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Abstract: Millions of malware samples are recorded daily with little or no information about their activity or 
behavior. As of 2019, recorded malware passed the billion mark according to a report from AV-Test from July 
26, 2020. VirusTotal, an online malware scanner, reported over 1.4 million distinct new malware samples for 
seven days and over 2.3 million submissions on July 22, 2020 alone. As the arms race between malware 
authors and security professionals continues, it is imperative that we have better methods for detecting 
malware and for gaining better insight into malware behaviors. Memory forensics has emerged as a very 
promising set of techniques for detecting malware and analyzing malicious behavior. Memory forensics 
techniques can be used to detect code injection, hooks that malware places to monitor system activities, 
persistence mechanisms, and much more. There is, however, a critical need for ground truth data for both 
memory forensics investigations and to support new research in the area. For investigators, ground truth is 
essential in distinguishing "normal" from "malicious". For researchers, memory forensics frameworks must 
carefully model important data structures and algorithms, which is both difficult and frequently dependent on 
specific versions of operating systems and applications. Ground truth provides essential data to support testing 
and verification. Currently, there are no large-scale repositories that provide "known clean" memory captures 
for investigators to compare against those from potentially infected systems nor for developers to confirm 
their tools work correctly. Development of a large-scale, freely available, repository of memory captures is 
therefore crucial. MemForC is an open-source framework of techniques designed to create a corpus of 
memory captures from the successful execution of malware in Windows, Linux, and MacOS systems. MemForC 
is designed using best practices for creating a dynamic analysis system and leverages existing memory forensic 
tools. This repository will provide ground truth for investigators, allow malware research: to proceed quickly, 
be reproduceable and verifiable, enhance education and training to meet the demand for skilled memory 
forensics professionals. Our corpus will be freely available to the forensics community. 
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1. Introduction 
The battle between security professionals and malware authors continues (Vasilescu, Gheorghe, Tapus, 2014; 
Ugarte-Pedrero, Graziano, Balzarotti, 2019) with malware authors having the upper hand. Miller et al (2017) 
found that in five years, new malware samples per year had risen from just under 100 million in 2012 to over 
500 million in 2016. A report from AV-Test as of December 2, 2019 shows that new malware has continued to 
increase annually with over 700 million new samples in 2017 to over 980 million in 2019 and still counting (AV-
Test, 2019). VirusTotal (2019), an online malware scanner, reported over one million distinct malware samples 
for seven days from November 24–30, 2019. There were over 2.3 million submissions on July 22, 2020 alone 
and over 1.4 million distinct new malware samples for seven days from July 20-30, 2020 (VirusTotal, 2020). 
 
As malware threats rapidly grow, traditional signature-based detection schemes are no longer sufficient for 
detecting new variants, particularly highly targeted malware (Mosli et al., 2016). Typically, a signature for a 
malware sample is created manually after a  security professional analyzes the sample to discover the threat(s) 
it poses to users (Egele et al., 2008). Despite the growing awareness of the threats posed by malware, there is 
still a  wide gap in technological response, frameworks, tools and support to mitigate against malware and its 
authors (Harichandran et al., 2016). The only way that security professionals will be able to respond to the 
enormous amount of malware that is being developed will be by using more sophisticated and automated 
tools (Miller et al., 2017). The ability to accurately and efficiently analyze samples at scale will provide 
interesting insights and trends about malware evolution (Ugarte-Pedrero, Graziano, Balzarotti, 2019). Using 
static analysis (Dolly et al., 2014; Vasilescu, Gheorghe, Tapus, 2014), which are manual methods such as 



