabilistic database se-

mantics, as well as their compatibility with GQE. Notice

that TRACTOR can compute all queries in Figure 6 in time

linear in the domain size, including queries Q4,Q11,Q10

which would be #P -hard in a standard tuple-independent

probabilistic database. For the sake of comparison, we

perform our empirical evaluation using the queries that

are also supported by GQE.

5.2 DATASET

For our dataset, we use the same choice in relational

data as Hamilton et al. [20]. In that work, two datsets

were evaluated on, which were termed bio and reddit





between TRACTOR and TRACTOR+, where the only dif-

ference is whether the parameters are constrained to be

positive. The difference in performance here essentially

comes down to the difference in performance on link pre-

diction: not being allowed to use negative values makes

the model both less expressive and more difficult to train,

leading to worse performance on link prediction. We did

not find that increasing the number of dimensions used

in the representation to make up for not having negative

values helped significantly. Finding ways to improve link

prediction subject to this constraint seems to be valuable

for improving performance on query prediction.

6 DISCUSSION & RELATED WORK

Querying Relational Embeddings Previous work

studying queries beyond link prediction in relational em-

bedding models proposed to replace logical operators

with geometric transformations [20], and learning new

relations representing joins [26]. Our work differs from

these in that we formalize an underlying probabilistic

framework which defines algorithms for doing querying,

rather than treating querying as a new learning task.

Symmetric Relations A limitation of the TRACTOR

model which also appears in models like DistMult [41]

and TransE [5] is that since head and tail entities are

treated the same way, they can only represent symmetric

relations. This is, of course, problematic as many rela-

tions we encounter in the wild are not. Solutions to this in-

clude assigning complex numbers for embeddings with an

asymmetric scoring function [37], and keeping separate

head and tail representations but using inverse relations

to train them jointly [24]. Borrowing these techniques

presents a straightforward way to extend TRACTOR to

represent asymmetric relations.

Probabilistic Training One potential disconnect in

TRACTOR is that while it is a probabilistic model, it

is not trained in a probabilistic way. That is, it is trained

in the standard fashion for relational embedding models

using negative sampling and a max-margin loss. Other

training methods for these models such as cross-entropy

losses exist and can improve performance [33] while be-

ing more probabilistic in nature. In a similar vein, Tabacof

and Costabello [35] empirically calibrates probabilities to

be meaingful with respect to the data. An interesting open

question is if TRACTOR can be trained directly using a

likelihood derived from its PDB semantics.

Incomplete Knowledge Bases One of the main goals

of this work is to overcome the common issue of incom-

plete knowledge. That is, what do we do when no proba-

bility at all is known for some fact. In this work, we di-

rectly incorporate machine learning models to overcome

this. Another approach to this problem is to suppose a

range of possibilities for our unknown probabilities, and

reason over those. This is implemented via open-world

probabilistic databases [8], with extensions to incorpo-

rate background information in the form of ontological

knowledge [7] and summary statistics [17].

Increasing Model Complexity TRACTOR is a mixture

of very simple models. While this makes for highly effi-

cient querying, accuracy could potentially be improved

by rolling more of the complexity into each individual

model at the PDB level. The natural approach to this is to

follow Van den Broeck and Darwiche [38] and replace our

simple unary conjunction with a disjunction of conjunc-

tions. This raises interesting theoretical and algorithmic

questions with potential for improving query prediction.

Further Queries Finally, there are further question one

can ask of a PDB beyond the probability of a query. For

example, Gribkoff et al. [19] poses the question of which

world (i.e. configuration of tuple truths) is most likely

given a PDB and some constraints, while Ceylan et al.

[9] studies the question of which explanations are most

probable for a certain PDB query being true. Extending

these problems to the realm of relational embeddings

poses many interesting questions.
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