
DroidScraper: A Tool for Android In-Memory Object Recovery and
Reconstruction

Aisha Ali-Gombe
Towson University

aaligombe@towson.edu

Sneha Sudhakaran
Louisiana State University

ssudha1@lsu.edu

Andrew Case
Volatility Foundation

andrew@dfir.org

Golden G. Richard III
Louisiana State University

golden@cct.lsu.edu

Abstract
There is a growing need for post-mortem analysis in forensics
investigations involving mobile devices, particularly when
application-specific behaviors must be analyzed. This is es-
pecially true for architectures such as Android, where tra-
ditional kernel-level memory analysis frameworks such as
Volatility [9] face serious challenges recovering and providing
context for user-space artifacts. In this research work, we de-
veloped an app-agnostic userland memory analysis technique
that targets the new Android Runtime (ART). Leveraging
its latest memory allocation algorithms, called region-based
memory management, we develop a system called Droid-
Scraper that recovers vital runtime data structures for appli-
cations by enumerating and reconstructing allocated objects
from a process memory image. The result of our evaluation
shows DroidScraper can recover and decode nearly 90% of
all live objects in all allocated memory regions.

1 Introduction

In recent years, there has been a significant increase in the
adoption and reliance on memory forensics for incident re-
sponse and malware analysis. While traditionally memory
analysis was used to supplement disk forensics in the recovery
of critical data such as deleted messages from volatile storage,
memory forensics has evolved into an advanced methodology
for investigating and identifying memory-resident, kernel-
level attacks and malicious behaviors that do not leave an
identifiable footprint on the disk [16].

In mobile devices, the advancement and sophistication in
application development and the reliance on these devices
by many users make them a critical source of evidence for
digital investigations. The ability to recover and reconstruct
pieces of application data which otherwise may be difficult
to identify using traditional static and dynamic analysis can
provide investigators with substantial evidence to leverage
in cybercrime and malware analysis. However, due to the
layers of abstraction between the kernel and the application

in the mobile architecture, recovering in-memory application
data is not feasible from the residual in-memory kernel data
structures. On the other hand, userland memory artifacts can
provide sufficient information for investigators to recover ap-
plication functionality and outline the actions, strategy, and
attack evidence without the need for prior knowledge of ap-
plication logic.

In this research, we target userland memory analysis on
Android. The objective is to develop an app-agnostic, per-
process technique that can perform post-mortem analysis on
Android userland memory dumps to recover and reconstruct
vital in-memory evidence for cybercrime investigations and
malware and vulnerability analysis. Our effort leverages the
new Android Runtime (ART) to trace all objects allocated
within a process’ address space and then make a best effort
to rebuild those objects. This approach is built upon ART’s
newest garbage collection algorithm, Concurrent Copying
collector, which uses region-based memory management for
object allocations. In this algorithm, objects are allocated in
program specific memory regions, and during garbage collec-
tion, an entire region is collected if its number of live objects
is less than a certain threshold. With this algorithm, objects
tend to live longer in memory when allocated in a region with
high live threshold even if the specified object is marked for
deallocation. The design of our approach involves identifying
crucial ART structures, and subsequently, all objects allocated
at runtime in a target process’ address space.

In comparison with traditional static app analysis systems,
which are often affected by obfuscation such as class and data
encryption, dynamic class and Java reflection, etc., this ap-
proach has the advantage of recovering de-obfuscated runtime
artifacts. Furthermore, unlike dynamic analysis methodolo-
gies, our technique relies only on having a process mem-
ory dump and is therefore less likely to be affected by anti-
analysis techniques.

The contributions of this research work are: (1) We propose
a new memory forensics technique, DroidScraper, that relies
on the design of Android’s ART region-based memory alloca-
tion to recover and reconstruct in-memory runtime artifacts.
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(2) The proposed DroidScraper can extract running threads,
enumerate objects allocated in the heap region, and then de-
code objects based on their class definitions. (3) Our evalu-
ation of DroidScraper shows that it can recover in-memory
objects with an almost 90% success rate and can be applied to
behavioral post-mortem monitoring of Android applications.

2 Background

Android applications are typically written in Java and com-
piled into bytecode which is then executed on a Dalvik Virtual
Machine (for older devices) or Android Runtime (ART) (from
Android 5.0 and beyond). These Java applications can also
be integrated with native code written in C/C++, with the
help of Java Native Interface (JNI). ART provides a number
of new features, most notably enhanced garbage collection
(GC) algorithms, which affect object allocations in the new
runtime.

The new Android runtime - ART has two groups of garbage
collectors based on the ActivityManager process state [11].
The ForegroundCollector handles GC when an app is in the
foreground, while the BackgroundCollector handles GC when
an app is running in the background. A variable for the Fore-
groundCollector comes preconfigured as part of the default
runtime options on stock Android as shown in Listing 1. At
heap initialization, the system reads the runtime options to de-
termine which collectors to use. Also, this variable defines the
memory allocation scheme (AllocatorType) to be employed,
and subsequently, the memory space (Space) to be created and
how objects are organized in these spaces. Listing 2 shows all
the available allocators on ART.

bool Runtime::Init(RuntimeArgumentMap&&
runtime_options_in) {↪→

.....
XGcOption xgc_option =

runtime_options.GetOrDefault(Opt::GcOption);↪→

heap_ = new gc::Heap
(runtime_options.GetOrDefault
(Opt::MemoryInitialSize),

↪→

↪→

.....
runtime_options.GetOrDefault

(Opt::ImageInstructionSet),↪→

// Override the collector type to CC
if the read barrier config.↪→

kUseReadBarrier ? gc::kCollectorTypeCC :
xgc_option.collector_type_,↪→

kUseReadBarrier ? BackgroundGcOption
(gc::kCollectorTypeCCBackground)↪→

runtime_options.GetOrDefault
(Opt::BackgroundGc),↪→

.....);
}

Listing 1: Runtime Initialization in runtime.cc

enum AllocatorType {
kAllocatorTypeBumpPointer,
kAllocatorTypeTLAB,
kAllocatorTypeRosAlloc,
kAllocatorTypeDlMalloc,
kAllocatorTypeNonMoving,
kAllocatorTypeLOS,
kAllocatorTypeRegion,
kAllocatorTypeRegionTLAB,

