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Abstract

Localization and reconstruction of underground targets,
the problem of estimating the position and geometry of the
objects from Ground Penetration Radar (GPR), still lies at
the core of non-destructive testing (NDT). In this paper, we
present MigrationNet, a learning-based approach to detect
and visualize subsurface objects. Compared with the exist-
ing learning-based method of GPR, our proposed approach
could not only detect the hyperbola feature in the raw B-
scan image but also interpret hyperbola features into the
cross-section image of subsurface pipes. Furthermore, to
compare the proposed method with the conventional back-
projection methods for GPR data interpretation, a synthetic
GPR dataset that mimics the real NDT environment is also
introduced in this work. The study indicates the effective-
ness of our method, it uses less GPR data for underground
pipes reconstruction, produces better GPR imaging results
with less computation, and shows the robustness to noise.

1. Introduction

Ground Penetration Radar (GPR) is a geophysical re-
mote sensing method that has been widely used as a non-
destructive testing (NDT) technique, thanks to its high res-
olution and fast detection capability. As a context of smart
cities, GPR serves as a NDT tool for infrastructure applica-
tions [6,29], it evaluates the subsurface location and condi-
tion such as concrete rebars, buried utilities and other pipe-
shaped objects. [3,4,8,21]. In the meanwhile, GPR could
also reveal the relative size of the subsurface objects since a
larger pipe-shaped object would reflect as a wider hyperbola
feature in the B-scan image.

In the current practice of GPR inspection, the surveys
would be performed in pre-defined straight line routes and
each survey would generate a B-scan image. However, due
to the difficulties of GPR signals analysis, there are two
major challenges in underground objects reveal when us-
ing GPR. The first one is that GPR B-scan data still re-
lies heavily on human efforts and experienced experts to
identify because of the abstract hyperbolic feature. How to

take advantages of the GPR raw data is significant in NDT.
Secondly, the conventional migration methods, which aim
at GPR data interpretation, are either theoretically compli-
cated or computationally costly. An approach to design in-
tuitive and simple migration method to interpret raw GPR
data is crucial as well.

(a) Ground-Truth of a slab with 5 rebars of different size and location

(c) Migration result of conventional back-projection method

(d) Migration result of our DNN-based migration method
Figure 1. GPR imaging: a) ground truth of a slab, b) GPR B-
scan image, ¢) migration result using conventional back projection
method, d) migration result of our proposed DNN-based migration
method.

Our work is inspired by the above challenges, we pro-
pose a learning-based method which mimics the migration
process to reconstruct the focused subsurface targets from
B-scan image in both geometry and size metric. As illus-
trated in Fig.1, the conventional back projection method
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represents the migration result as focused target point in the
energy map cannot reveal the size of the object, while our
proposed DNN-based migration method can reveal both the
location and size of the underground target in a binary im-
age.

The paper is organized as follows. Section 2 introduces
the related works in GPR researches while Section 3 in-
troduces basic concepts on GPR data. In Section 4 our
proposed new DNN-based migration method is discussed
in details. Section 5 presents some experimental results
and Section 6 concludes the paper and discusses the future
work.

2. Related Works

Conventional Migration Methods Various migration
methods are used to transform the unfocused raw GPR B-
scan data to a focused matter which reveals the position of
the objects [24]. In the 1970s, back-propagation [18] based
methods such as the Kirchhoff method [28], the phase-shift
method [12] and Fourier finite-difference method [7] are in-
troduced to achieve migration. In [15,16], the authors intro-
duced 3D migration methods by obtaining the spatial sam-
pling of GPR measurements that is significant for the com-
prehension of GPR data. In this paper, the back-projection
algorithm [9] is implemented for migration as a baseline
method because it is widely used in industry, which will be
discussed in detail in Section 3.2.

Machine Learning in Migration In addition to the
many studies that have been carried out on the conventional
GPR migration methods, machine learning based methods
are also widely researched for automatic detection of GPR
data. In [1], a Hough transform based approach on GPR
signals is first proposed for underground targets detection.
SVM applications in GPR studies are also widely imple-
mented for the analysis of GPR B-scan images, [10] pro-
posed a SVM-based method in order to classify materials
of buried structures. In the meantime, [25] also proposed a
SVM method for GPR images analysis which achieved an
improved classification task while maintaining a low com-
putational complexity.

