

MemForC: Memory Forensics Corpus Creation for Malware Analysis
Augustine Orgah1, Golden Richard III PhD1, Andrew Case2
1Department of Computer Science, Louisiana State University, Baton Rouge, USA
2Department of Research, Volexity, Reston, USA
aorgah1@lsu.edu
golden@cct.lsu.edu
andrew@dfir.org

Abstract: Millions of malware samples are recorded daily with little or no information about their activity or
behavior. As of 2019, recorded malware passed the billion mark according to a report from AV-Test from July
26, 2020. VirusTotal, an online malware scanner, reported over 1.4 million distinct new malware samples for
seven days and over 2.3 million submissions on July 22, 2020 alone. As the arms race between malware
authors and security professionals continues, it is imperative that we have better methods for detecting
malware and for gaining better insight into malware behaviors. Memory forensics has emerged as a very
promising set of techniques for detecting malware and analyzing malicious behavior. Memory forensics
techniques can be used to detect code injection, hooks that malware places to monitor system activities,
persistence mechanisms, and much more. There is, however, a critical need for ground truth data for both
memory forensics investigations and to support new research in the area. For investigators, ground truth is
essential in distinguishing "normal" from "malicious". For researchers, memory forensics frameworks must
carefully model important data structures and algorithms, which is both difficult and frequently dependent on
specific versions of operating systems and applications. Ground truth provides essential data to support testing
and verification. Currently, there are no large-scale repositories that provide "known clean" memory captures
for investigators to compare against those from potentially infected systems nor for developers to confirm
their tools work correctly. Development of a large-scale, freely available, repository of memory captures is
therefore crucial. MemForC is an open-source framework of techniques designed to create a corpus of
memory captures from the successful execution of malware in Windows, Linux, and MacOS systems. MemForC
is designed using best practices for creating a dynamic analysis system and leverages existing memory forensic
tools. This repository will provide ground truth for investigators, allow malware research: to proceed quickly,
be reproduceable and verifiable, enhance education and training to meet the demand for skilled memory
forensics professionals. Our corpus will be freely available to the forensics community.

Keywords: Memory Forensics, Malware Analysis, Volatility, Dynamic Analysis, Corpus Creation

1. Introduction
The battle between security professionals and malware authors continues (Vasilescu, Gheorghe, Tapus, 2014;
Ugarte-Pedrero, Graziano, Balzarotti, 2019) with malware authors having the upper hand. Miller et al (2017)
found that in five years, new malware samples per year had risen from just under 100 million in 2012 to over
500 million in 2016. A report from AV-Test as of December 2, 2019 shows that new malware has continued to
increase annually with over 700 million new samples in 2017 to over 980 million in 2019 and still counting (AV-
Test, 2019). VirusTotal (2019), an online malware scanner, reported over one million distinct malware samples
for seven days from November 24–30, 2019. There were over 2.3 million submissions on July 22, 2020 alone
and over 1.4 million distinct new malware samples for seven days from July 20-30, 2020 (VirusTotal, 2020).

As malware threats rapidly grow, traditional signature-based detection schemes are no longer sufficient for
detecting new variants, particularly highly targeted malware (Mosli et al., 2016). Typically, a signature for a
malware sample is created manually after a security professional analyzes the sample to discover the threat(s)
it poses to users (Egele et al., 2008). Despite the growing awareness of the threats posed by malware, there is
still a wide gap in technological response, frameworks, tools and support to mitigate against malware and its
authors (Harichandran et al., 2016). The only way that security professionals will be able to respond to the
enormous amount of malware that is being developed will be by using more sophisticated and automated
tools (Miller et al., 2017). The ability to accurately and efficiently analyze samples at scale will provide
interesting insights and trends about malware evolution (Ugarte-Pedrero, Graziano, Balzarotti, 2019). Using
static analysis (Dolly et al., 2014; Vasilescu, Gheorghe, Tapus, 2014), which are manual methods such as