 
 

disassembly or reverse engineering to combat malicious software, will ultimately be impractical given the 
volume of malware samples generated daily (Willems, Holz, Freiling, 2007). Therefore, analysis tools must 
analyze malware automatically, correctly, and effectively. Dynamic analysis schemes can execute and observe 
malware in a controlled environment to determine what actions it performs (Dolly et al., 2014; Vasilescu, 
Gheorghe, Tapus, 2014; Willems, Holz, Freiling, 2007). The results obtained can also be compared to 
uninfected systems to better understand the behavior of the malware. Dynamic analysis also allows other 
useful data to be created, particularly dumps of physical memory, which can be further analyzed by existing 
memory  forensic tools such as Volatility (2019). This is of particular importance, as memory forensics offers 
numerous advantages over traditional malware analysis methods. Importantly, memory “has a high potential 
to contain malicious code from an infection, in whole or in part, even if it’s never written to disk, because it 
must be loaded in memory to execute” (Ligh et al., 2014). 
 

1.1 Challenges and Motivation 

To increase the breadth, scope, and accuracy of memory forensics tools to support development and testing of 
new memory forensics techniques, and for training purposes, there is a critical need for substantial, realistic  
datasets with associated ground truth. There are several important issues that will be addressed by the 
creation of a large corpus of memory images: 

• There are restrictions on forensic research due  to  the lack of freely available, standardized datasets 
(Garfinkel et al., 2009). Often, researchers spend time generating memory datasets for memory 
forensics (MF) research. For example, Case and Richard III (2015) generated memory samples for their 
OS X rootkit detection research due to the lack of variety in available memory samples for macOS 
memory forensics research. 

• Reproducibility continues to be the bane of digital forensics and memory forensics. Reproducibility is 
a key factor in scientific research and the way to validate results produced by other researchers 
(Garfinkel et al., 2009). Reproducibility  in forensics research has been difficult due to lack of quality 
datasets, small sizes of the datasets, and a reluctance to share the datasets, as they are often created 
in an ad-hoc fashion that might leak private information. 

• Lack of maintenance/updates to dataset repositories for digital forensics (DF), such as the popular 
Digital Corpora (digitalcorpora.org) – one of the first free online dataset repositories for digital 
forensics that is no longer maintained (Grajeda, Breitinger, Baggili, 2017). 

Since realistic datasets are often non-existent or unsuitable for education, training, and research purposes due 
to the presence of information that is confidential (Woods et al., 2011), we attempt to bridge that gap with 
MemForC. The major contribution of this paper is to overcome the lack of realistic datasets for memory 
forensics and to provide a large corpus that does not include privacy-sensitive information.  Furthermore, it 
can be  freely shared to push the state of the art without concern for either  privacy rights or copyright (Woods 
et al., 2011). This paper introduces MemForC – Memory Forensics Corpus Creation for Malware Analysis, a 
framework for creating  a corpus of memory samples that utilizes best practices culled from existing research 
for malware analysis, tools, and data curation. MemForC will automatically infect machines using the Cuckoo 
Sandbox  (Cuckoo, 2019) and produce associated uninfected memory dumps (ground truth), copies of infected  
memory dumps, and a comparative malware analysis contrasting the findings of Cuckoo and memory forensics 
tools such as Volatility. The contribution may be summarized as follows: 

1) We create a corpus of memory dumps associated with dynamically analyzed malware. 

2) In addition to the memory dumps, provide a comparative analysis between results from the de-facto 
memory forensics framework, Volatility, and Cuckoo Sandbox – a commonly used dynamic analysis 
framework. The research questions for this project include: 

• What are the best ways and tools to obtain and store behavioral information from malware of all 
types and variants effectively? 



 
 

• What is the accuracy and efficiency of MemForC for malware analysis?  

The rest of this paper is organized as follows: Section 2 presents an overview of related work. Section 3 
introduces our research methodology. Section 4 presents the results and discussion. Section 5 discusses  
possibilities  for future work and concludes the paper. 