};
inline constexpr bool IsTLABAllocator

(AllocatorType allocator) {↪→

return allocator == kAllocatorTypeTLAB ||
allocator ==kAllocatorTypeRegionTLAB;↪→

}

Listing 2: Available memory allocator types for ART

ART is designed with four major garbage collection algo-
rithms with each one utilizing one or more of the Alloca-
torTypes in Listing 2. The complexity of choosing collectors
and mapping them to one or more allocator types makes the
memory allocation and GC on the new Android runtime a
very complicated process. As mentioned above, the chosen
collector at system startup determines the garbage collection
algorithm, which in turn determine the specific AllocatorType
to be used by the runtime environment. Below is a detailed
description of the GC algorithms in ART.

• Semi-Space - SS - this algorithm uses the semi-space
garbage collection to copy movable objects between two
Bump Pointer spaces. In the SS algorithm, objects are
allocated in free memory space using BumpPointer and
DlMalloc for mutable and non-mutable objects, respec-
tively. When the use of Thread Local Allocation Buffers
is enabled, this algorithm defaults to using the TLAB
allocator. On newer Android versions, the BumpPointer
spaces are currently only used for ZygoteSpace construc-
tion.

• Generational Semi-Space - GSS - This algorithm lever-
ages heap organization to optimize the simple Semi-
Space GC above. The generational hypothesis states that
most objects die young [28] and as such where long-
lived reachable objects exist, they are relocated to a large
RosAlloc space. The default object allocator for GSS is
the BumpPointer for mutable objects.

• Concurrent Mark Sweep - CMS - this collector uses the
concurrent mark-sweep algorithm to collect allocated ob-
jects unreachable from their roots from only the region
of memory modified since the last GC operation [4]. The
default memory AllocatorType for CMS is the RosAlloc -
which is used to allocate mutable objects in runs-of-slots
of the same sizes. It also uses the default C malloc Dl-
Malloc for non-mutable objects. CMS was introduced
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in Android 5 as the default CG algorithm for the An-
droid runtime environment. It is designed to improve
app performance through Concurrent collection. While
this algorithm has significantly improved GC effort, how-
ever, it causes two long pauses during each collection
cycle that often adversely affect UI responsiveness [17].

• Concurrent Copying - This technique utilizes an effi-
cient concurrent and moving garbage collection algo-
rithm. Utilizing region-based memory allocation, allo-
cated objects are evacuated from a region and subse-
quently destroyed if and only if the region has live ob-
jects whose count is less than some percentage threshold.
Furthermore, this algorithm creates a compacting heap
and introduces very short pauses during collection [1].
It also utilizes a read barrier configuration that ensures
mutators never see old versions of objects [3]. This con-
figuration allows threads to efficiently and concurrently
access heap objects during collection. The CC algorithm
uses the RegionSpace allocator and if the use of TLAB
is enabled, the system uses the RegionSpaceTlab allo-
cator for movable objects. On newer Android versions,
RegionSpaceTlab the is the default for most small object
allocations [20].

In the earlier version of libart (5,6,7), the CMS collector
was favored among the other collectors, thus defaulting to
the use of RosAlloc for moving objects. However, in newer
Android versions (8,9,10), the development and subsequent
enforcement of the read barriers in the runtime options as
shown in Listing1 which favors concurrent access to the heap
during GC overrides the default CMS collector type to the CC
[12, 17]. Furthermore, the introduction of RegionSpaceTLAB
for per-thread objects makes it an ideal allocation mechanism
for small objects.

In this research, our focus is on recovering objects allo-
cated using the RegionSpace and RegionSpaceTlab allocators,
which are based on the Concurrent Copying Collection al-
gorithm. To the best of our knowledge, this is the first work
that explores in-memory data recovery from RegionSpace
memory maps for the new Android Runtime.

3 System Design

DroidScraper is an Android in-memory object recovery and
decoding system that analyzes process address spaces (in the
form of per-process memory dumps) for remnants of runtime
objects. This system leverages low-level data structure defini-
tions as well as generic class and references constructs pro-
vided by the Android runtime library (libart.so) to recover and
reconstruct objects within a target process’ address space. The
design of DroidScraper provides investigators and malware
analysts access to well-structured and forensically interesting
data across threads and various process components such as
activities and services.

As shown in Figure 1, DroidScraper’s workflow begins
with process memory dump acquisition. This element of the
workflow utilizes any available open-source tools such as
Memfetch [6] to generate per process Android memory map.
In cases where a complete memory image is acquired using
tools like AMD [39] and Lime [36], DroidScraper can uti-
lize the output of Volatility’s memdump [10] plugin to access
a process’ address space. The memory acquisition process
is then followed by the Runtime Data Structure Recovery
(RDS) and the Object Recovery and Reconstruction (ORR)
modules. These two elements of the workflow constitute the
main contribution of our system. The RDS module leverages
the per-process memory dump to identify and recreate ma-
jor runtime structures that are essential for object allocations
and deallocation such as Runtime, Heap, Heap Regions, and
Threads. The ORR module then utilizes the metadata defini-
tions in the recovered data structures to enumerate and decode
reachable live objects within the process memory region.

3.1 Runtime Data Structure Recovery - RDS
DroidScraper’s RDS is built upon the low-level data struc-
tures defined in libart.so. These structures are essential for
building and maintaining the runtime environment, object al-
location and accounting, as well as garbage collection. The
RDS module begins by identifying the main runtime object of
a target process, followed by the identification and extraction
of all Linux threads belonging to the target process. It also
consists of other sub-modules for heap structure recovery, the
identification of the Region Space structure, and the allocated
heap regions.

