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Abstract

Computing expected predictions of discriminative models is a fundamental task
in machine learning that appears in many interesting applications such as fairness,
handling missing values, and data analysis. Unfortunately, computing expectations
of a discriminative model with respect to a probability distribution defined by an
arbitrary generative model has been proven to be hard in general. In fact, the
task is intractable even for simple models such as logistic regression and a naive
Bayes distribution. In this paper, we identify a pair of generative and discriminative
models that enables tractable computation of expectations, as well as moments of
any order, of the latter with respect to the former in case of regression. Specifically,
we consider expressive probabilistic circuits with certain structural constraints
that support tractable probabilistic inference. Moreover, we exploit the tractable
computation of high-order moments to derive an algorithm to approximate the
expectations for classification scenarios in which exact computations are intractable.
Our framework to compute expected predictions allows for handling of missing
data during prediction time in a principled and accurate way and enables reasoning
about the behavior of discriminative models. We empirically show our algorithm
to consistently outperform standard imputation techniques on a variety of datasets.
Finally, we illustrate how our framework can be used for exploratory data analysis.

1 Introduction

Learning predictive models like regressors or classifiers from data has become a routine exercise
in machine learning nowadays. Nevertheless, making predictions and reasoning about classifier
behavior on unseen data is still a highly challenging task for many real-world applications. This is
even more true when data is affected by uncertainty, e.g., in the case of noisy or missing observations.

A principled way to deal with this kind of uncertainty would be to probabilistically reason about the
expected outcomes of a predictive model on a particular feature distribution. That is, to compute
mathematical expectations of the predictive model w.r.t. a generative model representing the feature
distribution. This is a common need that arises in many scenarios including dealing with missing
data [20, 14], performing feature selection [37, 4, 7], handling sensor failure and resource scaling [12],
seeking explanations [25, 21, 3] or determining how “fair” the learned predictor is [38, 39, 8].

While dealing with the above expectations is ubiquitous in machine learning, computing the expected
predictions of an arbitrary discriminative models w.r.t. an arbitrary generative model is in general
computationally intractable [14, 26]. As one would expect, the more expressive these models
become, the harder it is to compute the expectations. More interestingly, even resorting to simpler
discriminative models like logistic regression does not help reducing the complexity of such a task:
computing the first moment of its predictions w.r.t. a naive Bayes model is known to be NP-hard [14].

In this work, we introduce a pair of expressive generative and discriminative models for regression,
for which it is possible to compute not only expectations, but any moment efficiently. We leverage
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recent advancements in probabilistic circuit representations. Specifically, we prove that generative
and discriminative circuits enable computing the moments in time polynomial in the size of the
circuits, when they are subject to some structural constraints which do not hinder their expressiveness.

Moreover, we demonstrate that for classification even the aforementioned structural constraints cannot
guarantee computations in tractable time. However, efficiently approximating them becomes doable
in polynomial time by leveraging our algorithm for the computations of arbitrary moments.

Lastly, we investigate applications of computing expectations. We first consider the challenging
scenario of missing values at test time. There, we empirically demonstrate that computing expectations
of a discriminative circuit w.r.t. a generative one is not only a more robust and accurate option than
many imputation baselines for regression, but also for classification. In addition, we show how we
can leverage this framework for exploratory data analysis to understand behavior of predictive models
within different sub-populations.

2 Expectations and higher order moments of discriminative models

We use uppercase letters for random variables, e.g., X , and lowercase letters for their assignments
e.g., x. Analogously, we denote sets of variables in bold uppercase, e.g., X and their assignments in
bold lowercase, e.g., x. The set of all possible values that X can take is denoted as X .

Let p be a probability distribution over X and f : X → R be a discriminative model, e.g., a regressor,
that assigns a real value (outcome) to each complete input configuration x ∈ X (features). The task
of computing the k-th moment of f with respect to the distribution p is defined as:

Mk(f, p) , E
x∼p(x)

[

(f(x))k
]

. (1)

Computing moments of arbitrary degree k allows one to probabilistically reason about the outcomes
of f . That is, it provides a description of the distribution of its predictions assuming p as the data-
generating distribution. For instance, we can compute the mean of f w.r.t. p: Ep[f ] = M1(f, p) or
reason about the dispersion (variance) of its outcomes: VARp(f) = M2(f, p)− (M1(f, p))

2.

These computations can be a very useful tool to reason in a principled way about the behavior of f in
the presence of uncertainty, such as making predictions with missing feature values [14] or deciding
a subset of X to observe [16, 37]. For example, given a partial assignment xo to a subset Xo ⊆ X,
the expected prediction of f over the unobserved variables can be computed as E

x∼p(x|xo) [f(x)],
which is equivalent to M1(f, p(.|x

o)).

Unfortunately, computing arbitrary moments, and even just the expectation, of a discriminative model
w.r.t. an arbitrary distribution is, in general, computationally hard. Under the restrictive assumptions
that p fully factorizes, i.e., p(X) =

∏

i p(Xi), and that f is a simple linear model of the form
f(x) =

∑

i φixi, computing expectations can be done in linear time. However, the task suddenly
becomes NP-hard even for slightly more expressive models, for instance when p is a naive Bayes
distribution and f is a logistic regression (a generalized linear model with a sigmoid activation
function). See [14] for a detailed discussion.

