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Abstract

Weighted model integration (WMI) is an appeal-

ing framework for probabilistic inference: it al-

lows for expressing the complex dependencies

in real-world problems, where variables are both

continuous and discrete, via the language of Sat-

isfiability Modulo Theories (SMT), as well as to

compute probabilistic queries with complex logi-

cal and arithmetic constraints. Yet, existing WMI

solvers are not ready to scale to these problems.

They either ignore the intrinsic dependency struc-

ture of the problem entirely, or they are limited to

overly restrictive structures. To narrow this gap,

we derive a factorized WMI computation enabling

us to devise a scalable WMI solver based on

message passing, called MP-WMI. Namely, MP-

WMI is the first WMI solver that can (i) perform

exact inference on the full class of tree-structured

WMI problems, and (ii) perform inter-query amor-

tization, e.g., to compute all marginal densities

simultaneously. Experimental results show that

our solver dramatically outperforms the existing

WMI solvers on a large set of benchmarks.

1. Introduction

In many real-world scenarios, performing probabilistic infer-

ence requires reasoning over domains with complex logical

and arithmetic constraints while dealing with variables that

are heterogeneous in nature, i.e., both continuous and dis-

crete. Consider for example the task of matching players in

a game by their skills. Performing probabilistic inference for

this task has been popularized by Minka et al. (2018) and is

at the core of several online gaming services. A probabilistic
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model for this task has to deal with continuous variables,

such as the player and team performance, and reason over

discrete attributes such as membership in a squad and the

achieved scores. Moreover, such a model would need to

take into account constraints such as the team performance

being bounded by that of the players in it, and that forming

a squad boosts performance. Ultimately, this translates into

performing probabilistic inference in the presence of logical

and arithmetic constraints and dependencies.

These hybrid scenarios are beyond the reach of probabilis-

tic models including variational autoencoders (Kingma &

Welling, 2013) and generative adversarial networks (Good-

fellow et al., 2014), whose inference capabilities, despite

their recent success, are limited. Classical probabilistic

graphical models (Koller & Friedman, 2009), while provid-

ing more flexible inference routines, are generally incapaci-

tated when dealing with continuous and discrete variables

at once (Shenoy & West, 2011), or they tend to make sim-

plistic (Heckerman & Geiger, 1995; Lauritzen & Wermuth,

1989) or overly strong assumptions about their parametric

forms (Yang et al., 2014). Even recent efforts in model-

ing these hybrid scenarios while delivering tractable infer-

ence (Molina et al., 2018; Vergari et al., 2019) can not

perform inference in the presence of complex constraints.

Weighted Model Integration (WMI) (Belle et al., 2015;

Morettin et al., 2017) is a recent framework for probabilis-

tic inference that offers all the aforementioned “ingredi-

ents” needed for hybrid probabilistic reasoning with logical

constraints, by design. WMI leverages the expressive lan-

guage of Satisfiability Modulo Theories (SMT) (Barrett

et al., 2010) for describing problems over continuous and

discrete variables. Moreover, WMI provides a principled

way to perform hybrid probabilistic inference: asking for the

probability of a complex query with logical and arithmetic

constraints can be done by integrating weight functions over

the regions that satisfy the constraints and query at hand.

Despite these appealing features, current state-of-the-

art WMI solvers are far from being applicable to high-

dimensional real-world scenarios. This is due to the fact

that most solvers ignore the dependency structure of the

problem, here expressible through the notion of a primal

or factor graph of an SMT formula (Dechter & Mateescu,
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Weight functions w are usually defined as products of literal

weights (Belle et al., 2015; Chavira & Darwiche, 2008; Zeng

& Van den Broeck, 2019). That is, for a set of literals L,

a set of per-literal weight functions W = {w`(x)}`∈L is

given, with weight functions w` defined over variables in

literal `. Then, the weight of assignment (x, b) is:

w(x, b) =
∏

`∈L
w`(x)

Jx,b|=`K.

When all variables are Boolean (i.e., X = ∅), the per-literal

weights w`(x) are constants and we retrieve the original def-

inition of the well-known weighted model counting (WMC)

task (Chavira & Darwiche, 2008) as a special case of WMI.