3.1.1 Identification of the Runtime Object

The Runtime object is the most crucial data structure required
for Android process execution. Its members constitute essen-
tial components needed by the process for memory allocation,
thread creation, JNI calls, and it serves as a link between the
running process and outside environment. On Android, ev-
ery process executes in its own runtime environment, which
itself is forked from the zygote process. The zygote process
is started by the init process at system boot together with
the default Android runtime. The zygote then listens for a
connection on its socket for a request to start up a new ap-
plication. Upon receipt of such a request, it will fork a new
Linux process, which forces the creation of a Runtime object
that establishes the runtime environment. The zygote process
then maps a copy of its shared library (libart.so) into the new
process’ address space.

_ZN3art7Runtime9instance_E offset = 0070a980
Runtime Base Address = 0xf233aa80

Listing 3: Instance address offset and the base address of the
Runtime object recovered
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Figure 1: DroidScraper Workflow - Showing Acquisition, Runtime Data Structure Recovery and Object Recovery and Recon-
struction modules.

In this task, our objective is to identify the location the pro-
cess’s Runtime object in the memory dump and then recon-
struct the structure based on its class template definition, as
given in the libart.so.

'Runtime' : [ 0x340, {
'callee_save_methods_': [0],
'pre_allocated_OutOfMemoryError_': [32],
'pre_allocated_NoClassDefFoundError_': [36],
'resolution_method_':[40],
....
'heap_':[244],
'jit_arena_pool_':[248],
'arena_pool_':[252],
'low_4gb_arena_pool_':[256],
'linear_alloc_':[260],
....
'monitor_list_':[268],
'monitor_pool_':[ 272],
'thread_list_':[ 276],
......}]

Listing 4: The Runtime object for Android 8, represented as
a C structure.

Utilizing a static exploration of libart.so with
Linux nm command, we identify an address offset
_ZN3art7Runtime9instance_E in the list of symbols. This
offset held the address of the Runtime instance when the
zygote forked a new process. Because this step is critical
to the entire recovery process, we verified on two different
devices (Unrooted Samsung S9+ and Samsung S8 AVD) that
the object file - libart.so has some basic symbols compiled

in it by default and that includes the Runtime instance
address. Located in the uninitialized data section of the
memory where libart.so is mapped in process space, we
identify and dereference the address in this offset to locate
the beginning of the active Runtime instance as shown in
Listing 3. We represent the Runtime class as defined in the
Android documentation [12] using a C structure, with the
class’s fields represented as members of the structure. Listing
4 illustrate a partial Runtime object with size and member
offsets for Android 8.0.

3.1.2 Enumerating Threads in User Processes

When an Android process begins executing, it spawns its
first thread, called the main thread. Depending on how the
program is designed, other components of the application
such as activities, receivers, providers, and services may cre-
ate other threads. The ThreadListing sub-module is tasked
with enumerating all the living threads owned by the user pro-
cess. Identifying and enumerating running threads is essential
for virtually every memory forensics effort. Specifically for
DroidScraper’s in-memory data recovery and reconstruction,
identifying running threads is essential because the system
often uses thread local allocation buffer TLAB for faster and
more efficient object allocations. TLAB is a memory region
assigned to a single thread for its own objects and can be used
without the need to acquire and/or release locks. When the
use_tlab option is enabled during heap creation, objects are
allocated on a per thread basis and thus recovering those ob-
jects will require obtaining and analyzing the thread metadata
structure.
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Figure 2: DroidScraper Runtime Data Structure Recovery -
ThreadListing.

From the process Runtime object, the ThreadListing finds
the pointer to the beginning of the ThreadList object, which is
at offset 0x276 on Android 8.0. The threads in the ThreadList
structure are organized in a cyclical double-linked list. The list
header contains the pointers to the first and last Thread objects
in the list as well as the size of the list. After the identifica-
tion and subsequent dereferencing of each individual thread
pointer to recover all the Threads objects, the ThreadList-
ing uses the definition of the Threads object in the libart.so
documentation to retrieve each thread ID (tid) and thread
name for all the living threads in the user process. Figure 2
illustrates the output of the ThreadListing sub-module of the
DroidScraper’s RDS.

3.1.3 Recovering the Heap Structure

As the Runtime object initializes, it creates the Heap object,
which is tasked with managing memory space creation, ob-
ject allocation mechanisms, and accounting. At initialization,
most of the arguments passed to the Heap are manufacturer’s
or design standard’s runtime_options such as instruction sets,
heap limit, etc. But two vital runtime_options that are cru-
cial to DroidScraper’s object recovery are the UseTlab and
kUseReadBarrier option. The use_tlab option, if present,
causes threads to request and utilize the Thread local alloca-
tion buffer (Tlab) for small object allocations. As referenced
in Listing 1, the kUseReadBarrier forces the system to use
the Concurrent Copying (CC) collector which then causes the
heap to allocate a different NonMovingSpace for non-mutable
objects and a RegionSpace for mutable objects. On newer
versions of Android Open Source Project AOSP (8,9 and
10), kUseReadBarrier is enabled by default thus making the
Concurrent Copying the default garbage collection technique,
and the memory allocations use the region-based memory
management, which is the target for DroidScraper.

In ART’s Concurrent Copying garbage collection, the heap
creates a RegionSpace structure, which is a continuous space
memory map used for the creation of equal-sized memory
regions and storing their metadata. As shown in Listing 5, the
RegionSpace holds the tally of the number of regions created
by the Heap, the number of non-free regions, and the pointer
to the array of all available Regions.

'RegionSpace' : [ 0xa8, {
'ContinuousMemMapAllocSpace' : [0],
'region_lock_': [56],
'time_': [96],
'num_regions_': [100],
'num_non_free_regions_': [104],
'regions_': [108],
'non_free_region_index_limit_': [112],
'current_region_': [116],
'evac_region_': [120],
'full_region_': [124],
'mark_bitmap_': [164],

}]

Listing 5: The RegionSpace object for Android 8, represented
as a C structure.

