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Abstract—Flexible loads are a resource for the Balancing
Authority (BA) of the future to aid in the balance of power
supply and demand. In order to be used as a resource, the BA
must know the capacity of the flexible loads to vary their power
demand over a baseline without violating consumers’ quality
of service (QoS). Existing work on capacity characterization is
model-based: They need models relating power consumption
to variables that dictate QoS, such as temperature in case of
an air conditioning system. However, in many cases the model
parameters are not known or difficult to obtain. In this work,
we pose a data driven capacity characterization method that
does not require model information, it only needs access to a
simulator. The capacity is characterized as the set of feasible
spectral densities (SDs) of the demand deviation. The proposed
method is an extension of our recent work on SD-based capacity
characterization that was limited to linear time invariant (LTI)
dynamics of loads. The method proposed here is applicable
to nonlinear dynamics. Numerical evaluation of the method is
provided, including a comparison with the model-based solution
for the LTI case.

I. INTRODUCTION

The future of the power grid is green: an increased reliance
on renewable generation. This can pose a challenge for
Balancing Authorities (BAs) since renewable generation is
volatile. To ensure balance of power in the presence of this
volatility, BAs need additional sources of energy storage.
Apart from batteries, a new resource has been the subject
of much investigation for its ability to provide battery-like
service: flexible loads.

Most loads have some flexibility in power demand: they
can deviate their power demand from a baseline value
without violating their quality of service (QoS). The BA
would request this demand deviation, termed the reference
signal, so to help balance the grid. The baseline consumption
is then power consumption in absence of any requests from
the BA. Examples of flexible loads include pumps for pool
cleaning [1] and agricultural purposes [2], TCLs [3], and
HVAC equipment [4].

If the grid operator expects the flexible loads to track
the reference signal accurately, then the reference must not
cause the loads to violate their QoS. From the viewpoint
of the grid operator, flexible loads not tracking a reference
makes them appear unreliable. From the viewpoint of the
load, reference signals that continually require QoS violation
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provide incentive for loads to stop providing grid support. In
either case, avoidance of the above scenarios is paramount
to the long term success of grid support from flexible loads.
That is, reference signals must be designed to respect the
capacity of the collection of flexible loads.

Informally, the capacity of of a flexible load represents
limitations in its ability to track a demand deviation ref-
erence signal due to QoS requirements at the individual
loads. Consequently, a key step in determining the capacity
is relating the QoS requirements to requirements for the
reference signal for demand deviation. This is a challeng-
ing task; various approaches have been proposed in recent
years [5]–[12]. A popular approach is to develop ensemble
level necessary conditions [5], [7]. Reference signals that
satisfy these conditions ensure the ability of all loads in the
collection to satisfy QoS while tracking the reference. Other
approaches include geometry based characterizations [13],
characterizations through distributed optimization [14], and
characterizations that approximate the Minkowski sum of
individual load’s “resource polytopes” [15]–[17].

In addition to the previous references, there is an emerging
methodology of characterizing the capacity as constraints on
the statistics of the reference signal [18]–[20], rather than the
reference signal itself. Most commonly, as constraints on the
spectral density (SD) of the reference signal [19], [20]. Elab-
orating, these methods aim to precisely quantify the regions
shown in Figure 1 based on the QoS of the loads considered.
One particular advantage of these characterizations is that
they are suitable for long term resource allocation. That is,
such a characterization can answer questions such as: how
many flexible loads will a BA require if it invests in 10%
more solar? Contrarily, if the capacity of the flexible loads
is characterized in the time domain, the BA would then have
to predict many months in advance solar and flexible load
trajectories to see if the flexible loads can deliver.

Irrespective of statistical or time domain characterizations,
many of the listed works have one thing in common: they
are model based. Meaning, they need a model that relates
demand deviation of the flexible load(s) to QoS. The com-
puted capacity of the load(s) depend on the model/model
parameters. In addition, most of the existing methods require
the models to be linear time invariant (LTI). An LTI model
may be inappropriate for certain loads. Even if a linear model
is appropriate, the parameters of the flexible load model are
typically unknown or require estimation from experimental
data or high-fidelity simulations. In the spirit of model free
control, one might wonder then, is it possible to directly
estimate a characterization of flexible load capacity from



Fig. 1: An example spectral allocation of resources to meet
the grids needs.

data?