In this paper, we assume that all per-literal weights are from

some certain weight function family, and for literals not in

the set L, their weights are the constant function one. This

setting is expressive enough to approximate many continu-

ous distributions (Belle et al., 2015).

Example 3 (WMI formulation of a skill matching system).

Consider the team performance SMT model Γ in Example 1.

Assume that a set of per-literal weights w`i(XT , Xi) =
0.1·(XT +Xi−6)

2 is associated to literals `i = XT −Xi <
1, quantifying how likely the team performance is upper

bounded by player performances. Then the WMI of the

formula Γ with two players is WMI(Γ, w;X,B) ≈ 170.69.

Intuitively, WMI(∆, w;X,B) equals the partition function

of the unnormalized probability distribution induced by

weights w on formula ∆. In the following, we will adopt

the shorthand WMI(∆, w) for computing the WMI with all

the variables in ∆ in scope. The set of weight functions w
together act as an unnormalized probability density while

the formula ∆ represents logical constraints defining its

structure. Therefore, it is possible to compute the (now nor-

malized) probability of any logical query Φ expressible as

an SMT formula involving complex constraints as

Pr∆(Φ) = WMI(∆ ∧ Φ, w) /WMI(∆, w).

Example 4 (WMI inference for skill rating). Suppose we

want to quantify the squad effect in a 2v2 game. Specifically,

given two teams T1 and T2 whose players have the same

performance, but team T1 is a squad while T2 is not, that

is, Φc = (B1 = true ∧ B2 = false). We wonder what

is the probability of query Φ = XT1
> XT2

, that is team

T1 wins and T2 loses. The probability of query Φ can be

computed by two WMI tasks as follows.

Pr∆(Φ |Φc) =
WMI(∆ ∧ Φc ∧ Φ, w)

WMI(∆ ∧ Φc, w)
=

4, 206

7, 225
≈ 58.22%

with the SMT formula ∆ := Γ1 ∧ Γ2 where the two sub-

formulas Γ1 and Γ2 model the two teams as in Example 1.

W.l.o.g, from here on we will focus on WMI problems on

continuous variables only. We can safely do this since a

WMI problem on continuous and Boolean variables of the

form WMI(∆, w;X,B) can always be reduced in polytime

to a new WMI problem WMI(∆′, w′;X′) on continuous

variables only, by properly introducing auxiliary variables

in X
′ to account for Boolean variables B without increasing

the problem size (Zeng & Van den Broeck, 2019).

From WMI to MI. Recently, model integration (MI)

(Luu et al., 2014) has been proposed as an alternative way to

perform WMI inference in Zeng & Van den Broeck (2019).

MI is the task of computing the volumes corresponding to

the models of an SMT formula. As such, MI is a special case

of WMI in which the weights equate to one everywhere.

Definition 5. (Model Integration) Let X consist of continu-

ous random variables over R, and let ∆ be an SMT formula.

The model integration (MI) of X over ∆ is:

MI(∆;X) ,

∫
x|=∆

1 dx =

∫
R|X|

Jx |= ∆K dx

Zeng & Van den Broeck (2019) propose a polytime reduc-

tion of a WMI problem with polynomial weights to an MI

one such that their proposed MI solver is amenable to a

certain class of WMI problems. This reduction provides

the basis for the largest class of tractable WMI problems

known before our work. We will review it in the next sec-

tion, before considerably expanding upon the class of WMI

problems that can be solved tractably in the prior work.

3. Tractable WMI inference

The major efforts in advancing WMI inference have been

so far concentrated on devising sophisticated WMI solvers

to deliver exact inference routines for general scenarios

without investigating the effect of the structure of a WMI

problems on its complexity. Little to no attention has gone

to formally understand which classes of WMI problems can

be guaranteed to be solved exactly and in polynomial time,

that is, tractably.

One notable exception can be found in Zeng & Van den

Broeck (2019) where the search-based MI (SMI) solver

is introduced. WMI problems for which SMI guarantees

polytime exact inference constitute the first class of tractable

WMI. Intuitively, SMI solves MI problems by using search

to leverage the conditional independence among variables.

As in Zeng & Van den Broeck (2019) we characterize the

structure of an SMT formula via its primal graph.