Each available Region structure, as shown in Listing 6,
holds pointers to the beginning and end of a region, as well as
the top of the region (the address of the last object allocated).
It also holds the total number of objects allocated in the region
and a boolean value that shows whether this region is a TLAB
region or not. If a region is TLAB, then the pointer to the
thread offset will be non-zero.

'Region' : [ 0x28, {
'idx_' : [0],
'begin_': [4],
'top_': [8],
'end_': [12],
'state_': [16],
'type_': [17],
'objects_allocated_': [20],
'alloc_time_': [24],
'live_bytes_': [28],
'is_newly_allocated_': [32],
'is_a_tlab_': [33],
'thread_': [36],

}]

Listing 6: The Region object for Android 8, represented as a
C structure.

For this task, we developed a sub-module called the Heap that
identifies the beginning of the process heap in the Runtime ob-
ject. Dereferencing the heap address, we walk the structure to
determine the offsets for the RegionSpace and then the pointer
to the array of regions. For each recovered Region structure,
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Figure 3: DroidScraper Runtime Data Structure Recovery - Heap plugin output showing non-free regions in RegionSpace.

we walk its metadata to retrieve its index, begin address, end,
top, and the number of objects allocated. Where a region is a
Tlab region, the Heap recovers the thread offset and then uti-
lizes the ThreadListing to identify the thread name and ID.
The output of the Heap sub-module as illustrated in Figure 3
shows the offsets of the Heap and RegionSpace. The output
also shows the process has a total of 2048 regions with only
thirteen in use. The output further indicates the distribution
of the thirteen occupied regions as having nine Tlab regions
and four Non-Tlab regions.

3.2 Object Recovery and Reconstruction -
ORR

The objective of ORR module is to perform the actual re-
covery of the dynamically allocated objects. This module
leverages the extracted Runtime data structures above to iden-
tify reachable and live runtime objects and then makes the
best effort to reconstruct each object.

3.2.1 HeapDump - Object Recovery

Our next sub-module is called HeapDump. This component
is tasked with the identification and subsequent recovery of
all reachable and live objects in the non-free heap regions.
At creation, every object is associated with an object tree
which has one or more root objects. This new object is marked
reachable if it can be referenced from another reachable object.
Android uses direct references to manage Java objects and
indirect references for JNI code. Every instance of an object
allocated is derived from the Object class. The object class
contains two members - the class member which is defined
as a HeapReference to the class description of the object and
four bytes of monitor/hash information. The class definition

determines the type of the object allocated, which in turn
specifies its size. Using the algorithm defined in Algorithm 1,
the HeapDump traces each object by decoding its object class
reference to get its name and class flag which is then used to
determine the object type. The sub-module then computes the
size of the object based on the defined type. The location of
the next object is calculated based on the size of the previous
object. The output in Figure 4 prints an object offset, the class
name for the object, and the object size.

Algorithm 1: HeapDump Algorithm
1 pos = regionBegin
2 while pos < regionTop do
3 if clazz−>ResolveClass(pos)!= nullptr then
4 obj = GetObject(pos, clazz)
5 size = GetSize(obj)
6 pos = pos+size+kAlignment
7 else
8 pos = pos+kAlignment
9 end

10 end

3.2.2 Object Decoding

When a process or thread allocates an object, the class and the
size of the object are provided as parameters to the allocation
function. At a higher level, the classes can be broadly classi-
fied into four types - Primitives, Arrays, Strings, and Complex
classes. Objects in each of these classes are allocated in a
unique way and as such our decoding algorithm handles each
one of them differently, as shown in Algorithm 2.
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Figure 4: DroidScraper Runtime Data Structure Recovery - HeapDump.

[String Object]

[Complex Object]

Figure 5: DroidScraper’s DecodeObject sub-module - Recov-
ering a String object and an instance of java.net.URL.

1. Primitive - A primitive class stores basic data types. Ob-
jects in this category are allocated according to the data
type they represent. The component size for primitive
ranges from 0 for Void, 1 for Boolean and Byte, 2 for
Short and Char, 4 for Integer and Float, and 8 for Long
and Double. If an object class is of type primitive, the
data is read based on its component size.

2. Array - An object of type array holds a group of data
items of the same size beginning at a contiguous memory
location. When an object class resolved to an array, the 4
bytes after the Object’s inheritance structure is the length
of the array followed by the data offset. The total size of
an array is the sum of its metadata and the product of its
component size and length. For instance, an integer array

Algorithm 2: ObjectDecode Algorithm - GetObject-
Data(obj)

1 if clazz==Primitive then
2 len = obj−>getType()->getComponentSize()
3 else if clazz==String then
4 len = obj−>len
5 else if clazz==Array then
6 type = obj−>getType()
7 len = obj−>getComponentSize(type)
8 else
9 clazzName = obj−>getName()

10 fields[] = obj−>getFields()
11 len = fields−>getLength()
12 end
13 data = read(obj, len)

of size four will have a total size of 32 bytes including
alignment.

3. String - An object of type string is allocated by provid-
ing the length of the string encoded in a 32-bit integer
variable called count. The count is written right after the
Object’s inheritance structure, followed by the hashcode
of the string and then the beginning of the data.

4. Complex Class - This category hold instances of any
class that is not primitive, array, or string. Objects in this
category have a complex structure called Class that holds
the name of the object, its size, its class size, superclass,
fields, and methods, among other members. To decode
an object in this category, we first find the pointer to the
Art_Field structure. This structure helps us identify and
decode all the members of this instance, their names, and
offsets.