Deep Learning in Migration Compared with the tra-
ditional machine learning based methods, the advantage of
DNN-based method gives a better performance in terms of
representing GPR images with multiple levels of abstrac-
tion. By implementing Faster R-CNN, [5,19,26,33] extract
useful structures from 2D GPR raw images and use them to
detect subsurface objects. [2] proposed two new CNNs to
classify GPR B-scan features such as depth and dielectric
information. In [20,32], DNN-based methods are also used
as a solution for hyperbolic feature and real target detection.
Furthermore, in order to obtain the sparse representations of
GPR data, [13] proposed a dictionary learning method for
better feature extraction and classification.

However, the above methods are constrained only to de-
tection and classification on GPR B-scan image rather than
interpretation of the intrinsic of GPR B-scan data. To the
best of the authors knowledge, such DNN-based GPR data
interpretation and migration work was rarely reported.

3. GPR Data Preliminary

In this section, we will introduce the principle of GPR
scan data and demonstrate basis data processing of GPR.

3.1. GPR Scans

GPR antenna transmits a pulse of polarized high-
frequency radar wave and waits for the signal to echo back —
the result is called an A-scan. The A-scan measures the am-
plitudes of the electromagnetic (EM) energy and the trav-
eled time of the reflected signal. As depicted in Fig.2, when
the GPR moves on the ground over a rebar along a trajec-
tory, it produces a series of A-scans at different positions
and this ensemble of A-scans forms a B-scan, which is usu-
ally displayed in gray scale image as a hyperbola.
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(a) Each A-scan measures ampli- (b) B-scan displayed in gray scale
tude of the refelcted EM wave image as a hyperbola
Figure 2. An illustration of GPR working principle, (a) the star
represents a GPR antenna move along straight line over a rebar
that take A-scan measurement at each position; (b) the ensemble
of A-scan forms a B-scan displayed as a hyperbola.

EM wave attenuates as it travels in medium and reflects
when it encounters a change in material. EM wave propa-
gates fast in materials with low dielectric, and slow down in
materials with high permittivity. Since each different ma-
terial has different electrical conduction properties, the am-
plitude and strength of the reflection will be influenced too.

3.2. Back Projection

As one of the most representative GPR imaging algo-
rithms, back projection (BP) is a practical method widely
used in industry. As we discussed in the previous section,
the essence of A-scan represents amplitude of EM energy,
while back projection is a process of aggregation which
would convert the different amplitude of energy into a semi-
sphere format at different depth. As illustrated in Fig.4, the
brighter semi-sphere indicates the higher amplitude part in
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(a) Slab design with 5 PECs buried

A-scan, in the meanwhile, the radius of each semi-sphere
in BP image indicates the depth of the A-scan pulse. By
implementing the BP algorithm in B-scan data, the back-
projected data could be represented in Equ.1 [22].

VAL € B, (x—a)?+ (y—b)* = (a;x1)*, y<0 (1)

where a,b represents the specific position of each A-scan
measurement in a slab. A’; ={a/t=1,...,ny} represents the
g-th A-scan measurement in k-th B-scan data, while # and a;
indicate the traveling time and amplitude of A-scan signal
respectively, then n, means the total samples in a A-scan
measurements. Meanwhile, we also have By, = {A§|q =
1,...,n;}, which represents the k-th B-scan consisting of ny
A-scans.

BP Image
converted from A-Scan

‘ A-Scan
Raw Data

\\/k

Figure 4. The implementation of BP algorithm which would con-
vert the A-scan raw data into several semi-spheres.

3.3. GPR Migration

GPR migration aims at transferring the unfocused raw
B-scan data to a focused target, a normal migration process
is usually composed of the following steps:

e Take raw B-scan data as input

e Time-zero correction (adjust the response so that the
time-zero corresponds to the reflection from the sur-
face of the ground)

e Background removal (remove the direct coupling area
between GPR transmitter and the ground surface)

Target Interval
[12:5:37] cm

Target Interval
[12:5:37] cm

Target Interval
[12:5:37] cm

25 cm|

(b) Slab design with 4 PECs buried
Figure 3. Slab design with different number of PECs and different PEC intervals.

e Back projection processing

e Hilbert transformation (filter out noise for more fo-
cused single spot of target location)

4. DNN-Based Migration

In this section, we firstly propose a synthetic GPR
dataset for non-destructive testing and introduce the details
of this dataset. Then, we demonstrate how we prepare the
data for experiment study. At last, the architecture of our
proposed DNN-based migration process is illustrated in de-
tails.