In Section 4, we propose a pair of a generative and discriminative models that are highly expressive
and yet still allow for polytime computation of exact moments and expectations of the latter w.r.t. the
former. We first review the necessary background material in Section 3.

3 Generative and discriminative circuits

This section introduces the pair of circuit representations we choose as expressive generative and
discriminative models. In both cases, we assume the input is discrete. We later establish under which
conditions computing expected predictions becomes tractable.

Logical circuits A logical circuit [11, 9] is a directed acyclic graph representing a logical formula
where each node n encodes a logical sub-formula, denoted as [n]. Each inner node in the graph
is either an AND or an OR gate, and each leaf (input) node encodes a Boolean literal (e.g., X or
¬X). We denote the set of child nodes of a gate n as ch(n). An assignment x satisfies node n if
it satisfies the logical formula encoded by n, written x |= [n]. Fig. 1 depicts some examples of
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Figure 1: A vtree (a) over X = {X1, X2, X3} and a generative and discriminative circuit pair (b, c)
that conform to it. AND gates are colored as the vtree nodes they correspond to (blue and orange).
For the discriminative circuit on the right, “hot wires” that form a path from input to output are
colored red, for the given input configuration x = (X1 = 1, X2 = 0, X3 = 0).

logical circuits. Several syntactic properties of circuits enable efficient logical and probabilistic
reasoning over them [11, 29]. We now review those properties as they will be pivotal for our efficient
computations of expectations and high-order moments in Section 4.

Syntactic Properties A circuit is said to be decomposable if for every AND gate its inputs depend
on disjoint sets of variables. For notational simplicity, we will assume decomposable AND gates to
have two inputs, denoted L(eft) and R(ight) children, depending on variables XL and X

R respectively.
In addition, a circuit satisfies structured decomposability if each of its AND gates decomposes
according to a vtree, a binary tree structure whose leaves are the circuit variables. That is, the L

(resp. R) child of an AND gate depends on variables that appear on the left (resp. right) branch of
its corresponding vtree node. Fig. 1 shows a vtree and visually maps its nodes to the AND gates of
two example circuits. A circuit is smooth if for an OR gate all its children depend on the same set of
variables [32]. Lastly, a circuit is deterministic if, for any input, at most one child of every OR node
has a non-zero output. For example, Fig. 1c highlights in red the wires that are true, and that form a
path from the root to the leaves, given input x=(X1=1, X2=0, X3=0). Note that every OR gate
in Fig. 1c has at most one hot input wire, because of the determinism property.

Generative probabilistic circuits A probabilistic circuit (PC) is characterized by its logical circuit
structure and parameters θ that are assigned to the inputs of each OR gate.

Intuitively, each PC node n recursively defines a distribution pn over a subset of the variables X

appearing in the sub-circuit rooted at it. More precisely:

pn(x) =











1n(x) if n is a leaf,
pL(x

L) · pR(x
R) if n is an AND gate,

∑

i∈ch(n) θipi(x) if n is an OR gate.
(2)

Here, 1n(x) , 1{x |= [n]} indicates whether the leaf n is satisfied by input x. Moreover, xL and
x
R indicate the subsets of configuration x restricted to the decomposition defined by an AND gate

over its L (resp. R) child. As such, an AND gate of a PC represents a factorization over independent
sets of variables, whereas an OR gate defines a mixture model. Unless otherwise noted, in this paper
we adopt PCs that satisfy structured decomposability and smoothness as our generative circuit.

PCs allow for the exact computation of the probability of complete and partial configurations (that
is, marginalization) in time linear in the size of the circuit. A well-known example of PCs is the
probabilistic sentential decision diagram (PSDD) [15].1 They have been successfully employed
as state-of-the-art density estimators not only for unstructured [19] but also for structured feature
spaces [5, 30, 31]. Other types of PCs include sum-product networks (SPNs) and cutset networks,
yet those representations are typically decomposable but not structured decomposable [23, 24].

1PSDDs by definition also satisfy determinism, but we do not require this property for computing moments.
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Discriminative circuits For the discriminative model f , we adopt and extend the semantics of
logistic circuits (LCs): discriminative circuits recently introduced for classification [18]. An LC is
defined by a decomposable, smooth and deterministic logical circuit with parameters φ on inputs to
OR gates. Moreover, we will work with LCs that are structured decomposable, which is a restriction
already supported by their learning algorithms [18]. An LC acts as a classifier on top of a rich set of
non-linear features, extracted by its logical circuit structure. Specifically, an LC assigns an embedding
representation h(x) to each input example x. Each feature h(x)k in the embedding is associated with
one input k of one of the OR gates in the circuit (and thus also with one parameter φk). It corresponds
to a logical formula that can be readily extracted from the logical circuit structure.