As shown in Figure 5, we developed a sub-module called the
DecodeObject that decode and reconstruct live and reachable
objects from the process memory dump.
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4 Evaluation

DroidScraper is developed as a standalone memory forensics
tool that analyzes per-process Android application memory
maps for remnants of runtime artifacts. With its generic imple-
mentation, DroidScraper can be utilized to examine process
memory directly extracted from Android devices using tools
such as memfetch [6] or indirectly generated by plugins such
as Volatility’s memdump [10], without any background knowl-
edge of the target application’s data structures. The current
version of DroidScraper is written in Python and works on
process memory images obtained from any Android device
running versions 8.0 and 8.1. The free and open source ver-
sion of this tool will be released with the publication of this
article.

4.1 Accuracy of Objects Recovery and Recon-
struction

To assess the effectiveness of our approach for object recov-
ery, we performed a series of experiments on memory images
generated across a wide variety of applications. These in-
clude six malware samples from the CICAndMal2017 dataset
[22] and VirusShare [37] and six benign applications - Sig-
nal, EvolveSMS, Keeper, Calculator Vault, Clock Vault, and
Google Chrome running the Facebook web application, all
downloaded from Google play [19].

4.1.1 Experimental Setup

Our evaluation used the Genymotion Desktop Android em-
ulator as the execution environment. With over 3000 virtual
Android device configurations and full sets of hardware sen-
sors, Genymotion can emulate real Android devices with a
high degree of accuracy [5]. We created AVDs for Google
Pixel running Android 8.1-API 27 and Google Nexus 6 and
Samsung S8 running Android 8.0-API 26. All the emulators
have 4GB memory and are equipped with one Gmail account
and a couple of fake SMS and contacts to simulate real de-
vices. Each application was then installed on a selected device
and interacted with manually by the authors to generate suffi-
cient activity. We then captured the process memory image
using Memfetch.

4.1.2 Object Recovery

To analyze the memory dumps using DroidScraper, we used
a MacBook Pro as the host system. The captured memory
images on the AVDs are pushed to the Mac using the Android
adb [2] utility. We first execute the ThreadListing to enumer-
ate all living threads and then run the Heap module to itemize
the allocated regions (Tlab and non-Tlab) and obtain an ob-
ject count per region. Finally, we run HeapDump to recover
the reachable live objects. As shown in Table 4.1, the Total

Objects column represents the cumulative total objects count
from each region. This value tallies the objects_allocated_
field of the region structure for all the non-Tlab regions and
the thread_local_objects field of each thread in the Tlab re-
gions. As mentioned in Section 3, the HeapDump module
makes the best effort to decode the type of object and its size
in an allocated memory region. However, not all objects can
be recovered as some may have been deallocated even though
the region is not collected. Nevertheless, in Android’s Region-
based memory management, a region will be completely col-
lected only if the live threshold is below 75%. Thus, for each
allocated region, the percentage recovery will be higher than
75 which in turn means the total recovery percentage for each
of the test apps must be higher than 75.

For better analysis, our recovered objects are grouped into
Primitives, Arrays, Strings, and Objects. The total of all the
recovered objects is given in the Total Recovered column. For
the measure of performance of DroidScraper, the recovery
percentage is computed as a fraction of the total recovered ob-
jects to the cumulative tally of the objects in all the allocated
regions. For each test app, the recovery percentage is given
in the % column. The average recovery percentage across all
the test applications is approximately 89.6%. This means that
DroidScraper can recover nearly 90% of all objects allocated
within the process memory space in well-structured formats.
This percentage likelihood further buttresses DroidScraper’s
ability to retrieve crucial and forensically interesting runtime
artifacts created by an Android process.

4.1.3 Object Reconstruction

From the results obtained in the object recovery above, we
performed an in-depth analysis of two samples. As a represen-
tative of the application dataset, we selected one malware and
one benign application and examined them for the presence
of any forensically interesting data.
RansomBO (com.yandex226.yandex967) - In the
analysis of this malware sample we found evi-
dence that it utilizes an instance of Chromium
org.chromium.content.browser.PopupZoomer as its main
activity View. This View is designed to automatically
terminate itself and delete the application icon after a few
seconds, changing the Animating and Showing members of
the PopupZoomer View to false. We also found evidence
of file activities in the android.app.SharedPreferencesImpl
object, where the malware opened and read data from a shared
preferences XML file called maxiettings.xml. This file con-
tains the server URL http://212.56.214.233/task.php and other
connection information. We also recovered and decoded the
com.android.okhttp.internal.huc.HttpURLConnectionImpl
object, which showed that the malware made a POST request
to the server using an instance of com.android.okhttp.Request
with the following header values:
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Applications Threads Regions Total Objects Primitives Arrays Strings Objects Total Recovered %

com.baidu.mbaby 16 3 2780 6 526 671 1235 2438 87.7
com.losg.netpack.BaApp 28 10 12493 77 2555 1929 6436 10997 88.1
com.caf.fmradio 15 7 7707 43 3016 1126 2878 7063 91.6
com.yandex226.yandex967 30 12 10346 161 2126 1547 5895 9729 94
cn.myhug.baobao 30 17 50529 133 6410 8571 12025 44297 87.7
com.easyhin.usereasyhin 31 15 29654 2847 6856 5391 29203 27139 91.5
Keeper 44 102 264237 2623 71823 39507 107348 221301 83.8
CalculatorVault 53 22 44757 271 8464 7320 23225 39280 87.8
ClockVault 87 31 99641 2428 15664 10287 60309 88688 89
EvolveSMS 24 36 33234 169 6565 6195 18530 31459 94.7
Signal 36 48 287650 129599 22671 24369 79528 256167 89.1
Chrome Browser 31 11 20628 208 3563 4566 10315 18652 90.4

’Content-Type’, ’multipart/form-data; bound-
ary="===1552903509936==="’, ’Accept’, ’applica-
tion/json’, ’http.agent’, ’User-Agent’, ’Dalvik/2.1.0 (Linux;
U; Android 8.0.0; Samsung Build/OPR6.170623.017)’

Checking for a response to this connection, we found that the
connection did not go through. The DetailedMessage member
of the java.net.SocketTimeoutException has the following
exception message:

failed to connect to /212.56.214.233 (port 80) from /10.0.3.15
(port 47488) after 5000ms.