In this work, we develop a data-driven (model free)
framework to determine flexible load capacity directly from
data. That is, instead of relying on model knowledge it rather
relies on access to a simulator to determine the capacity.
This framework builds off of our past work [20], where we
characterize the capacity of flexible load(s) as constraints on
the SD of their power deviation. In the past work, to obtain
a SD we set up an optimization problem: the BA projects
its needs (roughly, the SD of net demand, e.g., shown in
Figure 1) onto the constraint set of feasible of SD’s. In [20],
the models relating demand deviation to QoS variables were
assumed LTI, and it was shown how to solve the optimization
problem for that case.

We depart from our previous work here and venture
into new territory by showing how to solve the projection
problem from our past work without having access to model
information, as long as we have the ability to generate data
from a simulator. The key insight that allows for this model
free construction is the choice of approximation architec-
ture when discretizing the infinite dimensional optimization
problem. This data driven framework also has the ability to
accommodate non-linear flexible load models, whereas our
past work [20] was for linear models only.

We validate our data driven framework in simulation
examples. First, we compare the proposed data driven frame-
work to the model based framework of our past work [20].
We then use our framework to estimate the capacity of a
flexible load with a non-linear model.

The paper proceeds as follows. In Section II we intro-
duce the method from our prior work. In Section III we
introduce our data-driven method. Numerical experiments are
conducted in Section IV and we conclude in Section V

II. SPECTRAL CHARACTERIZATION OF QOS
CONSTRAINTS

The symbol t is used to denote the continuous time while k
is used to denote a discrete time index. The sampling interval
is ∆t.

A. Deterministic QoS constraints
Denote by P [k] the power consumption of a flexible load

at time index k, and let P b[k] its baseline demand. The
demand deviation is P̃ [k] := P [k]−P b[k]. The load provides
grid support service by controlling the deviation P̃ [k] to
track a desired deviation signal, called a reference, while
maintaining its own QoS. The first QoS constraint is simply
an actuator constraint:

QoS-1:
∣∣∣P̃ [k]

∣∣∣ ≤ c1, ∀ k, (1)

where the constant c1, the maximum possible deviation
of power consumption, depends on the rated power and
the baseline demand. Second, define the demand increment
P̃δ[k] := P̃ [k] − P̃ [k − δ], where δ > 0 is a predetermined
(small) integer time interval. The second constraint is a
ramping rate constraint:

QoS-2:
∣∣∣P̃δ[k]

∣∣∣ ≤ c2, ∀ k. (2)

Third, define the additional energy use during any integer
time interval of length T :

Ẽ[k] =

k∑
σ=k−T+1

P̃ [σ]. (3)

The third QoS constraint is that

QoS-3:
∣∣∣Ẽ[k]

∣∣∣ ≤ c3, ∀ k. (4)

The parameter T in (3) can represent the length of a billing
period. Ensuring (4) ensures that the energy consumed during
a billing period close to the nominal energy consumed,
although it is stronger than what is necessary.

To define the fourth and last QoS constraint, we associate
with the VES system a storage variable x̃[k] that is related
to the demand deviation, and impose the constraint

QoS-4: |x̃[k]| ≤ c4, ∀ k. (5)

1) Understanding QoS-4: To understand the storage vari-
able, imagine a flexible HVAC system providing VES. We
first present a model of the HVAC systems internal tempera-
ture Tz in continuous time, as it is more naturally presented
in this setting. This model is:

C
dTz(t)

dt
=

1

R
(Ta(t)− Tz(t)) + q̇int(t) +Q(t), (6)

where C and R are thermal capacitance and resistance,
Ta(t) is the ambient temperature, and q̇int(t) is an exogenous
disturbance. The quantity Q(t) is the rate of heat delivered
to the building by the HVAC system (negative if cooling).

We consider two models, one linear and the other nonlinear
for relating the electrical power deviation to the indoor
temperature. In both cases a temperature deviation will play
the role of the storage variable x̃[k].



a) Linear model: Suppose Q(t) = −η0P (t) where
η0 is the coefficient of performance (COP) under design
conditions. In general, the baseline power consumption for
a HVAC system is the value P b(t) that keeps the internal
temperature of the load at a fixed value T̄ , which for (6) is

P b(t) = −
(
Ta(t)− T̄

)
η0R

− q̇int(t)

η0
. (7)

Since we are concerned with the flexibility in the load, we
linearize (6) about the thermal setpoint θ̄ and the baseline
power P b(t) yielding,

˙̃Tz(t) = −γT̃z(t) + βP̃ (t), γ =
1

RC
, β =

η0

C
, (8)

where T̃z , Tz(t)− T̄ is the internal temperature deviation
and P̃ is as defined at the beginning of this Section. The
corresponding discrete-time dynamic model relating P̃ [k] to
T̃z[k] is