Classification is performed on this new feature representation by applying a sigmoid non-linearity:
fLC(x) , 1/(1 + e−

∑
k
φkh(x)k), and similar to logistic regression it is amenable to convex parame-

ter optimization. Alternatively, one can fully characterize an LC by recursively defining the output of
each node m. We use gm(x) to define output of node m given x. It can be computed as:

gm(x) =











0 if m is a leaf,
gL(x

L) + gR(x
R) if m is an AND gate,

∑

j∈ch(m) 1j(x)(φj + gj(x)) if m is an OR gate.
(3)

Again, 1j(x) is an indicator for x |= [j], effectively using the determinism property of LCs to select
which input to pass through. Then classification is done by applying a sigmoid function to the output
of the circuit root r: fLC(x) = 1/(1+ e−gr(x)). The increased expressive power of LCs w.r.t. simple
linear regressors lies in the rich representations h(x) they learn, which in turn rely on the underlying
circuit structure as a powerful feature extractor [34, 33].

LCs have been introduced for classification and were shown to outperform larger neural networks [18].
We also leverage them for regression, that is, we are interested in computing the expectations of the
output of the root node gr(x) w.r.t. a generative model p. We call an LC when no sigmoid function is
applied to gr(x) a regression circuit (RC). As we will show in the next section, we are able to exactly
compute any moment of an RC g w.r.t. an LC p, that is, Mk(g, p), in time polynomial in the size of
the circuits, if p and g share the same vtree.

4 Computing expectations and moments for circuit pairs

We now introduce our main result, which leads to efficient algorithms for tractable Expectation and
Moment Computation of Circuit pairs (EC2 and MC2) in which the discriminative model is an RC
and the generative model is a PC, and where both circuits are structured decomposable sharing the
same vtree. Recall that we also assumed all circuits to be smooth, and the RC to be deterministic.

Theorem 1. Let n and m be root nodes of a PC and an RC with the same vtree over X. Let sn and
sm be their respective number of edges. Then, the kth moment of gm w.r.t. the distribution encoded
by pn, that is, Mk(gm, pn), can be computed exactly in time O(k2snsm).2

Moreover, this complexity is attained by the MC2 algorithm, which we describe in the next section.
We then investigate how this result can be generalized to arbitrary circuit pairs and how restrictive
the structural requirements are. In fact, we demonstrate how computing expectations and moments
for circuit pairs not sharing a vtree is #P-hard. Furthermore, we address the hardness of computing
expectations for an LC w.r.t. a PC–due to the introduction of the sigmoid function over g–by
approximating it through the tractable computation of moments with the MC2 algorithm.

4.1 EC2: Expectations of regression circuits

Intuitively, the computation of expectations becomes tractable because we can “break it down” to the
leaves of the PC and RC, where it reduces to trivial computations. Indeed, the two circuits sharing
the same vtree is the property that enables a polynomial time recursive decomposition, because it
ensures that pairs of nodes considered by the algorithm depend on exactly the same set of variables.

2 This is a loose upper bound since the algorithm only looks at a small subset of pairs of edges in the circuits.
A tighter bound would be O(k2

∑
v
sv tv) where v ranges over vtree nodes and sv (resp. tv) counts the number

of edges going into the nodes of the PC (resp. RC) that can be attributed to the vtree node v.
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Algorithm 1 EC2(n, m) . Cache recursive calls to achieve polynomial complexity

Require: A PC node n and an RC node m
if m is Leaf then return 0
else if n is Leaf then

if [n] |= [mL] then return φmL

if [n] |= [mR] then return φmR

else if n,m are OR then return
∑

i∈ch(n) θi
∑

j∈ch(m) (EC2(i, j) + φjPR(i, j))

else if n,m are AND then return PR(nL,mL) EC2(nR,mR) + PR(nR,mR) EC2(nL,mL)

We will now show how this computation recursively decomposes over pairs of OR and AND gates,
starting from the roots of the PC p and RC g. We refer the reader to the Appendix for detailed proofs
of all Propositions and Theorems in this section. Without loss of generality, we assume that the roots
of both p and g are OR gates, and that circuit nodes alternate between AND and OR gates layerwise.

Proposition 1. Let n and m be OR gates of a PC and an RC, respectively. Then the expectation of
the regressor gm w.r.t. distribution pn is:

M1(gm, pn) =
∑

i∈ch(n)
θi
∑

j∈ch(m)
(M1(1j · gj , pi) + φjM1(1j , pi)) .

The above proposition illustrates how the expectation of an OR gate of an RC w.r.t. an OR gate in the
PC is a weighted sum of the expectations of the child nodes. The number of smaller expectations
to be computed is quadratic in the number of children. More specifically, one now has to compute
expectations of two different functions w.r.t. the children of PC n.

First, M1(1j , pi) is the expectation of the indicator function associated to the j-th child of m (see
Eq. 3) w.r.t. the i-th child node of n. Intuitively, this translates to the probability of the logical formula
[j] being satisfied according to the distribution encoded by pi. Fortunately, this can be computed
efficiently, in quadratic time, linear in the size of both circuits as already demonstrated in [5].