Keeper - In the analysis of this Vault app, we found that the
application creates a database file using the email address pro-
vided by the user and then saves the hash of the user-supplied
password in the file. As contents are added to the vault, the
application queries the database for the hash, then encrypts
the data using the password hash, an initialization parameter,
and an encryption key. We found evidence of 115 instances
of javax.crypto.spec.IvParameterSpec and 152 instances of
the javax.crypto.Cipher$InitParams objects in the memory
dump. The reconstruction of each initialization vector object
(IV) reveals the 16 byte IV values in clear text. The IV value
is random and unique across all the 115 instances. For the
Initialization parameter, the javax.crypto.spec.SecretKeySpec
members show the data is encrypted using an AES algorithm
and the 32-byte key is shared across all the 152 instances.
The complete transformation of any content uses a combina-
tion of AES/CBC/PKCS7Padding for crypto, feedback mode,
and padding respectively. But the most interesting part of
this analysis is at the beginning of the first instance of IvPa-
rameterSpec, we found the database query and hash of the
password. This is then followed by the new instance of Iv-
ParameterSpec, Cipher$InitParams, and Cipher$Transform
with all the bytes in the block stored consecutively in a row.
Thus it is easy to figure out and reconstruct the original block,
the IV, the key and the transformation algorithm from the
recovered objects.

4.2 Case Study

In this part of the evaluation, we will use a case study to il-
lustrate the application of DroidScraper’s data recovery and
reconstruction for program analysis, specifically, in regenerat-
ing program control flow to prove database access based on
remnants of runtime allocations. We created a small piece of
code that queries three columns (_id, address, body) from the
SMS database as shown in Figure 6 - (1) below. The result
of this query is populated in a Cursor, and then the data is
read into a StringBuilder by moving the Cursor from the first
position to the last. As mentioned in Section 2, with region-
based memory management, objects are added at the top of a
region and the new top is calculated by adding the object byte
size to the old top. Thus, with such allocation, it is possible
to trace precise control flow of the code by examining the
objects allocations as shown in Figure 6.

Mapping the code segment (1) one-to-one with the par-
tial output of the HeapDump plugin in (2), it is noticeable
that right after the CursorWrapper object is allocated, the
StringBuilder and the subsequent strings that are used to read
the data from the Cursor were also created in the same re-
gion. Thus as shown in (9), the return string of the String-
Builder.toString() function, which contains all the messages
queried from the SMS database, is allocated at 0x12c748a0.
However, to give context to the read messages, we need to
understand how Android performs database accesses.

In order to access any database content on an Android de-
vice, the requesting application uses its Resolver object to
perform a CRUD operation. Each of the available CRUD
functions requires at least a URI and in some cases, valid col-
umn names and conditions. Based on the URI, the Resolver
sends the request to its corresponding Provider. The task of
the Provider is two-fold - it validates the URI by matching
its authority to the URI’s authority, and then performs a per-
mission check on the requesting app, after which it creates
and sends a valid SQLiteStatement to the native SQLite en-
gine for processing. Thus, based on this code segment, the
runtime creates a URI object as shown in (3), which authority
is "sms" and uriString is "content://sms/inbox". The corre-
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sponding Provider object whose authority matches that of the
SMS URI is shown in (4). Upon approval of the Resolver’s
database request, the runtime creates a CursorWrapper ob-
ject, which implements the Cursor object. The instance of
this object is allocated at address 0x12c743d0 as shown in
(5). The instance of the CursorWrapper contains pointers to
the a) Cursor object, as shown in (6), which holds the column
names, count and the data, b) Provider, as shown in (4), points
to the database currently being accessed and c) Resolver in
(7) which points to the client currently accessing the content
- in this case, the package of the test application. Thus, by
identifying data of interest, we can utilize DroidScraper to re-
generate program control flow, give context to the data within
the flow, and then reconstruct its members and inner members.

4.3 Challenges and Limitations
The primary limitation of any memory forensics techniques
on mobile devices is the ability to acquire a memory im-
age. The security design of smartphones limits user access
to low-level components and as such almost all the available
techniques currently used in practice either require rooting
the device to run sudo-based utilities such as Memfetch or cre-
ating a custom ROM and/or custom kernel module like Lime
to acquire the entire RAM image [36]. Other hardware-based
solutions are also available using JTAG [21] and recently
the work of [39] explored the use of recovery partitions for
acquiring device memory images.

Other limitations of DroidScraper include dead Objects
that have been deallocated but remain in an allocated region.
Although DroidScraper has an almost 90% recovery rate, the
remaining 10% of unrecovered objects can still pose some
limitations in identifying or giving context to data of interest.
Also, when garbage collection occurs, regions with less than
75% live percentage are collected, and every object in this
region is deallocated. While from our observations the pres-
ence of a large corpus of objects needed for rendering GUI
and other vital user data often prevents a regions’ live data
from inching below 75%, there is no obvious way to prevent
GC from happening.

5 Related Literature

Volatile memory or RAM is a core component of modern
computing devices. Every application requires some chunk of
available memory to layout its code, data, and other resources
at runtime. As instructions are executed, the runtime environ-
ment will consistently create new allocations, update existing
ones, and deallocate unused ones, as needed. This process
makes the RAM a hive of potentially interesting forensic
evidence. Furthermore, mobile phones are highly dynamic
execution environments, often driven by external events and
user interactions, resulting in many sensitive forensic artifacts
appearing only in volatile memory. As such, in this research

work, we leverage the idea of memory forensics to develop a
system that recovers and reconstructs remnants of in-memory
application data from Android userland address spaces.

Traditional memory forensics has focused largely on an-
alyzing content in kernel space [8, 9, 16]. These techniques,
while effective in recovering important artifacts such as run-
ning processes, network sockets, etc., fall short in many ways.
Because of the architecture of Android and other object-
oriented design models, focusing solely on kernel-based mem-
ory analysis fails to target key process components such as
ActivityInfo, ActivityThread, PackageManager and other ob-
jects like decrypted HttpRequests, Cursor, StringBuilder, and
Arrays.