T̃z[k + 1] = aT̃z[k] + bP̃ [k], (9)

(where a = e−γ∆t and b = β
∫∆t

0
e−γτdτ ), which is also a

first order linear time invariant (LTI) model.
b) Nonlinear model: A more realistic model is a COP

that varies depending on the difference between indoor and
outdoor temperature. When the HVAC system is providing
cooling, the hotter the outside is compared to the indoors,
the less efficient the HVAC system is in rejecting heat from
the cooler indoor to the hotter outdoor [21]. Such a situation
can be modeled as

η(t) = η0 − α1

(
Ta − Tz(t)

)
+ α2. (10)

The role of the constant α2 is to get η(t) = η0 when Ta
and Tz are both constant and equal to the values the HVAC
system is designed for. The dynamic equation (6) with this
model for the COP then becomes the following nonlinear
ODE

CṪz = − 1

R

(
Ta − Tz(t)

)
+ q̇int(t)

+
(
η0 − α1

(
Ta − Tz(t)

)
+ α2

)
P (t). (11)

The baseline for this model is the expression (7), except
replacing η0 with η̄ = η0 − α1

(
Ta − T̄

)
+ α2. The

corresponding ODE that relates the power deviation P̃ (t) to
temperature deviation T̃z(t) is the following bilinear ODE:

C
dT̃z(t)

dt
= − 1

R
T̃z(t) +

(
η0 − α1

(
Ta − T̄z(t)

)
+ α2

)
P̃ (t)

+ αP̄ T̃z(t) + αT̃z(t)P̃ (t). (12)

The derivation is tedious but straightforward, so it is omitted
due to space limitations. The corresponding discrete time
model - obtained with 1st order Euler backward discretization
- is also a bilinear dynamic system.

B. Mathematical Preliminaries

In our prior work [22], we had developed a methodology
that characterizes the capacity of a flexible load in the
frequency domain. We briefly discuss this prior work here.
Denote the power consumption of a flexible load as P̃ [k],
where we model P̃ as a stochastic process. The mean and
autocorrelation function for P̃ are,

µP̃ [k] , E[P̃ [k]], ∀ k, (13)

RP̃ [s, k] , E[P̃ [s]P̃ [k]], ∀ s, k, (14)

where E[·] denotes mathematical expectation. In the past
work, we made the following assumption about the stochastic
process P̃ .

Assumption 1. The stochastic process P̃ is wide sense
stationary (WSS) with mean function µP̃ [k] = 0 for all k.

Under this assumption we have that the autocorrelation
function will solely be a function of τ = s − k. In this
case, the autocorrelation function is an asymmetric Fourier
transform pair with the Spectral Density:

RP̃ (τ) =
1

2π

∫ π

−π
SP̃ (Ω)ejΩτdΩ, and (15)

SP̃ (Ω) =

∞∑
τ=−∞

RP̃ [τ ]e−jΩτ , (16)

where SP̃ (Ω) is the (power) Spectral Density (SD) of P̃ ,
ω ∈ [−π, π] is the frequency variable, and j is the imaginary
unit. The above is based on the general definition of the SD
of the signal P̃ ,

SP̃ (Ω) , lim
N→∞

1

N
E

[∣∣∣∣ N∑
k=1

P̃ [k]e−jΩk
∣∣∣∣2] (17)

the equivalence of definitions (17) and (16) for a WSS
process is the Wiener-Khinchin theorem. Since the mean
function of P̃ is zero for all time we have

σ2
P̃

= RP̃ (0) =
1

2π

∫ π

−π
SP̃ (Ω)dΩ, (18)

that is, the variance σ2
P̃

of P̃ is the integral of the (power)
SD. To illustrate our method from prior work we will also
make use of the Chebyshev inequality for a r.v. X:

P
(
|X − µX | ≥ C

)
≤ σ2

X

C2
, ∀ C > 0, (19)

where P(·) denotes probability. Another useful relation is the
following:

Proposition 1. If the input x[k] to a linear time invariant
system with frequency response H(ejΩ) is WSS and has SD
Φx, then the output y[k] is also WSS and its SD Φy is given
by Φy(Ω) = Φx(Ω)|H(ejΩ)|2.



C. Probabilistic QoS Constraints and SD-based Capacity
Characterization

Each QoS constraint potentially involves a distinct signal.
In QoS-1, the signal is the power deviation P̃ [k] itself. In
QoS-3, it is the storage variable x̃[k]. We denote by Z`[k]
the signal relevant for the `-th QoS constraint. In each QoS,
the relevant signal is related to the power deviation P̃ [k],
and we denote by G` the (potentially dynamic) system that
relates the input P̃ to the output Z`.