disassembly or reverse engineering to combat malicious software, will ultimately be impractical given the
volume of malware samples generated daily (Willems, Holz, Freiling, 2007). Therefore, analysis tools must
analyze malware automatically, correctly, and effectively. Dynamic analysis schemes can execute and observe
malware in a controlled environment to determine what actions it performs (Dolly et al., 2014; Vasilescu,
Gheorghe, Tapus, 2014; Willems, Holz, Freiling, 2007). The results obtained can also be compared to
uninfected systems to better understand the behavior of the malware. Dynamic analysis also allows other
useful data to be created, particularly dumps of physical memory, which can be further analyzed by existing
memory forensic tools such as Volatility (2019). This is of particular importance, as memory forensics offers
numerous advantages over traditional malware analysis methods. Importantly, memory “has a high potential
to contain malicious code from an infection, in whole or in part, even if it’s never written to disk, because it
must be loaded in memory to execute” (Ligh et al., 2014).

1.1 Challenges and Motivation

To increase the breadth, scope, and accuracy of memory forensics tools to support development and testing of
new memory forensics techniques, and for training purposes, there is a critical need for substantial, realistic
datasets with associated ground truth. There are several important issues that will be addressed by the
creation of a large corpus of memory images:

• There are restrictions on forensic research due to the lack of freely available, standardized datasets
(Garfinkel et al., 2009). Often, researchers spend time generating memory datasets for memory
forensics (MF) research. For example, Case and Richard III (2015) generated memory samples for their
OS X rootkit detection research due to the lack of variety in available memory samples for macOS
memory forensics research.

• Reproducibility continues to be the bane of digital forensics and memory forensics. Reproducibility is
a key factor in scientific research and the way to validate results produced by other researchers
(Garfinkel et al., 2009). Reproducibility in forensics research has been difficult due to lack of quality
datasets, small sizes of the datasets, and a reluctance to share the datasets, as they are often created
in an ad-hoc fashion that might leak private information.

• Lack of maintenance/updates to dataset repositories for digital forensics (DF), such as the popular
Digital Corpora (digitalcorpora.org) – one of the first free online dataset repositories for digital
forensics that is no longer maintained (Grajeda, Breitinger, Baggili, 2017).

Since realistic datasets are often non-existent or unsuitable for education, training, and research purposes due
to the presence of information that is confidential (Woods et al., 2011), we attempt to bridge that gap with
MemForC. The major contribution of this paper is to overcome the lack of realistic datasets for memory
forensics and to provide a large corpus that does not include privacy-sensitive information. Furthermore, it
can be freely shared to push the state of the art without concern for either privacy rights or copyright (Woods
et al., 2011). This paper introduces MemForC – Memory Forensics Corpus Creation for Malware Analysis, a
framework for creating a corpus of memory samples that utilizes best practices culled from existing research
for malware analysis, tools, and data curation. MemForC will automatically infect machines using the Cuckoo
Sandbox (Cuckoo, 2019) and produce associated uninfected memory dumps (ground truth), copies of infected
memory dumps, and a comparative malware analysis contrasting the findings of Cuckoo and memory forensics
tools such as Volatility. The contribution may be summarized as follows:

1) We create a corpus of memory dumps associated with dynamically analyzed malware.

2) In addition to the memory dumps, provide a comparative analysis between results from the de-facto
memory forensics framework, Volatility, and Cuckoo Sandbox – a commonly used dynamic analysis
framework. The research questions for this project include:

• What are the best ways and tools to obtain and store behavioral information from malware of all
types and variants effectively?

• What is the accuracy and efficiency of MemForC for malware analysis?

The rest of this paper is organized as follows: Section 2 presents an overview of related work. Section 3
introduces our research methodology. Section 4 presents the results and discussion. Section 5 discusses
possibilities for future work and concludes the paper.