Thus more recent memory forensics research has explicitly
targeted managed runtime recovery efforts as presented in
the work of [15, 25, 28, 35]. These techniques are designed
to recover and reconstruct data allocated on a per-process
basis. In 2011, Case presented the first approach for exam-
ining the contents of the Android Dalvik Virtual Machine
(DVM) [15]. This work was extended to cover a newer ver-
sion of Android DVM in [25]. Soares developed a technique
for extraction and analysis of contents in the Android ART
runtime allocated using the new RosAlloc memory manage-
ment scheme [35]. Much like [15,25,35], DroidScraper is also
an Android runtime-based recovery technique that specifically
targets the recovery and reconstruction of objects allocated
using the Region-based memory management. The Region-
based memory allocation is the default memory management
scheme included in the latest revision of libart beginning
2017 [17]. A prior object recovery effort targeting Region-
based memory management called RecOOP was presented in
the work of Pridgen et al. [28,29]. Unlike DroidScraper which
is designed for the Android ART, RecOOP was specifically
designed for HotSpot Virtual Machine (JVM). In addition to
the obvious architectural differences, the memory allocation
scheme and its corresponding garbage collection mechanisms,
which determine the base runtime data structures and the lay-
out of objects, are entirely different.

Other widely adopted memory forensics techniques in prac-
tice include generic memory scanning with utilities such as
strings and jbgrep. These methods are often employed for
identifying textual data in allocated or insecurely deallocated
memory spaces [26, 40]. However, due to various program
obfuscation techniques and the general complexity of pro-
grams, the data of interest may not be layed out sequentially.
In addition, considering that these techniques are oblivious of
the memory allocation scheme, the recovered data often lacks
context. With DroidScraper, the recovery and reconstruction
effort is designed based on a specific Android memory al-
location scheme. This system identifies and decodes crucial
runtime data structures that hold the definitions, metadata, and
accounting information of allocated objects. Other specialized
memory scanning techniques have targeted more specific data
structure other than strings [7,14,18,23,24,27,34,38]. These
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Process

@ Address 0x12c743d0 - Object Size 28
FieldName - mCursor  - Landroid/ database/ Cursor ; offset 8
Data --- 0x12c740e0
FieldName - mCloseGuard - Ldalvik/ system/ CloseGuard; offset 12
Data --- 0x6ff7e540
FieldName - mContentProvider  - Landroid/ content/ IContentProvider ; offset 16
Data --- 0x12c74010
FieldName - mProviderReleased - Ljava/ ut il/ concurrent/ atomic/ AtomicBoolean; offset 20
Data --- 0x12c74418
FieldName - this$0 - Landroid/ content/ ContentResolver ; offset 24 
Data --- 0x13d88cd8

ContentResolver  resolver  = getContentResolver();
Ur i smsURI = Ur i.parse("content:/ / sms/ inbox");
Str ing[] cols = new Str ing[] { "_id" , "address" , "body"  };
Cursor  c = resolver .query(smsURI, cols, null, null, null);
int num = c.getCount();
Str ingBuilder  smsAll = new Str ingBuilder();
if (c.moveToFirst()) {
    for  (int i = 0; i < totalSMS; i++) {
smsAll.append(c.getStr ing(c.getColumnIndexOrThrow("_id" )));
        smsAll.append(" :" );
        smsAll.append(c.getStr ing(c.getColumnIndexOrThrow("address")));
        smsAll.append(" :" );
        smsAll.append(c.getStr ing(c.getColumnIndexOrThrow("body")));
        c.moveToNext();
     }
}

@ Address 0x12c739f0 - Object Size 21
FieldName - connection - Landroid/ os/ IBinder ; offset 8
Data --- 0x12c74020
FieldName - info - Landroid/ content/ pm/ Provider Info; offset 12
Data --- 0x12c73a08
FieldName - noReleaseNeeded - Z offset 20
Data --- 0
FieldName - provider  - Landroid/ content/ IContentProvider ; offset 16
Data --- 0x12c74010

@ Address 0x12c73a08 - Object Size 95
FieldName - applicat ionInfo - Landroid/ content/ pm/ Applicat ionInfo; offset 44
Data --- 0x12c73ad8
..........
FieldName - name - Ljava/ lang/ Str ing; offset 12
Data --- 0x12c73a68
..........
FieldName - author ity - Ljava/ lang/ Str ing; offset 64
Data --- 0x12c73f68
..........
FieldName - wr itePermission - Ljava/ lang/ Str ing; offset 80
Data --- 0x0

@ Address 0x12c73a68
The data for  java.lang.Str ing is com.android.providers.telephony.SmsProvider

@ Address 0x12c73f68
The data for  java.lang.Str ing is sms

@ Address 0x12c74428 - Object Size 16
FieldName - count - I offset 12
Data --- 140
FieldName - value - [C offset 8
Data --- 0x12c746c8

@ Address 0x12c748a0
The data for  java.lang.Str ing is 1:5556:Checking for  
Ransomeware3:5051119999:This is a test to see if the malware steals 
this message

Address 0x12c743d0 java.lang.Class - android.content.ContentResolver$CursorWrapper Inner  28
Address 0x12c743f0 java.lang.Class - java.lang.ref.FinalizerReference 36
Address 0x12c74418 java.lang.Class - java.ut il.concurrent.atomic.AtomicBoolean 12
Address 0x12c74428 java.lang.Class - java.lang.Str ingBuilder  16
Address 0x12c74438 java.lang.Class - [C 44
Address 0x12c74468 java.lang.Class - java.lang.Str ing 17
Address 0x12c74480 java.lang.Class - java.lang.Str ing 26
Address 0x12c744a0 java.lang.Class - java.lang.Str ing 53
Address 0x12c744d8 java.lang.Class - [C 112
Address 0x12c74548 java.lang.Class - java.lang.Str ing 17
Address 0x12c74560 java.lang.Class - [C 216
Address 0x12c74638 java.lang.Class - java.lang.Str ing 26
Address 0x12c74658 java.lang.Class - java.lang.Str ing 53
Address 0x12c74690 java.lang.Class - java.lang.Str ing 17
Address 0x12c746a8 java.lang.Class - java.lang.Str ing 26
Address 0x12c746c8 java.lang.Class - [C 424
Address 0x12c74870 java.lang.Class - java.lang.Str ing 43
Address 0x12c748a0 java.lang.Class - java.lang.Str ing 156