4.1. Dataset Setup

gprMax Data Generation

Since it is hard to get the ground truth of underground
objects from real environment in non-destructive testing, by
taking advantages of gprMax [31], we build a synthetic test-
ing environment which simulates the real NDT condition.

For those objects need to be evaluated in real under-
ground environment, most of them are pipe-shaped with a
round cross section, for example, rebars, utilities and PVC
pipes. Our simulated environment mimics this property and
involves pipe-shaped objects with different location as well
as the size. Notice that all of the simulated objects have a
round cross section. Furthermore, in order to match the data
collection in commercial GPR, our synthetic GPR B-scan
dataset are finally generated along the line route.

Specifically, we build 12 different synthetic concrete
slabs, 6 of the slabs have 4 while the rest have 5 perfectly-
conducting (PEC) circular-section reinforcing bars inserted,
sharing different size and placed at different depth with re-
spect to the surface of slab. These slabs have the same
dimension in height and width, which is 0.25m and 1m
respectively, and different dimensions in length, which
are 0.7m,0.9m,1.1m,1.3m,1.5m,1.7m in each slab respec-
tively. Notice the length of the slab decides the number of
A-scan measurements per B-scan, this property makes our
B-scan dataset have a better versatility which meets the real
GPR data collection condition.

Similar to [23], we use Gaussian norm wave as the pulse
emitted from GPR in all our simulations, which have a cen-
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tral frequency f. = 2.4GHz. The distance between trans-
mitter and receiver of the antenna is set to Scm, while time
window is 5ns. The antenna in all simulations is moving
along the line orthogonal to the direction we set up the
PECs. To match with the commercial GPR data collection
frequency, a time sampling measurement is conducted on
every consecutive traces with 2mm. Note that the relative
dielectric in all our slabs is set to 7, which matches with
the concrete dielectric in real environment. The front view
figure of our synthetic slabs is shown in Fig.3.

After the simulations, it generates 628 B-scan data thus
our proposed dataset includes these B-scan data which
could convert into images, as well as their cross section im-
ages as the ground truth.

Sparse Back Projection Aggregation

There are some limitations in the conventional migration
process. First of all, it needs to process all A-scan data into
back-projected data (which are usually more than thousand)
from each GPR B-scan. Moreover, in order to indicate the
potential target area, those back-projected data should be
overlapped together one by one, which makes the compu-
tation too heavier and brings a lot of noise in the output
migration image.

Nevertheless, in MigrationNet, we propose a multiple
spatial resolution input where the resolution denotes the
number of the A-scan measurements to generate back-
projected data. Specifically, since each B-scan has different
number of A-scan measurements in our dataset, for any B-
scan data whose A-scan measurements are less than 1024,
256, 128 and 64 A-scan measurements are selected to be
back-projected and stacked in each independent channel as
the input, to distinguish the different spatial resolution. Oth-
erwise, for those B-scan data have more than 1024 A-scan
signals, we take a sliding-window crop operation on B-scan
raw data and separate it into several parts, this operation
is equivalent of the Equ.2. Note that the length of sliding-
window is fixed to 1024 while the width is as same as the
raw B-scan data, which represents the sampling number of
an A-scan measurement.

m=|N/1024] )

where N is the number of A-scan measurements in a B-scan
and m is the number of cropping B-scans have 1024 A-scans
after the trim operation.

By this way, several M x N % C 3D stack input is created,
where M demonstrates the number of A-scans in the related
B-scan, N indicates the number of the sample data in an A-
scan measurement and C is the number of BP data in each
stack group.

The reason we choose to sparsely aggregate the back-
projected data is that our encoder-decoder based Migra-
tionNet, as will introduce in next section, has a good ability
to learn the spatial relationship of the stack input data and

could transfer/migrate it into a focused image. Furthermore,
this input data with a sparse resolution in spatial domain can
not only decrease the computational cost, but also provide
a richer input information with multiple resolution in spa-
tial domain. More details will be shown in Section 4.2 and
Section 5.1.

4.2. MigrationNet

As shown in Fig.6, our DNN-based migration process
contains two steps. First is noise removal process which
would filter the raw B-scan data through a segmentation
model in order to only keep the hyperbola feature, and stack
the filtered 2D data into the 3D form. Then our proposed
encoder-decoder network would take the input 3D stack
data and output the cross section image corresponding to
the raw B-scan image, without implementing time-zero cor-
rection, background removal and Hilert transformation op-
erations we demonstrated in Section 3.3.