On the other hand, computing the other expectation term M1(1jgj , pi) requires a novel algorithm
tailored to RCs and PCs. We next show how to further decompose this expectation from AND gates
to their OR children.

Proposition 2. Let n and m be AND gates of a PC and an RC, respectively. Let nL and nR (resp.
mL and mR) be the left and right children of n (resp. m). Then the expectation of function (1m · gm)
w.r.t. distribution pn is:

M1(1m · gm, pn) = M1(1mL
, pnL

)M1(gmR
, pnR

) +M1(1mR
, pnR

)M1(gmL
, pnL

).

We are again left with the task of computing expectations of the RC node indicator functions,
i.e., M1(1mL

, pnL
) and M1(1mR

, pnR
), which can also be done by exploiting the algorithm in [5].

Furthermore, note that the other expectation terms (M1(gmL
, pnL

) and M1(gmR
, pnR

)) can readily be
computed using Proposition 1, since they concern pairs of OR nodes.

We briefly highlight how determinism in the regression circuit plays a crucial role in enabling this
computation. In fact, OR gates being deterministic ensures that the otherwise non-decomposable
product of indicator functions 1m · 1k, where m is a parent OR gate of an AND gate k, results to be
equal to 1k. We refer the readers to Appendix A.3 for a detailed discussion.

Recursively, one is guaranteed to reach pairs of leaf nodes in the RC and PC, for which the respective
expectations can be computed in O(1) by checking if their associated Boolean indicators agree, and
by noting that gm(x) = 0 if m is a leaf (see Eq. 3). Putting it all together, we obtain the recursive
procedure shown in Algorithm 1. Here, PR(n,m) refer to the algorithm to compute M1(1m, pn)
in [5]. As the algorithm computes expectations in a bottom-up fashion, the intermediate computations
can be cached to avoid evaluating the same pair of nodes more than once, and therefore keeping the
complexity as stated by our Theorem 1.

5



4.2 MC2: Moments of regression circuits

Our algorithmic solution goes beyond the tractable computation of the sole expectation of an RC.
Indeed, any arbitrary order moment of gm can be computed w.r.t. pn, still in polynomial time. We
call this algorithm MC2 and we delineate its main routines with the following Propositions:3

Proposition 3. Let n and m be OR gates of a PC and an RC, respectively. Then the k-th moment of
the regressor gm w.r.t. distribution pn is:

Mk(gm, pn) =
∑

i∈ch(n)
θi
∑

j∈ch(m)

∑k

l=0

(

k

l

)

φk−l
j Ml(1j · gj , pi).

Proposition 4. Let n and m be AND gates of a PC and an RC, respectively. Let nL and nR (resp.
mL and mR) be the left and right children of n (resp. m). Then the k-th moment of function (1mgm)
w.r.t. distribution pn is:

Mk(1m · gm, pn) =
∑k

l=0

(

k

l

)

Ml(1mL
· gmL

, pnL
)Mk−l(1mR

· gmR
, pnR

)

Analogous to computing simple expectations, by recursively and alternatively applying Propositions 3
and 4, we arrive at the moments of the leaves at both circuits, while gradually reducing the order k of
the involved moments.

Furthermore, the lower-order moments in Proposition 4 that decompose to L and R children, e.g.,
Ml(1mL

· gmL
, pnL

), can be computed by noting that they reduce to:

Mk(1m · gm, pn) =

{

M1(1m, pn) if k = 0,
Mk(gm, pn) otherwise.

(4)

Note again that these computations are made possible by the interplay of determinism of g and shared
vtrees between p and g. From the former it follows that a sum over OR gate children reduces to a
single child value. The latter ensures that the AND gates in p and g decompose in the same way,
thereby enabling efficient computations.

Given this, a natural question arises: “If we do not require a PC p and a RC g to have the same
vtree structure, is computing Mk(g, p) still tractable?”. Unfortunately, this is not the case, as we
demonstrate in the following theorem.

Theorem 2. Computing any moment of an RC gm w.r.t. a PC distribution pn where both have
arbitrary vtrees is #P-hard.

At a high level, we can reduce #SAT, a well known #P-complete problem on CNF sentences, to the
moment computation problem. Given a choice of different vtrees, we can construct an RC and a PC
in time polynomial in the size of the CNF formula such that its #SAT value can be computed using
the expectation of the RC w.r.t. the PC. We refer to Appendix A.3 for more details.

So far, we have focused our analysis to RCs, the analogous of LCs for regression. One would hope
that the efficient computations of EC2 could be carried on to LCs to compute the expected predictions
of classifiers. However, the application of the sigmoid function σ on the regressor g, even when g
shares the same vtree as p, makes the problem intractable, as our next Theorem shows.

Theorem 3. Taking the expectation of an LC (σ ◦ gm) w.r.t. a PC distribution pn is NP-hard even if
n and m share the same vtree.

This follows from a recent result that taking the expectation of a logistic regression w.r.t. a naive
Bayes distribution is NP-hard [14]; see Appendix A.4 for a detailed proof.