Next we illustrate how to pose the QoS constraints as
constraints on SDs. We start by considering the `-th QoS,
which we re-formulate as

P (|Z`[k]| ≥ c`) ≤ ε`, ∀k (20)

where ε` � 1 is the tolerance. From the Chebyshev inequal-
ity (19) and the equation (18) we have:

1

2π

∫ π

−π
SZ`

(Ω)dΩ ≤ c2`ε` =⇒ P (|Z`[k]| ≥ c`) ≤ ε`.

(21)

Thus, the probabilistic constraint (20) can be assured by
asking for the following constraint involving SD of Z` to
be satisfied:

1

2π

∫ π

−π
SZ`

(Ω)dΩ ≤ b` =: c2`ε`. (22)

If the dynamic system G` relating the input P̃ and output
Z` were a linear time invariant system, then (23) can be
translated to a constraint on the power deviation:

1

2π

∫ π

−π
SP̃ (Ω)|G`(ejΩ)|2dΩ ≤ b` (23)

where G`(e
jΩ) is the frequency response of the dynamic

system G`. In the general case with m constraints, the
constraint set for the SD SP̃ is

S ,
{
SP̃

∣∣∣∣ 1

2π

∫ π

−π
SZ`

(Ω;SP̃ )dΩ ≤ b`, ` = 1, . . . ,m

}
.

(24)

The notation SZ`
(Ω;SP̃ ) above is used to emphasize that

the SD of the signal Z` is a function of SP̃ , the SD of P̃ [k].
The function can be arbitrarily complex when the dynamic
models G` are nonlinear.

As long as the SD of the demand deviation P̃ [k] belong
to the set S, each of the ` probabilistic QoS constraints -
such as QoS 1-4 described in Section II-A - holds. Thus, the
set S also represents the demand deviation capacity of the
flexible load.

Now, denote by H the set of SDs defined over [−π, π),
and define the function B` : H → R+ as

B̄`(SP̃ ) =
1

2π

∫ π

−π
SZ`

(Ω;SP̃ )dΩ (25)

and the array B̄(SP̃ ) = [B̄1(SP̃ ), . . . , B̄m(SP̃ )]T ∈ Rm.
By denoting b = [ε1c

2
1, . . . , εmc

2
m]T ∈ Rm the constraint

SP̃ ∈ S can be represented as

B̄(SP̃ ) ≤ b. (26)

Now consider the following optimization problem:

min
S

1

2π

∫ π

−π

(
S(Ω)− SBA(Ω)

)2
dΩ

s.t. B̄(SP̃ ) ≤ b and S(Ω) ≥ 0 ∀ Ω ∈ [−π, π),

(27)

where SBA(Ω) is the spectral density of the stochastic process
that generates the reference signals from the BA. How to
determine SBA(Ω) is discussed in the next section. We define
the capacity of the flexible load as the solution S∗

P̃
of the

optimization problem (27).
1) BA’s spectral needs: The total needs of the BA is

encapsulated by the SD of the net demand signal, an example
of which is shown in Figure 1. With historical data, a BA
can estimate the SD of the net demand signal, which we
denote as SND(Ω). Any well posed estimation technique can
be applied. All controllable resources, including generators,
flywheels, batteries, and flexible loads, together have to
supply SND(Ω). To determine solely the portion of SND(Ω)
that flexible loads should contribute to we “filter” SND(Ω).
That is, with F (ejΩ) an appropriate filter we have

SBA(Ω) =
∣∣F (ejΩ)

∣∣2 SND(Ω). (28)

The quantity SBA is the frequency domain analog of the
reference signal r[k] that will be asked from the loads, and
will be referred to as the reference SD in the sequel.

D. Linear time invariant (model-based) case: prior work

Now we consider the scenario when the G`’s are LTI
systems. Recall that SZ`

(Ω; P̃ ) in the definition of B(·)
in (25) is the SD of Z`[k], which in turn is the output of
the system G` when driven by an input signal whose SD is
SP̃ (Ω). Since the system G` is LTI with frequency response
G`(e

jΩ), it follows from Prop. 1 that

SZ`
(Ω) = |G`(ejΩ)|2SP̃ (Ω), (29)

and plugging it in (25) we get

B̄`(SP̃ ) =
1

2π

∫ π

−π
|G`(ejΩ)|2SP̃ (Ω)dΩ. (30)

The constraints in Problem (32) are thus linear in the
decision variable SP̃ (Ω). Since the objective is quadratic in
the decision variable, the problem is a quadratic problem,
although infinite dimensional.