2. Background/Related Work
According to Garfinkel, Farrell, Roussev, and Dinot (2009), DF focuses on data extraction and evidence for
presentation in court. Content is copied from a hard drive to a disk image file. The disk image file is searched
for document files that are then presented as evidence to an examiner (Garfinkel et al., 2009). Memory
analysis has its roots in the early 2000s, when digital forensics investigators realized that they could acquire
memory directly from a running system through previously available interfaces (Case, Richard III, 2017). MF is
an area of DF that provides “unprecedented visibility to the runtime state of a system” (Ligh et al., 2014). This
means access to running processes, open network connections, recently executed commands, disk encryption
keys, etc. This is possible because each function performed on an operating system or application makes
changes to a computer’s RAM, thereby preserving it. The contents of RAM supports reconstruction of events
that took place, essentially providing strong correlation for traditional forensics artifacts (Ligh et al., 2014;
Vasilescu et al., 2014).

Grajeda, Breitinger, and Baggili (2017) detailed the current state of affairs of datasets in the DF and MF
domains. They address the importance of available datasets for MF, document the origin, kind, and availability,
and what is missing from the datasets located via web searches. Their research finds that 56.4% of datasets are
experimentally generated, while 36.7% are real world data. Only 3.8% of the academic articles they covered
from 2010-2015 released their datasets. They have culled working locations of different datasets for DF that
are updated regularly via the following site: https://datasets.fbreitinger.de/. This illustrates the serious lack of
real datasets for MF research, education, and training.

Woods et al. discuss the lack of existing constructed realistic corpora that mimic real data without associated
privacy and security concerns. They contribute to the solution by their creation and distribution of more than
40 digital forensic images, packet dumps, and memory images. These sets are free of privacy-sensitive
information and can be utilized without IRB approval, and are freely redistributable without concern for either
privacy rights or copyright (Woods et al., 2011). Mirroring a solution to these concerns is fundamental to the
design of MemForC. Miller et al. (2017) highlight best practices and insights from constructing a scalable
dynamic analysis platform, which could be used by digital forensics examiners to respond to the sheer amount
of malware being developed annually. The authors utilize Cuckoo sandbox for dynamic analysis, spoofed
internet access via INetSim, and provided a host of lessons they learned along the way (Miller et al., 2017). The
work of the authors focuses primarily on experiments to improve configuration settings of the Cuckoo sandbox
to process malware samples quickly and accurately. MemForC’s primary aim is to create a corpus of memory
dumps of infected machines. MemForC does not utilize Cuckoo for the memory dump creation process.
MemForC utilizes a stand-alone virtual machine (VM) to execute a sample and capture a memory dump while
leveraging the useful lessons learned by Miller et al. (2017) for improving dynamic analysis. Harichandran et
al., (2016) highlight the general public concern about support lagging behind the escalating rate of malware
authorship, the slow technological response, slow development of analysis frameworks and tools. They
highlight the top five issues in computer forensics: education/training/certification, technologies, encryption,
data acquisition, and tools. The authors highlight that education/training/certification and technology for
cyber forensics hold the highest opportunities for growth. MemForC aims to meet those opportunities for
growth by providing a framework that works efficiently, accurately, and is free. The much-needed corpus
created by MemForC has the potential to substantially improve training, education, and research, as realistic
datasets will be readily and freely available. As we determine which sandbox platform will suit our purposes,
we consider the platform’s open-source capabilities, active development, maintenance, and it meeting the
requirements of a good sandbox: visibility, resistance to detection, and scalability, according to Kruegel (2014).
No sandbox will ever be fully resistant to detection as malware authors continue to provide variants and
updates to evade tools such as sandboxes and anti-virus software (Lindorfer et al., 2012). It should be noted
that sandbox evasion techniques by malware are well documented (Lindorfer et al., 2011a; Lindorfer et al.,
2012b; Ugarte-Pedrero, Graziano, Balzarotti, 2019). To analyze, extract and store behaviorial artifacts or
information about malware, a sandbox strategy that offers the best possible results is our pursuit for