Definition 6. (Primal graph of SMT) The primal graph

of an SMT formula ∆ is an undirected graph G∆ whose

vertices are variables in formula ∆ and whose edges con-

nect any two variables that appear in a same clause in the

formula ∆.
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(ii) tractable symbolic integration: ∀f ∈ Ω, the symbolic

antiderivative of function f can be tractably computed

by symbolic integration;

(iii) closedness under definite integration: ∀f ∈ Ω with its

antiderivative denoted by F , given integration bounds

l(x), u(x) in LRA with x ∈ X, F (u(x))−F (l(x)) ∈
Ω.

Some example weight function families that satisfy TWC

include the polynomial family, exponentiated linear function

family and the function family resulting from their product.

Moreover note that piecewise function families, when pieces

belong to the above families, also satisfy TWC. It turns out

that the weight function families that satisfy TWC subsume

and extend all the parametric weight functions adopted in

the WMI literature so far. The following proposition is a

direct result from the fact that the piecewise polynomial

weight family Ω
P is a strict superset of the family Ω

SMI.

Proposition 14. Let ΩP be the piecewise polynomial weight

function family. The WMI problem class treeWMI(ΩP) is a

strict superset of problem class treeWMI(ΩSMI).

Theorem 15. If a weight function family Ω satisfies TWC

as in Definition 13, WMI problems in class treeWMI(Ω)
are tractable, i.e., they can be solved in polynomial time.

The proof to the above theorem is provided in the next two

sections by construction where in Section 4 we proposed our

WMI solver, called MP-WMI, operating on WMI problems

in treeWMI(Ω) with its complexity analysis in Section 5. A

summary of the WMI problem classes is shown in Figure 2.

4. Message-Passing WMI

Message passing on tree-structured graphs has achieved

remarkable attention in the PGM literature (Pearl, 1988;

Kschischang et al., 2001). Its classical formulation and ef-

ficiency relies on compact factor representations allowing

easy computations. However, adapting existing message-

passing algorithms to WMI inference is non-trivial. This

is due to the fact that inference is computed in a hybrid

structured space with logical and arithmetic constraints. We

present our message-passing scheme by first deriving a fac-

torized representation of WMI problems.

4.1. Factor Graph Representation of WMI

In the literature of WMC, incidence graphs are proposed to

characterize the structure of problems defined by Boolean

CNF formulas (Samer & Szeider, 2010). Incidence graphs

are bipartite graphs with clause nodes and variable nodes,

where a clause and a variable node are joined by an edge if

the variable occurs in the clause. We derive the analogous

representation for the more general SMT formulas, which

we then turn into a factor graph of WMI problems.

Recall that for the joint distribution represented by a WMI

problem, the support is defined by the logical constraints

and the unnormalized density is defined by weight functions.

In the following, we first factorize the SMT formula ∆ of a

WMI problem WMI(∆, w) in the class treeWMI:

∆ =
∧
i∈V

∆i ∧
∧

i,j∈E

∆ij (2)

where the set V is the index set of variables and the set E
is the index pairs of variables in the same clause. Then a

WMI problem can be conveniently represented as a bipartite

graph, known as factor graph, that includes two sets of

nodes: variable nodes Xi, and factor nodes fS , where S
denotes a factor scope, i.e., the set of indices of the variables

appearing in it. A variable node Xi is connected to a factor

node fS if and only if i ∈ S. Specifically, the factors are

defined as follows:

fS(xS) =
∏

Γ∈CLS(∆S)

JxS |= ΓK
∏

`∈LITS(Γ)

w`(xS)
JxS |=`K (3)

where xS denotes the restriction of x to the variables in

factor fS and analogously ∆S is the restriction of formula

∆ to the clauses over the variables in S. Here, the set of

clauses in the SMT formula ∆ is denoted by CLS (∆), and

the set of literals in a clause Γ is denoted by LITS (Γ).
Intuitively, the factors include the parameterized densities

as in the classic PGM literature, here represented by the

per-literal weights, but also the structure enforced by the

logical constraints in the SMT formula, via the indicator

functions. Figure 3 shown an example of a factor graph.