4.3 Approximating expectations of classifiers

Theorem 3 leaves us with no hope of computing exact expected predictions in a tractable way even
for pairs of generative PCs and discriminative LCs conforming to the same vtree. Nevertheless, we
can leverage the ability to efficiently compute the moments of the RC gm to efficiently approximate

3 The algorithm MC2 can easily be derived from EC2 in Algorithm 1, using the equations in this section.
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We might start by asking: “how different are the insurance costs between smokers and non smokers?”
which can be easily computed as

M1(f, p(. | Smoker))−M1(f, p(. | Non Smoker)) = 31, 355− 8, 741 = 22, 614 (7)
by applying the same conditioning as in Equations 5 and 6. We can also ask: “is the predictive model
biased by gender?” To answer this question, it would be interesting to compute:

M1(f, p(. | Female))−M1(f, p(. | Male)) = 14, 170− 13, 196 = 974 (8)
As expected, being a smoker affects the health insurance costs much more than being male or female.
If it were the opposite, we would conclude that the model may be unfair or misbehaving.

In addition to examining the effect of a single feature, we may study the model in a smaller sub-
population, by conditioning the distribution on multiple features. For instance, suppose the insurance
company is interested in expanding and as part of their marketing plan wants to know the effect of
an individual’s region, e.g., southeast (SE) and southwest (SW), for the sub-population of female
(F) smokers (S) with one child (C). By computing the following quantities, we can discover that the
difference in their average insurance cost is relevant, but much more relevant is the difference in their
standard deviations, indicating a significantly different treatment of this population between regions:

E
pSE

[f ] = M1(f, p(. | F, S,C, SE)) = 30, 974, STDpSE
[f ] =

√

M2(.)− (M1(.))2 = 11, 229 (9)

E
pSW

[f ] = M1(f, p(. | F, S,C, SW)) = 27, 250, STDpSW
[f ] =

√

M2(.)− (M1(.))2 = 7, 717 (10)

However, one may ask why we do not estimate these values directly from the dataset. The main issue
in doing so is that as we condition on more features, fewer if not zero matching samples are present
in the data. For example, only 4 and 3 samples match the criterion asked by the last two queries.
Furthermore, it is not uncommon for the data to be unavailable due to sensitivity or privacy concerns,
and only the models are available. For instance, two insurance agencies in different regions might
want to partner without sharing their data yet.

The expected prediction framework with probabilistic circuits allows us to efficiently compute these
queries with interesting applications in explainability and fairness. We leave the more rigorous
exploration of their applications for future work.

6 Related Work

Using expected prediction to handle missing values was introduced in Khosravi et al. [14]; given
a logistic regression model, they learned a conforming Naive bayes model and then computed
expected prediction only using the learned naive bayes model. In contrast, we are taking the expected
prediction using two distinct models. Moreover, probabilistic circuits are much more expressive
models. Imputations are a common way to handle missing features and are a well-studied topic. For
more detail and a history of the techniques we refer the reader to Buuren [2], Little and Rubin [20].

Probabilistic circuits enable a wide range of tractable operations. Given the two circuits, our expected
prediction algorithm operated on the pairs of children of the nodes in the two circuits corresponding
to the same vtree node and hence had a quadratic run-time. There are other applications that operate
on similar pairs of nodes such as: multiplying the distribution of two PSDDs [29], computing the
probability of a logical formula [6], and computing KL divergence [17].

7 Conclusion

In this paper we investigated under which model assumptions it is tractable to compute expectations
of certain discriminative models. We proved how, for regression, pairing a discriminative circuit
with a generative one sharing the same vtree structure allows to compute not only expectations but
also arbitrary high-order moments in poly-time. Furthermore, we characterized when the task is
otherwise hard, e.g., for classification, when a non-decomposable, non-linear function is introduced.
At the same time, we devised for this scenario an approximate computation that leverages the
aforementioned efficient computation of the moments of regressors. Finally, we showcased how
the expected prediction framework can help a data analyst to reason about the predictive model’s
behavior under different sub-populations. This opens up several interesting research venues, from
applications like reasoning about missing values, to perform feature selection, to scenarios where
exact and approximate computations of expected predictions can be combined.
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Supplement “On Tractable Computation of Expected Predictions”

A Proofs

A.1 Proofs of Propositions 1 and 3

We will first prove Proposition 3, from which Proposition 1 directly follows. For a PC OR node n
and RC OR node m,

Mk(gm, pn) = E
x∼pn(x)

[

gkm(x)
]

= E
x∼pn(x)











∑

j∈ch(m)

1j(x)(gj(x) + φj)





k






= E
x∼pn(x)

∑

j∈ch(m)

[

(1j(x)(gj(x) + φj))
k
]

(11)

= E
x∼pn(x)

∑

j∈ch(m)

k
∑

l=0

(

k

l

)

glj(x)φ
k−l
j 1j(x)

=
∑

x

pn(x)
∑

j∈ch(m)

k
∑

l=0

(

k

l

)

glj(x)φ
k−l
j 1j(x)

=
∑

x

∑

i∈ch(n)

θipi(x)
∑

j∈ch(m)

k
∑

l=0

(

k

l

)

glj(x)φ
k−l
j 1j(x)