Remark 1. The problem (32) can be reduced to a tractable
finite dimensional optimization problem by discretizing the
continuous frequency Ω into N points on the unit circle. The
decision vector of the optimization problem becomes N . The
resulting problem is a finite dimensional quadratic program
(QP) that can be efficiently solved using readily available
NLP solders. In all such problems in the rest of the paper that
involve functions of continuous frequency Ω over [−π, π],
we assume that such a discretization is done to convert the
problem to a finite dimensional problem. �

The finite dimensional QP alluded to in Remark 1 is the
problem posed and solved in our prior work [20]. Thus,



the optimization problem needed to characterize capacity is
fairly straightforward to solve, as long as the models G`’s
are LTI and the model parameters are known. There are
two weaknesses. The first is that a linear model may not be
appropriate for certain types of flexible loads. The second is
that even if a LTI model is sufficiently accurate, obtaining the
model parameters is not an easy task. Take the LTI model (9)
of temperature deviation in a building. This equation alone
is actually quite merited for this particular application, and
there is a plethora of work spanning back to the 1980’s [23]
on using ODEs of this form to model the dynamics in certain
flexible loads. These works almost solely focus on estimating
the parameters of the model such as (9). These parameters are
challenging to estimate. Despite this, many current capacity
characterizations explicitly depend on the parameters such as
R and C.

III. PROPOSED DATA DRIVEN METHOD

The goal of this section will be to develop an algorithm
that can solve the problem (27) using data that can come from
experiments or simulations, but without requiring (i) that the
underlying systems G`’s are LTI and (ii) any knowledge of
the models G`’s. Only a simulator that can simulate G`’s for
various inputs is needed.

To facilitate our algorithm, we first elect a function
approximation architecture for the decision variable S in
the optimization problem (27). With our form of function
approximation, we show how to obtain an estimate of all of
the ingredients needed to solve (27) with solely data.

A. Function approximation

We consider linear function approximations, that is, we
approximate the decision variable S in (27) through

Sθ(Ω) =

d∑
i=1

ψi(Ω)θi = ΨT (Ω)θ, (31)

where each basis ψi(Ω) is a SD, and θ ≥ 0. The number of
basis functions, d, is a design choice. We use ΨT θ to denote
the entire trajectory {ΨT (Ω)θ)}Ω=π

Ω=−π .
We then transform the optimization problem (27) over

S to one over the finite dimensional vector θ ∈ Rd. The
problem (27) is transformed to a finite dimensional non-linear
program (NLP):

θ∗ = arg min
θ

1

2π

∫ π

−π

(
ΨT (Ω)θ − SBA(Ω)

)2
dΩ

s.t. B(θ) ≤ b, and θ ≥ 0,

(32)

where B(θ) := B̄(ΨT θ), where B̄(·) is defined in (25). Since
ψi(Ω) ≥ 0 for each i, requiring θ ≥ 0 ensures that ΨT (Ω)θ
satisfies the properties of SDs (non-negativity and even) and
so the search is limited to SDs, and the solution obtained by
solving the problem (32), ΨT (Ω)θ∗, is guaranteed to be a
SD.

B. Estimating B(θ) from data

The method we propose for estimating B`(θ) for a given
θ and a fixed ` is given below. It is then repeated for ` =
1, . . . ,m to obtain B(θ)

1) Generate samples of the `-th QoS signal, Z`[k], when
power deviation P̃ [k] has SD ΨT (Ω)θ. This is done in
two steps:

a) Input generation: For each i (i = 1, . . . , d)
generate a colored noise sequence ϕi[k] with
SD θiΨi(Ω). (This can be done in many ways.
One possibility is to perform a spectral factor-
ization of Ψi to obtain a filter H(ejΩ) so that
|H(ejΩ)|2 = Ψi(Ω). Passing a zero mean unit
variance white noise through will generate a
WSS process with SD Ψi(Ω) due to Prop. 1.
Multiplying this sequence with

√
θi will produce

the desired sequence ϕ[k]. Another method is to
take the inverse (discrete time) Fourier transform
of the SD multiplied pointwise (in the frequency
domain) by random phase.)