As in every tree-shaped factor graphs, we define an un-

normalized joint distribution corresponding to the WMI

problem in the form of a product of factors as follows.

p(x) =
∏
S

fS(xS) =
∏
i∈V

fi(Xi)
∏
i,j∈E

fij(Xi, Xj) (4)

By construction, it is easy to see that the normalization

constant of such a distribution equals computing the corre-

sponding weighted model integral.

Proposition 16. Given a problem WMI(∆, w) in treeWMI,

let p(x) being the unnormalized joint distribution as defined

in Equation 4. Then the partition function of distribution

p(x) is equal to WMI(∆, w).

4.2. Message-Passing Scheme

Deriving a message-passing scheme for WMI poses unique

and considerable challenges. First, different from discrete

domains, on continuous or hybrid domains one generally

does not have universal and compact representations for

messages, and logical constraints in WMI make it even
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XT

X1

X2

ZB

m →XT
XT

m →XT
XT

m →XT
XT

Figure 3: Factor graph (left) of formula γ with two players

and piecewise polynomial messages (right) sent from the

three factor nodes to variable node XT when solving the

WMI in Example 3 by MP-WMI.

harder to derive such representations. Moreover, marginal-

ization over real variables requires integration over poly-

topes, which is already #P-hard (Dyer & Frieze, 1988). The

integration poses the problem of whether the messages de-

fined are integrable and how hard it is to perform the inte-

gration. In the following part, we will present our solutions

to these challenges by first describing a general message-

passing scheme for WMI and then investigating of which

form the messages are, given certain weight families.

Given the factorized representation of WMI in Section 4.1,

our message-passing scheme, called MP-WMI and sum-

marized in Algorithm 1, comprises exchanging messages

between nodes in the factor graph. Before the message pass-

ing starts, we choose an arbitrary node in the factor graph

as root and orient all edges away from the root to define the

message sending order. MP-WMI operates in two phases:

an upward pass and a downward one. First, we send mes-

sages up from the leaves to the root (upward pass) such that

each node has all information from its children and then

we incorporate messages from the root down to the leaves

(downward pass) such that each node also has information

from its parent. The messages are formulated as follows.

Proposition 17. Both messages mfij→Xi
from factor node

to variable node and messages mXi→fij
from variable node

to factor node have iterative formulations as follows.

(i) mfij→Xi
(xi) =

∫
fij(xi, xj) ·mXj→fij

(xj) dxj;

(ii) mXi→fS
(xi) =

∏
fS′∈neigh(Xi)\fS

mfS′→Xi
(xi).

For the start of sending messages, when a leaf node is

a variable node Xi, the message that it sends along its

one and only edge to a factor fS is mXi→fS
(ci) = 1; in

the case when a leaf node is a factor node fi, the mes-

sage from the factor node fi to a variable node Xi is

mfi→Xi
(xi) = fi(xi). Even though the weight function

family is not specified here, it can be shown that when the

integration in Proposition 17 is well-defined, i.e., the in-

tegrands are integrable, then the messages are univariate

piecewise functions, which is a striking difference with clas-

Algorithm 1 MP-WMI(∆)

1: Vup ← sort variable nodes in factor graph

2: for each Xi ∈ Vup do {upward pass}
3: send-message(Xi,fi,pa(i))
4: send-message(fi,pa(i), Xpa(i))

5: end for

6: Vdown ← sort nodes in set Vup in reverse order

7: for each Xi ∈ Vdown do {downward pass}
8: for each Xc ∈ ch(Xi) do

9: send-message(Xi, fic)

10: send-message(fic, Xc)

11: end for

12: end for

13: return {mXi→fs
,mfs→Xi

}(xi,fs)∈E

sical message-passing schemes.

Proposition 18. For any problem in treeWMI, the mes-

sages as in Proposition 17 are univariate piecewise func-

tions.

The specific form of messages also depends on the chosen

weight function family as mentioned in Section 3. For exam-

ple, when the weight functions are chosen to be polynomials,

the messages are piecewise polynomials, as in the example

in Figure 3. We show how to compute the piecewise polyno-

mial messages in Algorithm 2 with functions critical-points

and get-msg-pieces as subroutines to compute the numeric

and symbolic integration bounds for the message pieces.