=
∑

i∈ch(n)

θi
∑

j∈ch(m)

k
∑

l=0

(

k

l

)

φk−l
j

∑

x

pi(x)g
l
j(x)1j(x)

=
∑

i∈ch(n)

θi
∑

j∈ch(m)

k
∑

l=0

(

k

l

)

φk−l
j E

x∼pi(x)
[1j(x)g

l
j(x)]

=
∑

i∈ch(n)

θi
∑

j∈ch(m)

k
∑

l=0

(

k

l

)

φk−l
j Ml(1j · gj , pi). (12)

Equation 11 follows from determinism of RCs as at most one j will have a non-zero 1j(x). In
Equation 12, note that we denote, with slight abuse of notation, M0(1j ·gj , pi) = E

x∼pi(x)[1j(x)] =
M1(1j , pi). This concludes the proof of Proposition 3.

We obtain Proposition 1 by applying above result with k = 1:

M1(gm, pn) =
∑

i∈ch(n)

θi
∑

j∈ch(m)

1
∑

l=0

(

1

l

)

φ1−l
j Ml(1j · gj , pi)

=
∑

i∈ch(n)

θi
∑

j∈ch(m)

(φjM0(1j · gj , pi) +M1(1j · gj , pi))

=
∑

i∈ch(n)

θi
∑

j∈ch(m)

(φjM1(1j , pi) +M1(1j · gj , pi)) .

A.2 Proofs of Proposition 2 and 4

Again, we will first prove Proposition 4. For a PC AND node n and RC AND node m,

Mk(1mgm, pn) = E
x∼pn(x)

[

1m(x)gkm(x)
]
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= E
x∼pn(x)

[

1m(x)
(

gmL
(xL) + gmR

(xR)
)k
]

=
∑

x
L,xR

pnL
(xL)pnR

(xR)1m(x)
(

gmL
(xL) + gmR

(xR)
)k

=
∑

x
L,xR

pnL
(xL)pnR

(xR)1mL
(xL)1mR

(xR)

k
∑

l=0

(

k

l

)

glmL
(xL)gk−l

mR
(xR) (13)

=

k
∑

l=0

(

k

l

)

(

∑

x
L

pnL
(xL)1mL

(xL)glmL
(xL)

)(

∑

x
R

pnR
(xR)1mR

(xR)gk−l
mR

(xR)

)

=
k
∑

l=0

(

k

l

)

E
x
L∼pnL

(xL)

[

1mL
(xL)glmL

(xL)
]

E
x
R∼pnR

(xR)

[

1mR
(xR)gk−l

mR
(xR)

]

=

k
∑

l=0

(

k

l

)

Ml(1mL
· gmL

, pnL
)Mk−l(1mR

· gmR
, pnR

).

Equation 13 follows from decomposability: 1m(x) = 1{x |= [m]} = 1{x |= [mL ∧ mR]} =
1{xL |= [mL]}1{x

R |= [mR]} = 1mL
(xL)1mR

(xR). This concludes the proof of Proposition 4.

We obtain Proposition 2 by combining above result at k = 1 with Equation 4:

M1(1m · gm, pn)

=
1
∑

l=0

(

1

l

)

Ml(1mL
· gmL

, pnL
)M1−l(1mR

· gmR
, pnR

)

= M0(1mL
· gmL

, pnL
)M1(1mR

· gmR
, pnR

) +M1(1mL
· gmL

, pnL
)M0(1mR

· gmR
, pnR

)

= M1(1mL
, pnL

)M1(gmR
, pnR

) +M1(1mR
, pnR

)M1(gmL
, pnL

).

A.3 Proof of Theorem 2

The proof is by reduction from the model counting problem (#SAT) which is known to be #P-hard.

Given a CNF formula α, let us construct β and γ as follows. For every variable Xi appearing in
clause αj , introduce an auxiliary variable Xij . Then:

β ≡
∧

i

(Xi1 ⇔ · · · ⇔ Xij ⇔ · · · ⇔ Xim) ,

γ ≡
∧

j

∨

i

lα(Xij).

Here, lα(Xij) denotes the literal of Xi (i.e., Xi or ¬Xi) in clause αj . Thus, γ is the same CNF
formula as α, except that a variable in α appears as several different copies in γ. The formula β
ensures that the copied variables are all equivalent. Thus, the model count of α must equal the model
count of β ∧ γ.

Consider a right-linear vtree in which variables appear in the following order: X11, X12, . . . ,
X1j , . . . , Xij , . . . . The PC sub-circuit involving copies of variable Xi has exactly two model and
size that is linear in the number of copies. There are as many such sub-circuits as there are variables
in the original formula α, each of which can be chained together directly to obtain β. The key insight
in doing so is that sub-circuits corresponding to different variables Xi are independent of one another.
Then, we can construct a PC circuit structure whose logical formula represents β in polytime. In a
single top down pass, we can parameterize the PC pn such that it represents a uniform distribution:
each model is assigned a probability of 1/2n.