Noise Removal As introduced in Section 3.1, GPR sig-
nal would respond to materials which have different dielec-
tric property so that it is important to us to remove those
weak radar responses which caused by noise. Inspired by
the related works [11,27], the details of noise removal are
as depicted in Fig.5: 1) by taking advantages of a segmen-
tation model, UNet, we get hyperbolic mask from the input
raw B-scan images; 2) we then filter the raw B-scan data
with mask B-scan features, the filtered data only keep the
strongest response; 3) finally, as demonstrated in Section
4.1, we stack each filtered A-scan signal into back-projected
data.

Mask B-Scan

Raw B-Scan

‘\"Txfﬁ—"_
A AYA A A Segmentation Model ‘WAA

Filtered B-Scan l

stack into i\ o =N

AAARA

Figure 5. Noise removal process on GPR raw B-scan image. Raw
B-scan data is firstly processed by an segmentation model to show
the mask area, then the B-scan data get filtered by only keeping
the data inside the mask region. At last, the back-projected data is
generated from the filtered B-scan and stacked together.

Multiple Spatial Resolution Encoder The encoder
takes charge of interpreting the intrinsic information in the
input stacked back-projected data as a migration image. Our
proposed encoder is an extended version of UNet, it inher-
its the context capture ability by a spatial down-sampling
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Figure 6. Schematic of the proposed DNN-based migration framework. The input is the stacked BP data with 256 channels, and further
down-sampling into 128 and 64 channels in spatial domain. Then, the global features are extracted through the multiple spatial resolution
encoder and further concatenated into 1536 channels. The encoder consists of several de-convolutional groups, the global feature is
combined with local features from MSRE through skip-connection operation indicated by @ while @ to @ present the last layer feature in
each de-convolutional group, and finally decoded into a binary migration image.

group, which is a combination of two convolution layers
and one max-pooling layer.

We first introduce our feature extractor, named as Multi-
ple Spatial Resolution Encoder (MSRE) while the common
feature extractor in most related works [17,27,35] take no
advantage of resolution information of the input data. As
depicts in Fig.6, our input BP data is stacked with different
channels to indicate multiple resolution in spatial domain.
Thus, our method could make good use of sparse stack BP
data, which would reveal the rich local structure informa-
tion in spatial domain.

Specifically, the multiple input to our encoder is a
stacked BP data with 256 channels, 128 channels and 64
channels respectively. In addition, for those B-scan contains
more than 1024 A-scans, we crop it and back-projected the
A-scans into the stack format as introduced in Section 4.1.
Notice those BP data to create the input are selected ran-
domly from B-scan signal, in order to have a better percep-
tion to the local feature. These multiple spatial resolution
input will be mapped by three independent feature extrac-
tor, MSRE, to generate the latent feature.

In MSRE, according to the input data with differ-
ent channels and spatial resolution, we follow the down-
sampling group to encode them into a feature map f with
the same size, where size = [M x N x 512]. In details, to
get the same size of output feature, the 256 channels dense
input data follows a down-sampling group where the ker-
nel size of max-pooling layer is 8. In the meanwhile, for

128 channels input, the kernel size of the first max-pooling
layer is 4 while the rest of pooling layers’ kernel size are all
equal to 2. As 64 channels sparse input, all the kernel size
of max-pooling layers in the down-sampling groups are 2
and it allows the final output feature map f has the same
size in each input.

At last, all three feature maps are then concatenated to-
gether as F, where size = [M x N x 1536]. This design
brings the combined latent feature ability to contain better
spatial information of the input BP data.

Decoder The decoder takes concatenated global feature
map F as input and aims to predict a [M x N x 1] migra-
tion binary image, with the white indicates the pipe and the
black indicates the back ground.

In details, our decoder consists of 5 up-sampling group,
and each group contains two convolutional layers and one
deconvolutional layer. Besides, we also take the advantage
of skip connections. As illustrated in Fig.6, we concate-
nate the encoder’s layer with decoder’s layers of each cor-
responding group. As for those encoder layers which have
multiple resolutions, we first take an average on those fea-
ture maps and then concatenate with encoder’s layer.