Both of them can be efficiently implemented, see Zeng &

Van den Broeck (2019) for details. The actual integration of

the polynomial pieces can be efficiently performed symboli-

cally, as supported by many scientific computing packages.

When MP-WMI terminates, the information stored in the

obtained messages is sufficient to compute the unnormalized

marginals for each variable and it is independent of the

choice of root. Moreover, the integration of unnormalized

marginals equals to WMI(∆, w).

Proposition 19. Let ∆ be an SMT formula with a tree factor

graph and with per-literal weights w. For any variable Xi,

the unnormalized marginal p(xi) is

p(xi) =
∏

fS∈neigh(Xi)
mfS→Xi

(xi).

Moreover, the partition function for any xi is the WMI of

SMT formula ∆, i.e., WMI(∆, w) =
∫
xi
p(xi)dxi.

4.3. Amortization

We will show that by leveraging the messages pre-computed

in MP-WMI, we are able to speed up (amortize) inference

time over multiple queries on formula ∆. More specifically,

when answering queries that do not change the tree structure
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Algorithm 2 send-message(s, t)

1: if s = Xi and t = fij then

2: Return
∏

fs′∈neigh(Xi)\fij
mfs′→Xi

3: else if s = fij and t = Xi then

4: P ← critical-points(mXj→fij
,∆ij)

5: I ← intervals-from-points(P)

6: for interval I ∈ I consistent with formula ∆ij do

7: 〈ls, us, p〉 ← get-msg-pieces(mXj→fij
, I, w)

8: p′(xi)←
∫ us

ls
p(xi, xj) dxj

9: mfij→Xi
← mfij→Xi

+ Jxi ∈ IK · p′(xi)
10: end for

11: end if

12: return ms→t

in the factor graph of formula ∆, we only need to update

messages that are related to the queries while other messages

are pre-computed. Some examples are SMT queries on a

node variable or queries over a pair of variables that are

connected by an edge in the factor graph, since these queries

either add leaf nodes or do not change existing nodes. Thus

we can reuse the local information encoded in messages.

Proposition 20. Let WMI(∆, w) be a problem in treeWMI,

and Φ be an SMT query over a factor f∗
s involving

a variable Xi ∈ X. Given pre-computed messages

{mfS→Xi
}fS∈neigh(Xi),

WMI(∆ ∧ Φ) =

∫
R

m∗
f∗
s →Xi

(xi)·

∏
fs∈neigh(Xi)\f∗

s

mfs→Xi
(xi)dxi

with message m∗
f∗
s →Xi

computed over factor f∗
s (xs) :=

fs(xs) · Jxs |= ΦK as in Proposition 17.

Pre-computing messages can dramatically speed up infer-

ence by amortization, as we will show in our experiments,

especially when traversing the factor graph is expensive or

the number of queries is large.

5. Complexity Analysis

This section provides a complexity analysis of our proposed

WMI solver MP-WMI. Given the SMT formula ∆ with

a tree factor graph with a chosen root node, each factor

node would be traversed exactly once in each phase of the

message-passing scheme. We denote the set of directed

factor nodes by F := {
−→
fs} = {f

+
s , f−

s | fs ∈ V} where

f+
s denotes the factor node fs visited in the upward pass and

f−
s denotes the one visited in downward pass respectively.

To characterize the message-passing scheme, we define a

nilpotent matrix A as follows. The matrix A ∈ N
|F|×|F|

has both its columns and rows denoted by the factor nodes in

set F . At each column denoted by
−→
fs , only entries at rows

denoted by factor nodes visited right after
−→
fs are non-zero.

Proposition 21. The nilpotent matrix A as described above

has its order at most the diameter of the factor graph.

Next we show how to define the non-zero entries in matrix A
with parameters about the SMT formulas in WMI problems.

Proposition 22. Suppose that the two variables Xi and Xj

are connected in the factor graph by a factor fij associated

with a sub-formula ∆ij of size c, then in MP-WMI:

(i) the number of pieces in message mXi→fij
is bounded

by
∑

ms, where ms is the number of pieces in message

mfs→Xi
with fs ∈ neigh(Xi)\fij;

(ii) the number of pieces in message mfij→Xj
is bounded

by 2mc + c2 with m being the number of pieces in

message mXi→fij
.