2. Background/Related Work 
According to Garfinkel, Farrell, Roussev, and Dinot (2009), DF focuses on data extraction and evidence for 
presentation in court. Content is copied from a hard drive to a disk image file. The disk image file is searched 
for document files that are then presented as evidence to an examiner (Garfinkel et al., 2009). Memory 
analysis has its roots in the early 2000s, when digital forensics investigators realized that they could acquire 
memory directly from a running system through previously available interfaces (Case, Richard III, 2017). MF is 
an area of DF that provides “unprecedented visibility to the runtime state of a system” (Ligh et al., 2014). This 
means access to running processes, open network connections, recently executed commands, disk encryption 
keys, etc. This is possible because each function performed on an operating system or application makes 
changes to a computer’s RAM, thereby preserving it. The contents of RAM supports reconstruction of events 
that took place, essentially providing strong correlation for traditional forensics artifacts (Ligh et al., 2014; 
Vasilescu et al., 2014).  
 
Grajeda, Breitinger, and Baggili (2017) detailed the current state of affairs of datasets in the DF and MF 
domains. They address the importance of available datasets for MF, document the origin, kind, and availability, 
and what is missing from the datasets located via web searches. Their research finds that 56.4% of datasets are 
experimentally generated, while 36.7% are real world data. Only 3.8% of the academic articles they covered 
from 2010-2015 released their datasets. They have culled working locations of different datasets for DF that 
are updated regularly via the following site: https://datasets.fbreitinger.de/. This illustrates the serious lack of 
real datasets for MF research, education, and training. 
 
Woods et al. discuss the lack of existing constructed realistic corpora that mimic real data without associated 
privacy and security concerns.  They contribute to the solution by their creation and distribution of more than 
40 digital forensic images, packet dumps, and memory images. These sets are free of privacy-sensitive 
information and can be utilized without IRB approval, and are freely redistributable without concern for either 
privacy rights or copyright (Woods et al., 2011). Mirroring a solution to these concerns is fundamental to the 
design of MemForC. Miller et al. (2017) highlight best practices and insights from constructing a scalable 
dynamic analysis platform, which could be used by digital forensics examiners to respond to the sheer amount 
of malware being developed annually.  The authors utilize Cuckoo sandbox for dynamic analysis, spoofed 
internet access via INetSim, and provided a host of lessons they learned along the way (Miller et al., 2017). The 
work of the authors focuses primarily on experiments to improve configuration settings of the Cuckoo sandbox 
to process malware samples quickly and accurately. MemForC’s primary aim is to create a corpus of memory 
dumps of infected machines. MemForC does not utilize Cuckoo for the memory dump creation process. 
MemForC utilizes a stand-alone virtual machine (VM) to execute a sample and capture a memory dump while 
leveraging the useful lessons learned by Miller et al. (2017) for improving dynamic analysis. Harichandran et 
al., (2016) highlight the general public concern about support lagging behind the escalating rate of malware 
authorship, the slow technological response, slow development of analysis frameworks and tools. They 
highlight the top five issues in computer forensics: education/training/certification, technologies, encryption, 
data acquisition, and tools. The authors highlight that education/training/certification and technology for 
cyber forensics hold the highest opportunities for growth. MemForC aims to meet those opportunities for 
growth by providing a framework that works efficiently, accurately, and is free. The much-needed corpus 
created by MemForC has the potential to substantially improve training, education, and research, as realistic 
datasets will be readily and freely available.  As we determine which sandbox platform will suit our purposes, 
we consider the platform’s open-source capabilities, active development, maintenance, and it meeting the 
requirements of a good sandbox: visibility, resistance to detection, and scalability, according to Kruegel (2014). 
No sandbox will ever be fully resistant to detection as malware authors continue to provide variants and 
updates to evade tools such as sandboxes and anti-virus software (Lindorfer et al., 2012). It should be noted 
that sandbox evasion techniques by malware are well documented (Lindorfer et al., 2011a; Lindorfer et al., 
2012b; Ugarte-Pedrero, Graziano, Balzarotti, 2019). To analyze, extract and store behaviorial artifacts or 
information about malware, a sandbox strategy that offers the best possible results is our pursuit for 