4.3. Loss Design

To constrain the shape and size of the pipe, we develop a
joint loss in two-level hierarchy — pixel and structure-level,
which is able to capture fine structures with clear bound-
aries. Our hybrid loss function is composed by following
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two terms:

Firstly, since most of the non-destructive testing objects
have a round shape cross-section (i.e., rebars, utilities, PVC
pipes, etc.) as claimed in Section 4.1, it is crucial for us to
compare structure similarity between predicted image and
the ground truth in order to maintain the proper size and
shape. Thus, inspired by [14, 30, 34], we demonstrate the
structure comparison loss between predicted image X and
ground truth Y as follows:

_ o tC
' 60,4C

3)

note that oy and o, are the standard deviation as an esti-
mate of the image contrast, C is a constant value while oy
represents the covariance which is:

1 N

T2 (6= 1) (i — ) @)

Ov=N_1
i=1

where (1, and u, are mean intensity of the predicted image
and ground truth respectively, N is the number of pixels in
the image.

The second loss expression is a common cross entropy
loss as proposed in [27]

Ly=Y w(x)log(p(xi))) )

xi €M

where x; indicates an element in given input while M, p(x; ;)
is the element x; probabilistic prediction over class j, and w’
is the weight of each classes.

Finally, our loss function could be illustrated as follow-

ing:

L= ML+ AL, (©6)

where A; and A; are the weight of cross entropy loss and
structure loss which satisfy the relationas A; + A; = 1.

5. EXPERIMENTAL STUDY

We evaluate our DNN-based migration method on the
dataset we prepared in Section 4.1. The effectiveness and
robustness of our proposed MigrationNet are discussed in
details. All the tests are conducted on a server with Intel
Core 19-9900K 3.2GHz CPU, GeForce RTX 2080 Ti GPU,
and 32GB RAM.

The weights governing the terms in loss function is set
to A; =0.1and A; = 0.9, we also use the stochastic gradient
descent (SGD), select momentum as 0.9 and weight decay
as le—8. As for the initial learning rate (LR) and input
scale, a comparison under different weight setting is given
in Table.1. There are three sets of different initial param-
eters listed, which might affect the training performance.
In this three comparative parameters, we select the input

Table 1. Initial Parameter Effects To The MigrationNet On training
data, AC: average accuracy, AP: average precision, AR: average
recall, F'1: the F-score

MigrationNet
Init Param Init Param Init Param

Scale | LR | Scale | LR | Scale | LR

0.25 | 5¢-6 | 0.5 5e-6 | 0.25 | 5e-5
AC 95.70 91.44 93.47
AP 93.90 87.79 91.23
AR 91.41 83.54 91.46
F1 92.64 85.61 91.34

scale and initial learning rate at (0.25, 5e — 6), (0.5, 5¢ — 6),
(0.25, 5e — 5) respectively. By evaluating the average accu-
racy, average precision, average recall as well as F1 score
in training dataset, we could conclude that with a learning
rate at 5¢ — 6 and an input scale 0.25, our model could get
a better training performance with a converged final loss at
7.7045¢ — 3.

5.1. Ablation Study

How the number of input channels matters?

One interesting topic is that how does the channel of
stacked BP data, that is, the number of A-scan measure-
ments in the spatial domain, affects the migration perfor-
mance. It is known that the more A-scan data used, the
better migration result (i.e., sharper, brighter and more fo-
cused target point in the energy map achieved, however, it
is also computation costly to process such a large amount of
data.

To access the effectiveness of our multiple spatial reso-
Iution encoder and investigate what would be the best spa-
tial resolution for input data, we conduct this experiment to
verify the encoder performance with different resolution of
input. Given a raw B-scan data, we extract different num-
ber of A-scan measurements to back-project them into stack
BP data format with different spatial resolution, such as the
sparse input with 64 and 128 channels BP data, semi-sparse
input with 128 and 256 channels BP data as well as raw in-
put with all the BP data. In addition, we also provide single
resolution input such as 64 channels input, 128 channels in-
put and 256 channels input respectively. We still take mean
IOU and pixel accuracy as the evaluation index. The results
are summarized in Table.2.