MemForC. Below are other sandbox systems also highlighted by Miller et al. (2017) and their current status:
Anubis – web-based and currently offline; CWSandbox – commercial; Norman Sandbox – commercial and now
part of AVG Technologies (AVG, 2019); Joebox (Joe-Security, 2019) – commercial. Other systems, such as
Ether, WILDCat, Panorama, TEMU, have either no source code or are not maintained. Cuckoo sandbox was
chosen because it is open-source, robust, and meets other criteria for a good sandbox. It also is very popular in
the malware analysis community (Miller et al., 2017). Volatility is popular within the incident response and
malware analysis communities and has the most robust support for Windows and other operating systems,
especially for malware detection and analysis (Case, Richard III, 2015). We thus utilize Volatility as part of our
framework MemForC.

3. Research Methodology
To create realistic datasets for memory forensics, memory dumps and accurate behaviorial data must be
captured. We have to provide all the resources that malware needs to run and the semblance of a ’real’
system to deter the malware from employing anti-analysis antics during execution. If the malware obfuscates
its behavior or refuses to run then its behavior eludes capture of artifacts in RAM and associated analysis. To
ensure that malware reveals its true behavior for capture and analysis, we employ several techniques such as
anti-VM detection, VM-hardening, anti-sandbox detection and specific system configurations to improve
malware execution. This section describes our proposed framework MemForC. It consists of several modules:
infection module with Cuckoo Sandbox and VMware; the memory analysis module with Volatility; and the
comparative analysis module. At the end of a run, memory dumps are created from the infection module for
the corpus and result of the comparative analysis module identifies the behavior of the malware sample based
on the following artifacts and interactions: APIs, files, registry, mutexes, and network. Figure. 1 provides an
overview of MemForC.

Figure 1: MemForC Architecture

3.1 Module 1 - Infection & Execution

3.1.1 Cuckoo Infection

MemForC currently utilizes an Ubuntu 18.04 LTS 64-bit system with 64GB of RAM and 12 cores as the host in a
bidirectional setup with the analysis and agent VMs. Figure 2 (Cuckoo, 2019) illustrates the setup we utilized.
VMware is our virtualization software of choice and VMware tools are intentionally not installed for Cuckoo
analyses due to footprint and anti-VM detection consequences. We employ this strategy since malware can
terminate execution or provide a different behavior if it detects it is being run in a VM. The Cuckoo host allows
the submission of files to be run in an isolated environment in a VM. A sample is sent to the agent VM from
the host machine to be executed. Cuckoo first reverts the VM to a base snapshot prepared previously and not
infected by malware. It then executes the malware in a VM (Miller et al., 2017; Cuckoo, 2019) that is hardened
to obfuscate tell-take signs of virtualization. As the sample executes, the Cuckoo host (our Ubuntu system)

collects information about the behavior of the malware on the host from categories such as: API calls, network
traffic, files, mutexes, and registry keys accessed.

Figure 2: Cuckoo (Cuckoo, 2019) setup utilized for MemForC

We are currently concentrating our efforts primarily on Windows malware. The agent VM - the system
infected with malware - has the following characteristics: Windows 7 SP1 32-bit, 7GB of RAM, and 2 CPU cores.
Installed are: AdobeReader DC, Adobe Flash 11, browsers: Chrome 78 and Firefox 66.01, 7zip, Python 2.7,
Python PIL 1.1.7, Microsoft .Net Framework 4.61, and Visual C++: 2005, 2008, 2010, 2012, 2013, and 2015.
Disabled are: Window User Account Control (UAC), firewall, auto updates, Microsoft malicious software
removal tool and no antivirus was installed. To harden the agent, the following actions are taken:

• Remove/replace registry traces of VM software

• No installed VMware Tools

• Change VM MAC address and network interfaces from default

• Add/delete files, change desktop background, and have system appear to be in use by actual user(s)

• Before taking a snapshot, VM uptime set at least 30 minutes to avoid failure of tests for VM or
sandbox evasion

• Ensure that our VM has sufficient resources and speed to prevent malware anti-analysis due to the
VM being slower than a real system (Lindorfer et al., 2011)

We validate our VM-hardening and anti-VM detection using the Paranoid Fish (Ortega, 2019) – a tool for
identifying sandboxes, analysis environments and common malware techniques to fingerprint systems (Miller
et al., 2017). Although no system can ever be fully hardened against VM detection, we apply our best
knowledge and de-facto techniques for hardening.