b) Output generation: Use a simulator of the system
G` to generate Zi,`[k] by using the input ϕi[k],
for each i, and then sum over i to obtain Z`[k] :=∑d
i=1 Zi,`[k]. (Because the same simulator is

used for each i, we have Z`[k] = G`(u)[k] where
u[k] =

∑
i ϕi[k]. Because the processes ϕi[k] and

ϕj [k] are uncorrelated for i 6= j, the SD of u is
the sum of the SDs of ϕi[k]’s, which is equal
to ΨT (Ω)θ by design. Thus, the SD of Z`[k] is
SD of the output of G` with an input whose SD
is ΨT (Ω)θ. In other words, the SD of Z`[k] is
SZ`

(Ω; ΨT (Ω)θ).)
2) Estimate the function value B`(θ) from the sam-

ples Z`[k] by utilizing the Wiener-Khinchin theorem.
Namely,

ŜZ`
(Ω; ΨT θ) = Ê

[ 1

N

∣∣∣ N∑
k=1

Z`[k]e−jΩk
∣∣∣2], (33)

B̂`(θ) =
1

2π

∫ π

−π
ŜZ`

(Ω; ΨT θ)dΩ (34)

where Ê[·] is a shorthand for an estimate of the
expectation E[·]. In particular, the estimate is obtained
by performing multiple simulations, computing the
quantity inside the square braces in the right hand side
of (33) in each simulatin, and averaging over those
simulations.

A graphical illustration of the data generation step of the
algorithm is shown in Figure 2. To completely specify the
problem (32), the quantity SBA(Ω) is required. As mentioned
in section II-C1, it can be estimated using net load data.

The problem (32) is a finite dimensional NLP, with a
d-dimensional decision vector θ. However, standard NLP
solvers cannot be easily used in the general nonlinear case.
Since the SD of the output Z`[k] can be an arbitrarily
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Fig. 2: Generating the `-th QoS signal Z`[k].

complicated function of θ, the gradient and/or Hessian of
the function B(θ) is not readily available. They can be
numerically estimated, or a gradient free method can be
used. In the special case when the systems G`’s are LTI,
the problem becomes a QP, a convex problem that can be
easily solved. We describe this special case in Section III-C.

Remark 2. Key in our ability to remove dependence on
the model knowledge is the requirement that each basis
function Ψi is in fact a SD. Without this form of function
approximation it may be difficult to develop a truly model
free form of the problem (27). As we will discuss next, this
model free dependence rids us of the limitations of the past
work discussed in Section II-D.

C. The LTI case

Since SP̃ = ΨT θ, it follows from (25) that

B̄`(θ) = B`(Ψ
T θ) =

1

2π

∫ π

−π
SZ`

(Ω; ΨT θ)dΩ. (35)

Recall that SZ`
(Ω; ΨT θ) is the SD of Z`[k] which is the

output of system G` when driven by a signal whose SD is
ΨT (Ω)θ. Since the system G` is LTI with frequency response
G`(e

jΩ), it follows from Prop 1 that

SZ`
(Ω) = |G`(ejΩ)|2ΨT (Ω)θ. (36)

Plugging it back in (35) we get

B̄`(θ) =

[
1

2π

∫ π

−π
|G`(ejΩ)|2ΨT (Ω)dΩ

]
θ (37)

Stacking these B̄`(θ)’s, we obtain

B̄(θ) = Bθ (38)

where B ∈ Rm×d is

B =
1

2π

∫ π

−π
G(Ω)ΨT (Ω)dΩ, (39)

G(Ω) = [|G1(ejΩ)|2, . . . , |Gm(ejΩ)|2]T

TABLE I: Simulation parameters

Par. Unit Value Par. Unit Value
R ◦C/kW 8 C kWh/◦C 22
T hours 5 {εi}4i=1 N/A 0.05
c1 kW 40 c2 kW 8
c3 ◦C 1 c4 kWh 8
η0 N/A 3.5 Ta ◦C 30
δ sec. 20 q̇int kW 0

The objective function (32) can be expressed as

f(θ) = θTAθ + Cθ + d, (40)

where

A =
1

2π

∫ π

−π
A(Ω)dΩ, with A(Ω) = Ψ(Ω)ΨT (Ω), (41)

C =
1

2π

∫ π

−π
C(Ω)dΩ, with C(Ω) = Ψ(Ω)SBA(Ω), (42)

d =
1

2π

∫ π

−π
d(Ω)dΩ, with d(Ω) =

(
SBA(Ω)

)2
. (43)

To estimate the quantities C and d above, the quantity
SBA(Ω) is required. As mentioned in section II-C1, it can
be estimated using net load data.

f(θ) = θTAθ + Cθ + d. (44)

The optimization problem (32) now becomes the following
d-dimensional quadratic program (QP)

θ∗ = arg min
θ≥0

f(θ), s.t. Bθ ≤ b. (45)

To reiterate, in order to compute f(θ) and B, no model
knowledge is required, only access to a simulator.