Now we show how to use the matrix A to bound the number

of pieces in messages. We define the non-zero entries in

the nilpotent matrix A to be 2c with c being a constant

that bounds the size of sub-formulas associated to factors.

Define a vector v(t) ∈ N
|
−→
E | for the state of the message-

passing scheme at step t – by state it means that each entry

in vector v(t) is denoted by a factor node in set F and the

entry denoted by
−→
fs bounds the number of pieces in the

message sent to fs in the MP-WMI. For the initial state

vector v(0), it has all non-zero entries to be c, the constant

bounding the sub-formula size, and these entries are those

denoted by
−→
fs = f+

s with factor node fs connected with a

leaf.

Proposition 23. Let A be the nilpotent matrix and v the

initial state vector as described above. Also let v(t) :=
Av(t−1)+c2 ·sgn(Av(t−1)) with sgn being the sign function.

Then each entry in vector v(t) denoted by
−→
fs bounds the

number of pieces in the message mXi→fs
received by factor

fs from some variable node Xi at step t in MP-WMI.

Proposition 24. Let A be the nilpotent matrix and v(t) the

state vectors as described above. The total number of pieces

in the all the messages is bounded by ‖
∑d

t=0 v
(t) ‖1 with

d being the diameter of the factor graph. Moreover, it holds

that ‖
∑d

t=0 v
(t) ‖1 is of O((4nc)2d+2).

This gives the worst-case total number of message pieces in

MP-WMI. From Proposition 24, it holds that the problems

in class treeWMI(Ω) with the weight function family Ω

satisfying TWC are tractable to MP-WMI, since the com-

plexity of MP-WMI is the total number of message pieces

multiplied by the symbolic integration cost of each piece,

which is tractable for functions in family Ω by definition.

This finishes the constructive proof for Theorem 15 in Sec-

tion 3. Notice the complexity of WMI problems depends on

the graph structures. In our experiments, we will compare
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solvers on WMI problems with three representative problem

classes with different factor graph diameters.

6. Related Work

WMI generalizes weighted model counting (WMC) (Sang

et al., 2005) to hybrid domains (Belle et al., 2015). WMC

is one of the state-of-the-art approaches for inference in

many discrete probabilistic models. Existing exact WMI

solvers for arbitrarily structured problems include DPLL-

based search with numerical (Belle et al., 2015; Morettin

et al., 2017; 2019) or symbolic integration (de Salvo Braz

et al., 2016) and compilation-based algorithms (Kolb et al.,

2018; Zuidberg Dos Martires et al., 2019a).

Motivated by their success in WMC, Belle et al. (2016)

present a caching scheme for WMI that allows reusing

computations at the cost of not supporting algebraic con-

straints between variables. Different from usual, Merrell

et al. (2017) adopt Gaussian distributions, while Zuidberg

Dos Martires et al. (2019a) fixed univariate parametric as-

sumptions for weight functions. Closest to our MP-WMI,

SMI (Zeng & Van den Broeck, 2019) is an exact solver

which leverages context-specific independence to perform

efficient search and operates on tree-shaped primal graphs.

Many recent efforts in WMI converged in the pywmi (Kolb

et al., 2019) python framework.

Tree-shaped dependency structures, as the ones character-

izing our treeWMI(Ω) class, naturally arise in many fields,

such genetics (Nei & Kumar, 2000), system analysis (Vesely

et al., 1981), linguistics (Petrov et al., 2006), and telecommu-

nications (Leon-Garcia & Widjaja, 2003). Moreover, thanks

to their appealing mathematical properties, trees serve as

practical approximations of non tree-shaped problems (Ru-

binstein et al., 1983; Robins & Zelikovsky, 2000; Binev &

DeVore, 2004).