3.1.2 VM-Only Infection

In this section, instead of utilizing Cuckoo as the environment for execution of malware and obtaining
behavioral info, we utilize a Windows VM with almost the same machine specifications as the Cuckoo agent
VM. We install VMWare Tools as it is necessary for submission and enabling execution of our samples in our
solution. It is also hardened in a similar manner without losing functionality. We keep a copy of this VM that is
uninfected as ground truth. We created a script (Ligh et al., 2010) that copies the malware from a location on
the host to the VM. It executes the malware for 30 seconds and then suspends the VM to create a memory

dump. This memory dump is added to storage, building our corpus. This memory dump is slated for further
analysis to extract interactions and behavior in Module 2 - MF analysis.

3.2 Module 2 - Memory Forensics

At this stage of analysis, we are equipped with a memory image from the execution of the malware sample in
the VM. We process this memory dump with the popular MF framework, Volatility, to obtain behavioral info
about the malware sample.

We currently utilize the following Volatility plugins (Volatility, 2019):

• Atomscan - Obtain atom tables

• Filescan - Obtain file objects

• Hivelist - Obtain registry hives

• Printkey - Obtain a registry key, its subkeys and values

• Mutantscan - Obtain mutex objects

• Netscan - Obtain connections and sockets

The results obtained from these plugins will be utilized in a comparative analysis with the behavioral
information obtained from Module 1 - Cuckoo infection & execution.

3.3 Module 3 - Comparative Analysis

This is the final processing module of MemForC. This module will provide results about the behavior of a
malware sample based on analysis from Volatility and Cuckoo Sandbox. Specifically, the results from the
analysis via Cuckoo (Module 1 – Cuckoo infection) are compared for similarity with the results in Module 2 –
MF with Volatility. An API listing from the Microsoft Development Center (Microsoft, 2019) is culled for the
following API categories:

• Filenames - fileapi.h

• Mutexes - synchapi.h

• Network/IP - winsock2.h & ws2tcpip.h

• Registry - winreg.h

The culled API call functions are searched for within the results from the Cuckoo analysis for each category.
These categories are compared for similarities with those results obtained from the results obtained via
Volatility analysis in Module 2. For instance, are there common file APIs and files found via Module 2 and
Module 1 – Cuckoo infection results? Similar findings reveal that platforms (Cuckoo and Volatility) found
similar artifacts and that the behavior of the malware was replicated in both scenarios. If the comparative
processing reveals dissimilarities, then it could mean that the behavior of the malware was dissimilar in both
scenarios and its true behavior was revealed in one scenario but not the other. This would require further
research and reviewing the result files and logs to determine the possible reasons. The results of this phase of
MemForC are stored in the corpus along with the memory dump.

4. Preliminary/Experimental Results and Discussion
We performed preliminary tests of MemForC with seven samples, all Windows executables. One of the
executables was obtained from the GitHub repository, theZoo (theZoo, 2019) and the others were randomly

selected from our own large corpus of malware samples to be analyzed via MemForC. The summary of results,
as illustrated in Table 1, are promising, as the samples ran successfully and with our scripts we were able to
provide comparative results for files, network and registry artifacts. We executed all samples in a private
network without an internet connection as a safety measure. It is well established that malware will morph its
behavior, stay dormant, or maybe even not execute at all if no network is detected. We are aware that this as
well as other anti-analysis techniques by malware will affect the veracity of the results obtained.

We executed each of these samples via MemForC and Cuckoo Sandbox and compared results but importantly,
also saved a memory dump from the execution of each sample when executed through the MemForC
framework. Figures 3-7 illustrate some of the results obtained from execution of malware samples via the
MemForC framework.