IV. NUMERICAL EXPERIMENTS

A numerical example of using the proposed data driven
method to determine the capacity is illustrated in this section.
The flexible loads considered are a collection of commercial
building HVAC systems. We consider a homogeneous col-
lection in this preliminary work. Each HVAC system in the
collection has QoS 1-4 listed in Section II-A. The parameters
are displayed in Table I, and are chosen so that the HVAC
systems are representative of those in large commercial
buildings (hence the large superscripts in Table I).

We first validate the proposed method by implementing it
in the scenario in which the solution is known: when the
models involved are LTI and are known. The solution is
computed using the method from our prior work [20]. Next,
we apply the method to data from a simulation that uses a
non-linear model.

All relevant simulation parameters, if not specified other-
wise, can be found in Table I. Note that the method does not
have access to the R, C, and η0 parameter values.
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Fig. 3: Empirical net demand SD, modeled SD for BPA’s
net demand, and the two reference SD’s for the high and
low frequency passband.

A. BA’s spectral needs
The net demand data is collected from BPA (a BA in

the pacific northwest United States). The empirical SD of
the net demand is determined using the method described
in Section II-C1. We then fit an ARMA(2,1) model to the
empirically estimated SD. Since the estimate ΦND will cap
out at the Nyquist frequency 1/10min, we extrapolate the
net demand SD to the higher frequencies. The empirical SD
(denoted ΦND) and the extrapolated net demand SD (denoted
SND) are shown in Figure 3.

We then choose two passbands to filter SND: (i) a low pass-
band [1/6,1/2] (1/hour) and (ii) a high passband [1/30,1]
(1/min). The results of “filtering” (see eq. (28)) SND are also
shown in Figure 3. The low passband SD is termed SBA

Low and
roughly corresponds to the region for TCLs in Figure 1. The
high passband SD is termed SBA

High and roughly corresponds
to the region for HVAC systems in Figure 1.

B. Method Evaluation - LTI case
In this section we compare the data-driven method for

the LTI case (Section III-C) with to solving the quadratic
program (45) with full model knowledge, both to obtain θ∗.
In both cases we use CVX [24] to solve the QP. We use the
following basis SD’s

ψi(Ω) =

{
1, if Ω ∈ [Ω̂i−1, Ω̂i).

0, otherwise.
(46)

for 1 ≤ i ≤ d. The set of points {Ω̂i}di=1 is a subset of the
linearly spaced discrete frequency points on the unit circle.
We consider n = 2000 large commercial buildings as one
large flexible load. The idea is to illustrate how much of the
grids needs can be met by the collection. To do this, the
two reference SDs obtained from the previous section are
projected onto the same ensemble constraint set.

The results of this are shown in Figure 4, where the black
dashed lines represent the model based solution. The two
SD’s are nearly identical.

1/day 1/6 hour 1/hour 1/10min 1/2min
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Fig. 4: LTI case: The two reference SDs and the correspond-
ing capacity SDs (boundary of the shaded regions) obtained
from the proposed method for a homogeneous collection of
n = 2000 loads. Black dashed lines represent model based
solution.

C. Method Evaluation: Non-linear case

In this section we use the (discrete-time version of the)
nonlinear dynamic model (12) relating power deviation to
indoor temperature. In this scenario, all of the parameter
values (except for now we have η[k]) remain the same as
in the previous scenario and are given in Table I. The same
basis SD’s as in the previous scenario are also used here.
We elect the value α appearing in (10) as α1 = 0.15 and
α2 = 1.175.

The proposed method is applied to simulation data from
the non-linear system. The reference SD is SBA

Low and n =
15000. It is possible to use a standard NLP solver to
solve (32), however we obtained positive results by applying
the data driven algorithm in Section III-C to data collected
from the nonlinear system. We feel this result is more
interesting, and choose to show it here instead of results
from the NLP solver. We emphasize that the method does
not know anything about the model, it only uses simulation
data. The results - the solution SD - is shown in Figure 5.

To verify that the solution provided by the method is
meaningful, we generate power deviation trajectories with
SD equal to the solution SD. Then the corresponding demand
trajectories are used to simulate the model again using the
simulator to compute the resulting temperature deviations.
One such temperature trajectory is shown in Figure 5. We
see from the figure that temperature is maintained within
bounds during the time interval shown, indicating that the
power deviation signal is within the capacity of the load.