 
 

MemForC. Below are other sandbox systems also highlighted by Miller et al. (2017) and their current status: 
Anubis – web-based and currently offline; CWSandbox – commercial; Norman Sandbox – commercial and now 
part of AVG Technologies (AVG, 2019); Joebox (Joe-Security, 2019) – commercial. Other systems, such as 
Ether, WILDCat, Panorama, TEMU, have either no source code or are not maintained. Cuckoo sandbox was 
chosen because it is open-source, robust, and meets other criteria for a good sandbox. It also is very popular in 
the malware analysis community (Miller et al., 2017). Volatility is popular within the incident response and 
malware analysis communities and has the most robust support for Windows and other operating systems, 
especially for malware detection and analysis (Case, Richard III, 2015). We thus utilize Volatility as part of our 
framework MemForC. 
 

3. Research Methodology 
To create realistic datasets for memory forensics, memory dumps and accurate behaviorial data must be 
captured. We have to provide all the resources that malware needs to run and the semblance of a ’real’ 
system to deter the malware from employing anti-analysis antics during execution. If the malware obfuscates 
its behavior or refuses to run then its behavior eludes capture of artifacts in RAM and associated analysis. To 
ensure that malware reveals its true behavior for capture and analysis, we employ several techniques such as 
anti-VM detection, VM-hardening, anti-sandbox detection and specific system configurations to improve 
malware execution. This section describes our proposed framework MemForC. It consists of several modules: 
infection module with Cuckoo Sandbox and VMware; the memory analysis module with Volatility; and the 
comparative analysis module.  At the end of a run, memory dumps are created from the infection module for 
the corpus and result of the comparative analysis module identifies the behavior of the malware sample based 
on the following artifacts and interactions: APIs, files, registry, mutexes, and network. Figure. 1 provides an 
overview of MemForC. 
 
 

 
 
Figure 1: MemForC Architecture 
 

3.1 Module 1 - Infection & Execution 

3.1.1 Cuckoo Infection 

MemForC currently utilizes an Ubuntu 18.04 LTS 64-bit system with 64GB of RAM and 12 cores as the host in a 
bidirectional setup with the analysis and agent VMs. Figure 2 (Cuckoo, 2019) illustrates the setup we utilized. 
VMware is our virtualization software of choice and VMware tools are intentionally not installed for Cuckoo 
analyses due to footprint and anti-VM detection consequences. We employ this strategy since malware can 
terminate execution or provide a different behavior if it detects it is being run in a VM. The Cuckoo host allows 
the submission of files to be run in an isolated environment in a VM. A sample is sent to the agent VM from 
the host machine to be executed. Cuckoo first reverts the VM to a base snapshot prepared previously and not 
infected by malware. It then executes the malware in a VM (Miller et al., 2017; Cuckoo, 2019) that is hardened 
to obfuscate tell-take signs of virtualization. As the sample executes, the Cuckoo host (our Ubuntu system) 



 
 

collects information about the behavior of the malware on the host from categories such as: API calls, network 
traffic, files, mutexes, and registry keys accessed. 
 

 
 
Figure 2:  Cuckoo (Cuckoo, 2019) setup utilized for MemForC 
 
We are currently concentrating our efforts primarily on Windows malware.  The agent VM - the system 
infected with malware - has the following characteristics: Windows 7 SP1 32-bit, 7GB of RAM, and 2 CPU cores. 
Installed are: AdobeReader DC, Adobe Flash 11, browsers: Chrome 78 and Firefox 66.01, 7zip, Python 2.7, 
Python PIL 1.1.7, Microsoft .Net Framework 4.61, and Visual C++: 2005, 2008, 2010, 2012, 2013, and 2015. 
Disabled are: Window User Account Control (UAC), firewall, auto updates, Microsoft malicious software 
removal tool and no antivirus was installed. To harden the agent, the following actions are taken: 
 