Analysis Summary
Sample Malware Sample Sandbox Execution

ID Type Name Cuckoo Results MemForC Results
1 EXE vKazy.exe1 Yes Yes Yes Yes
2 PE32 EXE 10546d23653_a60a5375b9 Yes Yes Yes Yes
3 PE32 EXE 24f133fc78f_209dbd524c Yes Yes Yes Yes
4 PE32 EXE 24f89cad806_b2a7f45fef Yes Yes Yes Yes
5 PE32 EXE 4008bdb3310_85c1da0d11 Yes Mixed Yes Yes
6 PE32 EXE 960a6d242ac_50fa9da858 Yes Mixed Yes Yes
7 PE32 EXE cbb12f29999_d82f1e5bde Yes Yes Yes Yes

Table 1: Summary Comparative Analysis. 1Sample from theZoo (theZoo, 2019), others taken randomly from
corpus of malware samples available to our lab and names shortened for brevity.

From Table 1, although all samples executed, samples 5 and 6 are labelled as mixed, because when executed
using Cuckoo, they both turned up no APIs from our targeted list. This issue is currently under investigation.
Figure 3 shows the result with sample 5 and Figure 4 shows successful results using sample 4.

Figure 3: Sample 5 Comparative API listings between MemForC and Cuckoo (Cuckoo, 2019)

Figure 4: Sample 4 Comparative API listings between MemForC and Cuckoo (Cuckoo, 2019)

Samples 5 and 6 provide limited data from their execution via Cuckoo which in turn leads to limited
comparable artifacts from the results obtained by MemForC. Figure 6 for instance illustrates file artifacts found
by MemForC but not identified via execution in Cuckoo.

Figure 5: File artifacts for Sample 2 identified by both Cuckoo (Cuckoo, 2019) and MemForC

Figure 6: MemForC file interactions not identified by Cuckoo (Cuckoo, 2019)

Figure 7: Common network artifacts identified by both Cuckoo (Cuckoo, 2019) and MemForC

We acknowledge that many more samples need to be analyzed to validate and verify MemForC’s accuracy and
robustness. We currently are continuing to improve MemForC as we evaluate new malware samples, to
increase speed, efficiency, and storage space, as our ultimate goal is to create a very large repository.

5. Conclusion and Future Work
In this paper we present MemForC, a framework to create a corpus of memory dumps that have been
successfully infected with malware. We also store the associated ground truth for each malware sample that
we execute on our framework. We utilize virtual machines and best practices according to Miller et al (2017)
to create our framework. MemForC is designed to support filling current gaps in the memory forensics arena,
by creating freely available, realistic datasets, free of personal identifiable information, which are suitable for
education, training, and research.

Our future work involves optimization of the framework and finding better ways to ensure that MemForC
accurately executes malware to expose its behaviour in an efficient and timely manner. We also intend to
expand the analysis to include other versions of the Windows operating system and to target other operating
systems.