We find that pixel accuracy of our proposed input gains
a boost which is between 4% to 9% compared to other in-
put groups with multiple spatial resolution, it also gets a
better performance compared with single spatial resolution
input, even if the raw input with all A-scan measurements.
Notice that when the input channel number decreases to
64, it will beyond the MigrationNet’s ability to learn spa-
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Figure 7. Migration results comparison between our proposed migration method and conventional migration method.

tial features from such a sparse input. What we expect is
that the local geometrical and semantic feature of back-
projected data could be better extracted through the com-
bined multi-resolution encoder. The result also indicates
that our method has a better understanding of detailed in-
formation.

Table 2. Evaluation Performance Comparison with Different Spa-
tial Resolution Input.

Multi-Res. Input Channels | Mean IOU | Pixel Acc% ‘
256+128+64 89.97 95.70
256+128 83.46 91.31
128+64 66.47 84.29
256 74.95 86.63
128 51.57 76.90
64 - -
raw 88.64 94.25

How the structure similarity loss matters? To verify
the effectiveness of our joint loss, we still make a com-
parison on the Mean IOU and pixel accuracy, with/without
structural similarity loss. As shown in Table.3, our joint loss
has a better performance compared with the single Cross
Entropy loss, which reveal the fact that this hybrid loss de-
sign is able to capture both segmentation information and
fine strictures with clear boundaries.

N

Table 3. Performance Comparison between our joint loss and
Cross Entropy loss

’ | Mean IOU | pixel Acc% ‘

89.97 95.70
87.65 94.65

Joint Loss
Cross Entropy Loss

Table 4. Processing Duration Comparison with Conventional Mi-
gration and MigrationNet

| | Con. Migration | MigrationNet |
| Avg. Time Cost (s) | 3.47 | 00347 |

5.2. Effectiveness of MigrationNet

Migration Methods Comparison

As depicted in Fig.7, our proposed method firstly fil-
tered the potential background noise in raw B-scan data,
Fig.7 (c) shows the filtered image which kept our ROI area
with a highlighted jetmap format. Since our back-projected
data is stacked into different channels in the spatial domain
and thus could not be visualized, in Fig.7 (e), we repre-
sented the back-projected data in the time domain which
only has one channel, the BP images are displayed with a
highlighted jetmap format. At last, our predicted migration
result, which is illustrated in Fig.7 (d), shows the high per-
formance compared with the traditional migration method.



(a) Predicted Migration result with speckle-noised input, noise variance

=0.05

(c) Conventional Migration result with speckle-noised input, noise vari-

ance = 0.05

Figure 8. Noise Robustness Comparison between conventional and proposed migration method. The subsurface ground truth image is

illustrated in Fig.1.

Table 5. Noise Robustness Evaluation Comparison Between Conventional Migration and MigrationNet, root-mean-square error (RMSE)

is taken as the evaluation criteria in the following tests.

(b) Predicted Migration result without speckle-noised input

(d) Conventional Migration result without speckle-noised input

Conventional Migration MigrationNet
Gaussian | Salt & Pepper | Speckle | Gaussian | Salt & Pepper | Speckle
Without Noise 37.3491 3.3500
Variance & Noise density = 0.05 | 54.3589 51.6030 56.1675 | 11.4624 11.2508 10.2708
Variance & Noise density = 0.1 62.2094 61.1385 61.8539 | 17.8093 16.3628 16.0731
Variance & Noise density =0.2 | 75.3084 77.7894 76.1743 | 32.1583 30.9074 29.5939
Variance & Noise density =0.5 | 92.4765 90.1059 92.0384 | 45.3853 42.8437 41.2759

In addition, we also compare the processing time for
each single migration process between the conventional
method and MigrationNet. The result is shown below in Ta-
ble.4, which indicates that MigrationNet also gains a boost
in computation processing duration due to the heavy com-
putation cost in traditional method.

Noise Robustness

We also tested noise robustness in MigrationNet. In
this section, we choose to add Gaussian white noise, salt
& pepper noise and speckle noise respectively to the GPR
raw data and our stacked 128 channels BP data. We per-
formed 12 sets of experiments on conventional migration
method while another 12 sets of experiments on our pro-
posed method. There are 4 different variance and noise
density parameters being compared for each of the noise
type. The parameter settings are 0.05, 0.1, 0.2 and 0.5
respectively in each of the four tests. After adding differ-
ent noises respectively to the input for each test, we com-
pared root-mean-square error (RMSE) for predicted results
between the noised-input and raw data input in proposed
method testing, and migration results between noised data
input and raw data input in conventional method testing.

As illustrated in Table.5 and Fig.8, we could find our
proposed method has a high noise robustness while in con-
ventional method, the noise would significantly influence

N
W

the migration results.