• Remove/replace registry traces of VM software 

• No installed VMware Tools 

• Change VM MAC address and network interfaces from default 

• Add/delete files, change desktop background, and have system appear to be in use by actual user(s) 

• Before taking a snapshot, VM uptime set at least 30 minutes to avoid failure of tests for VM or 
sandbox evasion 

• Ensure that our VM has sufficient resources and speed to prevent malware anti-analysis due to the 
VM being slower than a real system (Lindorfer et al., 2011) 

We validate our VM-hardening and anti-VM detection using the Paranoid Fish (Ortega, 2019) – a tool for 
identifying sandboxes, analysis environments and common malware techniques to fingerprint systems (Miller 
et al., 2017).  Although no system can ever be fully hardened against VM detection, we apply our best 
knowledge and de-facto techniques for hardening. 

3.1.2 VM-Only Infection  

In this section, instead of utilizing Cuckoo as the environment for execution of malware and obtaining 
behavioral info, we utilize a Windows VM with almost the same machine specifications as the Cuckoo agent 
VM. We install VMWare Tools as it is necessary for submission and enabling execution of our samples in our 
solution. It is also hardened in a similar manner without losing functionality. We keep a copy of this VM that is 
uninfected as ground truth. We created a script (Ligh et al., 2010) that copies the malware from a location on 
the host to the VM. It executes the malware for 30 seconds and then suspends the VM to create a memory 



 
 

dump. This memory dump is added to storage, building our corpus. This memory dump is slated for further 
analysis to extract interactions and behavior in Module 2 - MF analysis.  

3.2 Module 2 - Memory Forensics  

At this stage of analysis, we are equipped with a memory image from the execution of the malware sample in 
the VM. We process this memory dump with the popular MF framework, Volatility, to obtain behavioral info 
about the malware sample. 

We currently utilize the following Volatility plugins (Volatility, 2019): 

• Atomscan - Obtain atom tables 

• Filescan - Obtain file objects 

• Hivelist - Obtain registry hives 

• Printkey - Obtain a registry key, its subkeys and values 

• Mutantscan - Obtain mutex objects 

• Netscan - Obtain connections and sockets 

The results obtained from these plugins will be utilized in a comparative analysis with the behavioral 
information obtained from Module 1 - Cuckoo infection & execution. 

3.3 Module 3 - Comparative Analysis 

This is the final processing module of MemForC. This module will provide results about the behavior of a 
malware sample based on analysis from Volatility and Cuckoo Sandbox. Specifically, the results from the 
analysis via Cuckoo (Module 1 – Cuckoo infection) are compared for similarity with the results in Module 2 – 
MF with Volatility. An API listing from the Microsoft Development Center (Microsoft, 2019) is culled for the 
following API categories: 

• Filenames - fileapi.h 

• Mutexes - synchapi.h 

• Network/IP - winsock2.h & ws2tcpip.h 

• Registry - winreg.h 

The culled API call functions are searched for within the results from the Cuckoo analysis for each category. 
These categories are compared for similarities with those results obtained from the results obtained via 
Volatility analysis in Module 2. For instance, are there common file APIs and files found via Module 2 and 
Module 1 – Cuckoo infection results? Similar findings reveal that platforms (Cuckoo and Volatility) found 
similar artifacts and that the behavior of the malware was replicated in both scenarios. If the comparative 
processing reveals dissimilarities, then it could mean that the behavior of the malware was dissimilar in both 
scenarios and its true behavior was revealed in one scenario but not the other. This would require further 
research and reviewing the result files and logs to determine the possible reasons. The results of this phase of 
MemForC are stored in the corpus along with the memory dump. 