References
AVG, 2019. AVG Technologies. [Online]. Available at: https://www.avg.com/en-us/
AV-Test, 2019. AV-Test Institute Malware. [Online]. Available at: https://www.av-
test.org/en/statistics/malware/(2019/12/1) [Accessed 1 Dec. 2019].
Case, A. and Richard III, G.G., 2015. Advancing Mac OS X rootkit detection. Digital Investigation, 14, pp.S25-
S33.
Case, A. and Richard III, G.G., 2017. Memory forensics: The path forward. Digital Investigation, 20, pp.23-33.
Cuckoo, 2019. Cuckoo Sandbox - Automated Dynamic Malware Analysis System. [Online]. Available at:
https://cuckoosandbox.org/
Egele, M., Scholte, T., Kirda, E. and Kruegel, C. (2008) A survey on automated dynamic malware-analysis
techniques and tools. ACM computing surveys (CSUR), 44(2), pp.1-42.
Garfinkel, S., Farrell, P., Roussev, V. and Dinolt, G., 2009. Bringing science to digital forensics with standardized
forensic corpora. digital investigation, 6, pp.S2-S11.
Grajeda, C., Breitinger, F. and Baggili, I., 2017. Availability of datasets for digital forensics–And what is missing.
Digital Investigation, 22, pp.S94-S105.
Harichandran, V.S., Breitinger, F., Baggili, I. and Marrington, A. (2016) A cyber forensics needs analysis survey:
Revisiting the domain's needs a decade later. Computers & Security, 57, pp.1-13.
Joe-Security, 2019. Joe Sandbox: Automated Malware Analysis. [Online]. Available at:
https://www.joesecurity.org/
Kruegel, C., 2014, August. Full system emulation: Achieving successful automated dynamic analysis of evasive
malware. In Proc. BlackHat USA Security Conference (pp. 1-7).
Ligh, M., Adair, S., Hartstein, B. and Richard, M., 2010. Malware analyst's cookbook and DVD: tools and
techniques for fighting malicious code. Wiley Publishing.
Ligh, M.H., Case, A., Levy, J. and Walters, A., 2014. The art of memory forensics: detecting malware and threats
in windows, linux, and Mac memory. John Wiley & Sons.
Lindorfer, M., Di Federico, A., Maggi, F., Comparetti, P.M. and Zanero, S., 2012, December. Lines of malicious
code: insights into the malicious software industry. In Proceedings of the 28th Annual Computer Security
Applications Conference (pp. 349-358).
Lindorfer, M., Kolbitsch, C. and Comparetti, P.M., 2011, September. Detecting environment-sensitive malware.
In International Workshop on Recent Advances in Intrusion Detection (pp. 338-357). Springer, Berlin,
Heidelberg.
Microsoft, 2019. Microsoft Development Center. [Online]. Available at: https://docs.microsoft.com/en-
us/windows/win32/api/
Miller, C., Glendowne, D., Cook, H., Thomas, D., Lanclos, C. and Pape, P. (2017) Insights gained from
constructing a large scale dynamic analysis platform. Digital Investigation, 22, pp.S48-S56.
Mosli, R., Li, R., Yuan, B. and Pan, Y. (2016, May) Automated malware detection using artifacts in forensic
memory images. In 2016 IEEE Symposium on Technologies for Homeland Security (HST) (pp. 1-6). IEEE.
Ortega, A., 2019. Github - Pafish (Paranoid Fish). [Online]. Available at: https://github.com/a0rtega/pafish
theZoo, 2019. Github - theZoo - A live Malware Repository. [Online]. Available at:
https://github.com/ytisf/theZoo
Ugarte-Pedrero, X., Graziano, M. and Balzarotti, D. (2019) A close look at a daily dataset of malware samples.
ACM Transactions on Privacy and Security (TOPS), 22(1), pp.1-30.
Uppal, D., Sinha, R., Mehra, V. and Jain, V.(2014 September) Malware detection and classification based on
extraction of API sequences. In 2014 International conference on advances in computing, communications and
informatics (ICACCI) (pp. 2337-2342). IEEE.
Vasilescu, M., Gheorghe, L. and Tapus, N. (2014, September) Practical malware analysis based on sandboxing.
In 2014 RoEduNet Conference 13th Edition: Networking in Education and Research Joint Event RENAM 8th
Conference (pp. 1-6). IEEE.
VirusTotal, 2019. Virustotal file statistics.. [Online]. Available at: https://www.virustotal.com/en/statistics/
Volatility, 2019. The Volatility Framework. [Online]. Available at: https://github.com/volatilityfoundation
Willems, C., Holz, T. and Freiling, F., 2007. Toward automated dynamic malware analysis using cwsandbox. IEEE
Security & Privacy, 5(2), pp.32-39.

Woods, K., Lee, C.A., Garfinkel, S., Dittrich, D., Russell, A. and Kearton, K., 2011. Creating realistic corpora for
security and forensic education. NAVAL POSTGRADUATE SCHOOL MONTEREY CA DEPT OF COMPUTER
SCIENCE.