@ Address 0x12c73820 - Object Size 56
.........
FieldName - author ity - Landroid/ net/ Ur i$Par t; offset 20
Data --- 0x12c738a0
.........
FieldName - ssp - Landroid/ net/ Ur i$Par t; offset 40
Data --- 0x0
FieldName - ur iStr ing - Ljava/ lang/ Str ing; offset 44
Data --- 0x12c737f8

@ Address 0x12c738a0 - Object Size 16
FieldName - decoded - Ljava/ lang/ Str ing; offset 8
Data --- 0x12c739c8
FieldName - encoded - Ljava/ lang/ Str ing; offset 12
Data --- 0x12c73888

@ Address 0x12c737f8
The data for  java.lang.Str ing is content:/ / sms/ inbox

@ Address 0x12c739c8
The data for  java.lang.Str ing is sms

@ Address 0x13d88cd8 - Object Size 32
FieldName - mContext - Landroid/ content/ Context; offset 8
Data --- 0x13d82040
FieldName - mPackageName - Ljava/ lang/ Str ing; offset 12
Data --- 0x13d88ca0
FieldName - mRandom - Ljava/ ut il/ Random; offset 16
Data --- 0x13d9e9f0
FieldName - mTargetSdkVersion - I offset 20
Data --- 26
FieldName - mMainThread - Landroid/ app/ ActivityThread; offset 24
Data --- 0x13d822d8
FieldName - mUser  - Landroid/ os/ UserHandle; offset 28
Data --- 0x7012ba20

@ Address 0x13d88ca0
The data for  java.lang.Str ing is com.example.aishacct.myapplicat ion

@ Address 0x12c740e0 - Object Size 77
FieldName - mWindow - Landroid/ database/ CursorWindow; offset 56
Data --- 0x0
FieldName - mClosed - Z offset 52
Data --- 1
...............
FieldName - mColumns - [Ljava/ lang/ Str ing; offset 64
Data --- 0x12c742c0
FieldName - mCount - I offset 72
Data --- 3
.............
FieldName - mWantsAllOnMoveCalls - Z offset 76
Data --- 0

@ Address 0x12c742c0 - Array Size 3 - Object Size 15
The array data for  [Ljava.lang.Str ing; is ['_id', 'address', 'body']
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Figure 6: Proving database access using DroidScraper’s Object Recovery and Reconstruction modules.

approaches require prior definitions of the data structures or
the profile of its members. With DroidScraper, no knowledge
of the application data structures or objects is required.

As an alternative to raw memory analysis, [13,30–33] have
employed system instrumentation or special-purpose runtime
tracing of object allocations. DSCRETE is a content reverse
engineering technique that reuses application logic from a
target application extracted previously using Intel PIN to scan
and render in-memory data structures [33]. [31] leverages
memory images of Android device cameras to recover pho-
tographic images. Saltaformaggio et al. proposed GUITAR
- a tool that rebuilds and redraws an app GUI from smart-
phone memory images based on the low-level definition of
the Android GUI framework [30]. The authors further ex-
tend this work with a more advanced memory forensic tech-
nique that performs spatial-temporal recreation of screens of
Android apps from memory images [32]. Bhatia et al. pre-
sented Timeliner - an AOSP plugin that identifies and recovers

residual data structures [13]. Timeliner infers user-induced
transitions between corresponding activities by building a
transition graph and then reconstructing a cross-app Activity
timeline. In comparison with these related efforts, our con-
tribution is an app-agnostic technique that is not limited to
any special-purpose scenario. DroidScraper is a generic ap-
proach that can recover any kind of in-memory object such
as activity data, network structures, messages etc. without the
need for instrumentation or modification of the AOSP code.
Furthermore, DroidScraper does not require prior definitions
of low-level GUI structures to extract in-memory GUI objects
such as Views.

6 Future Work

Currently, DroidScraper’s object recovery mechanism ex-
tracts and dumps nearly 90% of reachable and live objects
from a process memory space. Depending on the type of ap-
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plication, these objects can range from as little as 2000 to
as many as 250,000 objects. With such large sets of objects,
looking for forensically interesting data can be a tedious pro-
cess. Although the layout of the region-based allocation helps
tremendously in tracing and predicting control flow, a more au-
tomated approach to program reconstruction is needed. Thus
as part of our future work, we will develop an automated
system that can reconstruct an application’s components by
mapping the allocated objects to the code section of the appli-
cation. This automated process will help us generate a proper
execution path, reconstruct the GUI, and trace other program
segments, such as background services. Furthermore, we are
currently working to extend DroidScraper to cover Android
9 and 10.

7 Conclusions

As mobile devices continue to evolve, program analysis re-
mains crucial for forensics investigations. From cybercrime to
malware and vulnerability analysis, userland memory foren-
sics can provide a better alternative to traditional techniques
especially in multi-stack architecture. In this paper, we pre-
sented DroidScraper - a userland in-memory object recov-
ery and reconstruction system that recovers the remnant of
runtime artifacts from Android process memory space. The
evaluation of DroidScraper has shown that it can recover in-
memory data allocated using Android’s region-based memory
allocation with a recovery percentage of almost 90%. In ad-
dition, DroidScraper can reconstruct and give context to the
extracted objects, which in practice can be utilized for detect-
ing evidence of file and network activities, database accesses
as well as recovery of cryptographic keys.
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