 

4. Preliminary/Experimental Results and Discussion 
We performed preliminary tests of MemForC with seven samples, all Windows executables. One of the 
executables was obtained from the GitHub repository, theZoo (theZoo, 2019) and the others were randomly 



 
 

selected from our own large corpus of malware samples to be analyzed via MemForC. The summary of results, 
as illustrated in Table 1, are promising, as the samples ran successfully and with our scripts we were able to 
provide comparative results for files, network and registry artifacts. We executed all samples in a private 
network without an internet connection as a safety measure. It is well established that malware will morph its 
behavior, stay dormant, or maybe even not execute at all if no network is detected. We are aware that this as 
well as other anti-analysis techniques by malware will affect the veracity of the results obtained. 
 
We executed each of these samples via MemForC and Cuckoo Sandbox and compared results but importantly, 
also saved a memory dump from the execution of each sample when executed through the MemForC 
framework. Figures 3-7 illustrate some of the results obtained from execution of malware samples via the 
MemForC framework. 
 

Analysis Summary 
Sample Malware Sample Sandbox Execution 

ID Type Name Cuckoo Results MemForC Results 
1 EXE vKazy.exe1 Yes Yes Yes Yes 
2 PE32 EXE 10546d23653_a60a5375b9 Yes Yes Yes Yes 
3 PE32 EXE 24f133fc78f_209dbd524c Yes Yes Yes Yes 
4 PE32 EXE 24f89cad806_b2a7f45fef Yes Yes Yes Yes 
5 PE32 EXE 4008bdb3310_85c1da0d11 Yes Mixed Yes Yes 
6 PE32 EXE 960a6d242ac_50fa9da858 Yes Mixed Yes Yes 
7 PE32 EXE cbb12f29999_d82f1e5bde Yes Yes Yes Yes 

Table 1:  Summary Comparative Analysis. 1Sample from theZoo (theZoo, 2019), others taken randomly from 
corpus of malware samples available to our lab and names shortened for brevity. 
 
From Table 1, although all samples executed, samples 5 and 6 are labelled as mixed, because when executed 
using Cuckoo, they both turned up no APIs from our targeted list.  This issue is currently under investigation.  
Figure 3 shows the result with sample 5 and Figure 4 shows successful results using sample 4.  
 

 
Figure 3:  Sample 5 Comparative API listings between MemForC and Cuckoo (Cuckoo, 2019) 
 

 
Figure 4:  Sample 4 Comparative API listings between MemForC and Cuckoo (Cuckoo, 2019) 

 
Samples 5 and 6 provide limited data from their execution via Cuckoo which in turn leads to limited 
comparable artifacts from the results obtained by MemForC. Figure 6 for instance illustrates file artifacts found 
by MemForC but not identified via execution in Cuckoo. 
 



 
 

 
Figure 5:  File artifacts for Sample 2 identified by both Cuckoo (Cuckoo, 2019) and MemForC 

 

 
Figure 6:  MemForC file interactions not identified by Cuckoo (Cuckoo, 2019) 
 

 
Figure 7:  Common network artifacts identified by both Cuckoo (Cuckoo, 2019) and MemForC 

 
We acknowledge that many more samples need to be analyzed to validate and verify MemForC’s accuracy and 
robustness. We currently are continuing to improve MemForC as we evaluate new malware samples, to 
increase speed, efficiency, and storage space, as our ultimate goal is to create a very large repository. 

 

5. Conclusion and Future Work 
In this paper we present MemForC, a framework to create a corpus of memory dumps that have been 
successfully infected with malware. We also store the associated ground truth for each malware sample that 
we execute on our framework. We utilize virtual machines and best practices according to Miller et al (2017) 
to create our framework. MemForC is designed to support filling current gaps in the memory forensics arena, 
by creating freely available, realistic datasets, free of personal identifiable information, which are suitable for 
education, training, and research.   
 



 
 

Our future work involves optimization of the framework and finding better ways to ensure that MemForC 
accurately executes malware to expose its behaviour in an efficient and timely manner. We also intend to 
expand the analysis to include other versions of the Windows operating system and to target other operating 
systems.  
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