6. CONCLUSIONS

We have presented a new approach to reveal and localize
subsurface pipes or bars in non-destructive testing. To this
end, we firstly design a GPR B-scan dataset which matches
with both the commercial GPP data collection method and
real collecting environment. Then, we process the B-scan
data into a stacked 3D format , which provides a better
spatial perceptive ability. At last, we propose a encoder-
decoder based MigrationNet, which is able to interpret the
input stacked data and output the migration result. Our
method is effective across multiple spatial resolution input
comparison tests. In addition, it shows a good robustness
on noise data which would impact conventional migration
method extremely. At last, our method could acquire a low
cost both in computation and processing time.

7. Acknowledgement and disclaimer

Research was supported in part by NSF Grant No. IIP-
1915721, DOT Grant No. 69A3551747126. J. Xiao has
significant financial interest in InnovBot LLC, a company
involved in R&D and commercialization of the technology.



References

(1]

(2]

(3]

[4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

W Al-Nuaimy, Y Huang, M Nakhkash, MTC Fang, VT
Nguyen, and A Eriksen. Automatic detection of buried util-
ities and solid objects with gpr using neural networks and
pattern recognition. Journal of applied Geophysics, 43(2-
4):157-165, 2000.

Maha Almaimani. Classifying gpr images using convolu-
tional neural networks. 2018.

Andrea Benedetto, Francesco Benedetto, and Fabio Tosti.
Gpr applications for geotechnical stability of transporta-
tion infrastructures. Nondestructive Testing and Evaluation,
27(3):253-262, 2012.

Andrea Benedetto, Guido Manacorda, Alessandro Simi, and
Fabio Tosti. Novel perspectives in bridges inspection using
gpr. Nondestructive Testing and Evaluation, 27(3):239-251,
2012.

Lance E Besaw and Philip J Stimac. Deep convolutional
neural networks for classifying gpr b-scans. In Detection
and Sensing of Mines, Explosive Objects, and Obscured Tar-
gets XX, volume 9454, page 945413. International Society
for Optics and Photonics, 2015.

Norbert Blindow, Sonja K Suckro, Martin Riickamp,
Matthias Braun, Marion Schindler, Birgit Breuer, Helmut
Saurer, Jefferson C Simdes, and Manfred A Lange. Ge-
ometry and thermal regime of the king george island ice
cap, antarctica, from gpr and gps. Annals of Glaciology,
51(55):103-109, 2010.

Jon F Claerbout and Stephen M Doherty. Downward con-
tinuation of moveout-corrected seismograms. Geophysics,
37(5):741-768, 1972.

David J Daniels. Surface-penetrating radar. Electronics &
Communication Engineering Journal, 8(4):165-182, 1996.
Sevket Demirci, Enes Yigit, Ismail H Eskidemir, and Caner
Ozdemir. Ground penetrating radar imaging of water leaks
from buried pipes based on back-projection method. Ndt &
E International, 47:35-42, 2012.

Mohamed S El-Mahallawy and Mazlan Hashim. Material
classification of underground utilities from gpr images us-
ing dct-based svm approach. IEEE Geoscience and Remote
Sensing Letters, 10(6):1542-1546, 2013.

Jinglun Feng, Liang Yang, Haiyan Wang, Yifeng Song, and
Jizhong Xiao. Gpr-based subsurface object detection and re-
construction using random motion and depthnet. In 2020
IEEE International Conference on Robotics and Automation
(ICRA), pages 7035-7041. IEEE, 2020.

Jeno Gazdag. Wave equation migration with the phase-shift
method. Geophysics, 43(7):1342-1351, 1978.

Fabio Giovanneschi, Kumar Vijay Mishra, Maria Antonia
Gonzalez-Huici, Yonina C Eldar, and Joachim HG Ender.
Dictionary learning for adaptive gpr landmine classifica-
tion. IEEE Transactions on Geoscience and Remote Sensing,
57(12):10036-10055, 2019.

Clément Godard, Oisin Mac Aodha, and Gabriel J Bros-
tow. Unsupervised monocular depth estimation with left-
right consistency. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 270-279,
2017.

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

274

Mark Grasmueck. 3-d ground-penetrating radar applied to
fracture imaging in gneiss. Geophysics, 61(4):1050-1064,
1996.