Next, consider a right-linear vtree with the variables appearing in the following order:
X11, X21, . . . , Xn1, . . . , Xij , . . . . Then, we can construct a logical circuit that represents γ in
polynomial time, as each variable appears exactly once in the formula. That is, each clause αj will
have a PC sub-circuit with linear size (in the number of literals appearing in the clause), and the size
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of their conjunction α will simply be the sum of the sizes of such sub-circuits. We can parameterize
it as a regression circuit gm by assigning 0 to all inputs to OR gates and adding a single OR gate on
top of the root node with a weight 1. Then this regression circuit outputs 1 if and only if the input
assignment satisfies γ.

Then the expectation of regression circuit gm w.r.t. PC pn (which does not share the same vtree) can
be used to compute the model count of α as follows:

M1(gm, pn) = E
x∼pn(x)

[gm(x)] =
∑

x

pn(x)gm(x) =
∑

x

1

2n
1[x |= β]1[x |= γ]

=
1

2n

∑

x

1[x |= β ∧ γ] =
1

2n
MC(β ∧ γ) =

1

2n
MC(α)

Thus, #SAT can be reduced to the problem of computing expectations of a regression circuit w.r.t. a
PC that does not share the same vtree.

A.4 Proof of Theorem 3

The proof is by reduction from computing expectation of a logistic regression w.r.t. a naive Bayes
distribution, which was shown to be NP-hard.

Given a naive Bayes distribution P (X, C), we can build a PC pn that represents the same distribution
in polynomial time by employing a right-linear vtree in which the class variable appears at the top,
followed by the features. Because the feature distribution conditioned on the class variable is fully
factorized, the PC sub-circuits corresponding to P (X|C) and P (X|¬C) will each have size that is
linear in the number of features.

Moreover, given a logistic regression model f(x) = σ(w(x)), we can build a corresponding logistic
circuit σ ◦ gm in polytime using the same vtree as the PC described previously. Specifically, each
non-leaf node v in the vtree corresponds to an AND gate, and for each its child we add an OR
gate with paramter 0 (to keep the structure of alternating between AND and OR gates), recursively
building the circuit. The leaf node for each variable X become an OR gate with 2 children X and
¬X , with parameters wi and 0, respectively. The leaf nodes involving the class variable C will simply
have weights 0. As shown in [18], logistic circuits become equivalent to logistic regression on the
feature embedding space, define by the structure of the circuit, as well as the “raw” features. With
this parameterization, we ensure that the extra features introduced by the logistic circuit structure
always have weight 0, so overall the circuit becomes equivalent to the original logistic regression.
That is, w(x) = gm(C,x) = gm(¬C,x) for all assignments x.

Figure 4 gives an example of the construction of the circuits using a given vtree, logistic regression,
and a naive Bayes model. The logistic regression model is defined as f(x) =

∑

i xiwi, and for the
naive Bayes model parameters are θc = P (c), θxi|c = P (xi | c), and θxi|¬c = P (xi | ¬c). Other
values can be easily computed using the complement rule, for example θ¬xi|c = 1− θxi|c. Finally,
the naive Bayes distribution is now defined as: P (x, C) = θC

∏

i θxi|C .

The expectation of such logistic circuit σ ◦ gm w.r.t. PC pn is equal to the expectation of original
logistic regression f w.r.t. naive Bayes P as the following:

M1(σ ◦ gm, pn) = E
cx∼pn(cx)

[σ(gm(cx))] = E
cx∼P (cx)

[f(x)] = E
x∼P (x)

[f(x)].

A.5 Approximating expected prediction of classifiers

In this section, we provide more intuition on how we derived our approximation method for the case
of classification. As mentioned in the main text, we define the following d-order approximation:

Td(γ ◦ gm, pn) ,
∑d

k=0

γ(k)(α)

k!
Mk(gm − α, pn)

We can use Td(γ ◦ gm, pn) as an approximation to M1(γ ◦ gm, pn) because:

M1(γ ◦ gm, pn) =E
x∼pn(x)

[

γ(gm(x))
]

= E
x∼pn(x)

∑∞

i=0

γ(i)(α)

i!

(

gm(x)− α
)i
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(a) A vtree
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C¬C

(b) Logistic Regression as a Logistic Circuit conforming to the vtree

θ
x1|c θ¬x1|c θ
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1
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x1|¬c

θ¬x1|¬c
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X1 ¬X1 X2 ¬X2 X3 ¬X3 X1 ¬X1 X2 ¬X2 X3 ¬X3

C¬C C¬C

(c) Naive Bayes as a PC conforming to the vtree

Figure 4: A vtree (a) over X = {X1, X2, X3} and corresponding circuits that are respectively
equivalent to a given Logistic Regression model with parameters w0, w1, w2, w3, and a Naive Bayes
model with parameters θc, θxi|c, θxi|¬c.