V. CONCLUSION

We presented a data driven method to estimate the capacity
of flexible load(s) as the optimal spectral density of demand
deviation. Optimal here refers to being close to what the
power grid needs. The methd builds on our prior work [20]
which was model-based and was limited to LTI models.
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Fig. 5: Non linear case: The capacity (and reference) SD for
n = 15000 flexible loads, each with a non-linear model.
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Fig. 6: Sample path of a flexible HVAC load’s temperature
deviation from setpoint (evolves according to (12)). The
black lines represent the QoS constraint.

The method proposed here is also applicable to nonlinear
dynamics, and more importantly, it does not need model
knowledge. It only needs access to a simulator (or mea-
surements of relevant data). The core of the algorithm is
a function approximation architecture with basis functions
that are chosen to be spectral densities. In simulations, our
proposed data-driven method is validated against the model
knowledge scenario; the results are positive.

Solving the projection problem in the nonlinear dynamics
case is not trivial since symbolic derivatives with respect
to the decision variables is not possible. This aspect of
the method has room for improvement. Other avenues for
future work include leveraging the data driven framework
to: (i) estimate the capacity of heterogeneous ensembles
of flexible loads and (ii) estimate the capacity under time
varying weather conditions/disturbances.
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[3] A. Khurram, R. Malhamé, L. Duffaut Espinosa, and M. Almassalkhi,
“Identification of hot water end-use process of electric water heaters
from energy measurements,” Electric Power Systems Research, vol.
189, p. 106625, 2020.

[4] J. Cai and J. E. Braun, “Laboratory-based assessment of HVAC
equipment for power grid frequency regulation: Methods, regulation
performance, economics, indoor comfort and energy efficiency,” En-
ergy and Buildings, vol. 185, pp. 148 – 161, 2019.

[5] H. Hao, B. M. Sanandaji, K. Poolla, and T. L. Vincent, “Aggregate
flexibility of thermostatically controlled loads,” IEEE Transactions on
Power Systems, vol. 30, no. 1, pp. 189–198, Jan 2015.

[6] H. Hao, D. Wu, J. Lian, and T. Yang, “Optimal coordination of building
loads and energy storage for power grid and end user services,” IEEE
Transactions on Smart Grid, vol. PP, no. 99, pp. 1–1, 2017.

[7] A. Coffman, N. Cammardella, P. Barooah, and S. Meyn, “Aggre-
gate capacity of TCLs with cycling constraints,” arXiv preprint
arXiv:1909.11497, 2019.

[8] R. Yin, E. C. Kara, Y. Li, N. DeForest, K. Wang, T. Yong, and
M. Stadler, “Quantifying flexibility of commercial and residential loads
for demand response using setpoint changes,” Applied Energy, vol.
177, pp. 149 – 164, 2016.

[9] H. Hao, J. Lian, K. Kalsi, and J. Stoustrup, “Distributed flexibility
characterization and resource allocation for multi-zone commercial
buildings in the smart grid,” in 2015 54th IEEE Conference on
Decision and Control (CDC), Dec 2015, pp. 3161–3168.

[10] J. T. Hughes, A. D. Domnguez-Garca, and K. Poolla, “Virtual battery
models for load flexibility from commercial buildings,” in 2015 48th
Hawaii International Conference on System Sciences, Jan 2015, pp.
2627–2635.

[11] I. Chakraborty, S. P. Nandanoori, S. Kundu, and K. Kalsi, Data-
Driven Predictive Flexibility Modeling of Distributed Energy Re-
sources. Cham: Springer International Publishing, 2020, pp. 311–343.

[12] K. Amasyali, M. Olama, and A. Perumalla, “A machine learning-
based approach to predict the aggregate flexibility of hvac systems,” in
2020 IEEE Power Energy Society Innovative Smart Grid Technologies
Conference (ISGT), 2020, pp. 1–5.

[13] S. Kundu, K. Kalsi, and S. Backhaus, “Approximating flexibility in
distributed energy resources: A geometric approach,” in 2018 Power
Systems Computation Conference (PSCC), June 2018, pp. 1–7.

[14] F. Lin and V. Adetola, “Flexibility characterization of multi-zone
buildings via distributed optimization,” in 2018 Annual American
Control Conference (ACC), June 2018, pp. 5412–5417.

[15] F. L. Müller, O. Sundström, J. Szabó, and J. Lygeros, “Aggregation of
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