Mark Grasmueck, Ralf Weger, and Heinrich Horstmeyer.
Full-resolution 3d gpr imaging. Geophysics, 70(1):K12—
K19, 2005.

Huimin Huang, Lanfen Lin, Ruofeng Tong, Hongjie Hu,
Qiaowei Zhang, Yutaro Iwamoto, Xianhua Han, Yen-Wei
Chen, and Jian Wu. Unet 3+: A full-scale connected unet for
medical image segmentation. In ICASSP 2020-2020 IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 1055-1059. IEEE, 2020.
Wallace Wai-Lok Lai, Xavier Derobert, and Peter Annan. A
review of ground penetrating radar application in civil en-
gineering: A 30-year journey from locating and testing to
imaging and diagnosis. Ndt & E International, 96:58-78,
2018.

Silvia Lameri, Federico Lombardi, Paolo Bestagini, Maur-
izio Lualdi, and Stefano Tubaro. Landmine detection from
gpr data using convolutional neural networks. In 2017 25th
European Signal Processing Conference (EUSIPCO), pages
508-512. IEEE, 2017.

Wentai Lei, Feifei Hou, Jingchun Xi, Qianying Tan, Mengdi
Xu, Xinyue Jiang, Gengye Liu, and Qingyuan Gu. Auto-
matic hyperbola detection and fitting in gpr b-scan image.
Automation in Construction, 106:102839, 2019.

J Les Davis, James R Rossiter, E Darel, and Cece B Daw-
ley. Quantitative measurement of pavement structures using
radar. In Fifth International Conferention on Ground Pene-
trating Radar, 1994.

Haifeng Li, Chieh Chou, Longfei Fan, Binbin Li, Di Wang,
and Dezhen Song. Toward automatic subsurface pipeline
mapping by fusing a ground-penetrating radar and a camera.
IEEE Transactions on Automation Science and Engineering,
17(2):722-734, 2019.

Simone Meschino and Lara Pajewski. Spot-gpr: A freeware
toolfor target detection and localizationin gpr data develope-
dwithin the cost action tul208. Journal of Telecommunica-
tions and Information Technology, 2017.

Caner Ozdemir, Sevket Demirci, Enes Yigit, and Betiil Yil-
maz. A review on migration methods in b-scan ground pene-
trating radar imaging. Mathematical Problems in Engineer-
ing, 2014, 2014.

Umut Ozkaya, Farid Melgani, Mesay Belete Bejiga, Levent
Seyfi, and Massimo Donelli. Gpr b scan image analysis with
deep learning methods. Measurement, page 107770, 2020.
Minh-Tan Pham and Sébastien Lefevre. Buried object detec-
tion from b-scan ground penetrating radar data using faster-
renn. In IGARSS 2018-2018 IEEE International Geoscience
and Remote Sensing Symposium, pages 6804-6807. IEEE,
2018.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234-241.
Springer, 2015.

William A Schneider. Integral formulation for migration in
two and three dimensions. Geophysics, 43(1):49-76, 1978.



[29]

(30]

(31]

(32]

(33]

(34]

(35]

Stefano Urbini, Luca Vittuari, Stefano Gandolfi, et al. Gpr
and gps data integration: examples of application in antarc-
tica. 2001.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: from error visibility to
structural similarity. /[EEE transactions on image processing,
13(4):600-612, 2004.

Craig Warren, Antonios Giannopoulos, and Iraklis Gian-
nakis. gprmax: Open source software to simulate elec-
tromagnetic wave propagation for ground penetrating radar.
Computer Physics Communications, 209:163-170, 2016.
Zhongming Xiang, Abbas Rashidi, and Ge Ou. An improved
convolutional neural network system for automatically de-
tecting rebar in gpr data. arXiv preprint arXiv:1907.09997,
2019.

Xinjun Xu, Yang Lei, and Feng Yang. Railway subgrade de-
fect automatic recognition method based on improved faster
r-cnn. Scientific Programming, 2018, 2018.

Hang Zhao, Orazio Gallo, luri Frosio, and Jan Kautz. Loss
functions for neural networks for image processing. arXiv
preprint arXiv:1511.08861, 2015.

Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima
Tajbakhsh, and Jianming Liang. Unet++: A nested u-net ar-
chitecture for medical image segmentation. In Deep Learn-
ing in Medical Image Analysis and Multimodal Learning for
Clinical Decision Support, pages 3—11. Springer, 2018.