≈
∑d

i=0

γ(i)(α)

i!
E
x∼pn(x)

(

gm(x)− α
)i

= Td(γ ◦ gm, pn)

For example, given a PC with root n and a logistic circuit with root m and sigmoid activation, the
Taylor series around point α = 0 and d = 5 gives us:

M1(γ ◦ gm, pn) ≈ T5(γ ◦ gm, pn) =
1

2
+

M1(gm, pn)

4
−

M3(gm, pn)

48
+

M5(gm, pn)

480

In general, we would like to expand the Taylor series around a point that converges quickly. In our
case, we employ α ≈ M1(gm, pn). All these Taylor expansion terms can be computed efficiently, as
long as taking the derivatives of our non-linearity can be done efficiently at point α.
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Table 1: Statistics as number of train, validation and test samples and features (after discretization)
for the datasets employed in the regression (top half) and classification (bottom half) experiments.

DATASET TRAIN VALID TEST FEATURES

ABALONE 2923 584 670 71
DELTA-AIRLOINS 4990 998 1141 55
ELEVATORS 11619 2323 2657 182
INSURANCE 936 187 215 36

MNIST 48000 12000 10000 784
FASHION 48000 12000 10000 784

B Datasets

We employed the following datasets for our empirical evaluation, taken from the UCI Machine
Learning repository and other regression [13] or classification suites.

Description of the datasets ABALONE7 [22] contains several physical measurements on abalone
specimens used to predict their age. DELTA-AIRLOINS collects mechanical measurements for
the task of controlling the ailerons of a F16 aircraft while the task is to predict the variation of
the action on the ailerons. ELEVATORS comprises measurements also concerned with the task of
controlling a F16 aircraft (different from DELTA-AIRLOINS), although the target variable here refers
on controlling on the elevators of the aircraft. In INSURANCE8 one wants to predict individual
medical costs billed by health insurance given several personal data of a patient. MNIST 9 comprises
gray-scale handwritten digit images used for multi-class classification. FASHION 10 is a 10-class
image classification challenge concerning fashion apparel items.

Preprocessing steps We preserve for all dataset their train and test splits if present in their respective
repositories, or create a new test set comprising 20% of the whole data. Moreover we reserve a 10%
portion of the training set as validation data used to monitor (parameter and/or structure) learning of
our models and perform early-stopping.

We perform discretization of the continuous features in the regression datasets as follows. We first try
to automatically detect the optimal number of (irregular) bins through adaptive binning by employing
a penalized likelihood scheme as in [27]. If the number of the bins found in this way exceeds ten,
we employ an equal-width binning scheme capping the bin number to ten, instead. Once the data
is discrete, we encode them as binary through the common one-hot encoding, to accommodate the
requirements of the PSDD learner we employed [19].

For image data, we binarize each sample by considering each pixel in it to be 1 if its original value
exceed the mean value of that pixel as computed on the training set.

Statistics for all the datasets after preprocessing can be found in Table 1.

Runtime of the algorithms In Table 2, we report the runtimes for our method versus MICE and
expectations approximated via Monte Carlo simulations, by sampling the generative model and
evaluating on the discriminative model. As we see, the speed advantage of our algorithm becomes
more clear on larger datasets. The runtime of the Monte Carlo approximation depends on number
of samples and the size of the generative circuit. The runtime of MICE also depends on missing
percentage of features and increases notably as more features go missing. For this reason, and
by observing that MICE was providing worse predictions than our algorithm, we stopped MICE
experiments early at 30% missing for the ELEVATORS dataset.

7https://archive.ics.uci.edu/ml/datasets/abalone
8https://www.kaggle.com/mirichoi0218/insurance
9http://yann.lecun.com/exdb/mnist/

10https://github.com/zalandoresearch/fashion-mnist
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Table 2: Statistics on the runtime of our algorithm versus MICE and the Monte Carlo Sampling
algorithm. The reported times for prediction times are for one configuration of the experiment. As we
tried 10 different missingness percentages and repeated each 10 times, the total time of experiment is
100 times the value in the table. Learning time refers to learning the generative circuit and is done
only once.

Time (seconds)

ours (learning) ours (prediction) MICE MC

ABALONE 82 20 43 117
DELTA 53 24 27 126
INSURANCE 40 13 11 20
ELEVATORS 2105 31 364 994

Computing Infrastructure The experiments were run on a combination of a server with 40 CPU
cores and 500 GB of RAM, and a laptop with 6 CPU cores and 16 GB of RAM. The server was
mainly utilized for learning the circuits, albeit not using all the memory, and to parallelize different
runs of the missing value experiments. No GPUs were used for the experiments as probabilistic
circuit libraries do not support them yet.

To report the runtimes in Table 2, we did a separate run of each method on the same machine (the
laptop) for fair comparison of the runtimes.

18


	Introduction
	Expectations and higher order moments of discriminative models
	Generative and discriminative circuits
	Computing expectations and moments for circuit pairs
	EC2: Expectations of regression circuits
	MC2: Moments of regression circuits
	Approximating expectations of classifiers

	Expected prediction in action
	Reasoning with missing values: an application
	Reasoning about predictive models for exploratory data analysis

	Related Work
	Conclusion
	Proofs
	Proofs of Propositions 1 and 3
	Proofs of Proposition 2 and 4
	Proof of Theorem 2
	Proof of Theorem 3
	Approximating expected prediction of classifiers

	Datasets