Message-passing schemes have been widely used for devel-

oping exact and approximate inference algorithms for prob-

abilistic graphical models on discrete (Kschischang et al.,

2001), continuous (Guo et al., 2019; Wang et al., 2018) and

hybrid domains (Gogate & Dechter, 2012). Our amortiza-

tion scheme is closely related to the reuse of local computa-

tion in the join tree algorithm (Huang & Darwiche, 1996;

Lepar & Shenoy, 2013), which has never been explored

in hybrid domains for WMI inference, however. Similarly

to us, Gamarnik et al. (2012) adopts piecewise polynomial

messages, specifically piecewise-linear convex functions, in

a belief propagation scheme for non-probabilistic min-cost

network flow problems.

Research on learning WMI distributions from data is at its

early stages. Parameter learning for piecewise constant den-

sities has been addressed in (Belle et al., 2015). Recently, an

approach for jointly learning the structure and parameters

of a WMI problem has been proposed in (Morettin et al.,

2020). Developing faster inference algorithms is thus benefi-

cial in learning scenarios as, typically, learning a full model

requires numerous calls to an inference procedure. WMI

inference is closely related to probabilistic program infer-

ence, where complex arithmetic and logical constraints are

induced by the program structure or its abstraction (Holtzen

et al., 2017; 2018).

7. Experiments

In this Section, we aim to answer the following research

questions:1 Q1) Can we effectively scale WMI inference

with MP-WMI? Q2) How beneficial is inter-query amorti-

zation with MP-WMI?

To answer Q1, we generated a benchmark of WMI prob-

lems with tree-shaped primal graphs of different diameters:

star-shaped graphs (STAR), complete ternary trees (SNOW)

and linear chains (PATH). These structures were originally

investigated by the authors of SMI and are prototypical of

tree shapes that can be encountered in real-world scenarios

such as phylogenetic trees (Nei & Kumar, 2000), hierar-

chies in file and networks systems (Vesely et al., 1981), and

natural language grammars (Petrov et al., 2006).

We sampled random SMT formulas with N variables with

the tree structures described above and polynomial weights

mapping a subset of literals to a random non-negative poly-

nomials. We generated problems with N ranging from 2 to

20 with step size 2, and from 20 to 100 with step size 10.

We compared our MP-WMI python implementation against

the following baselines: WMI-PA (Morettin et al., 2019), a

solid general-purpose WMI solver exploiting SMT-based

predicate abstraction techniques that is less sensitive to the

problem structure; and F-XSDD(BR) (Zuidberg Dos Mar-

tires et al., 2019b), a compilation-based solver achieving

state-of-the-art results in several WMI benchmarks.

Fig. 4 shows that, with timeout being an hour, our proposed

solver MP-WMI is able to scale up to 60 variables for STAR

problems and up to 90 variables for SNOW and PATH prob-

lems, while the other two solvers stop at problem size 20 for

all three classes. Note that the results are in line with those

reported in (Zuidberg Dos Martires et al., 2019b). This an-

swers Q1 affirmatively, raising the bar of the size of WMI

problems that can be solved exactly up to 100 variables.

We tackle Q2 by comparing MP-WMI with SMI (Zeng

& Van den Broeck, 2019) on tree-structured MI problems.

SMI is a search-based MI solver that has been shown to

be efficient for such problems. WMI-PA, F-XSDD and

the SGDPLL(T) (de Salvo Braz et al., 2016) solver are not

1Our implementation of MP-WMI and the code for reproducing
our empirical evaluation can be found at https://github.
com/UCLA-StarAI/mpwmi.
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A. Proofs

A.1. THEOREM 9

Proof. (Theorem 9) The proof is done by reducing the #P-

complete problem #2SAT over a 2SAT formula ∆B to an

MI problem on a 2-Clause SMT(LRA) formula ∆.

By the Boolean-to-real reduction from (Zeng & Van den

Broeck, 2019), there exists an SMT(LRA) formula ∆ over

real variables only such that MI(∆B) = MI(∆). The for-

mula ∆ can be obtained in the following way. Any Boolean

literal B or ¬B in propositional formula ∆B is substituted

by LRA literals ZB > 0 and ZB < 0 respectively where

the real variable ZB is an auxiliary real variable with bound-

ing box (ZB ≥ −1) ∧ (ZB ≤ 1). Denote the formula after

replacement by ∆′. Then we have formula ∆ as follows.

∆ = ∆′ ∧
∧

B∈vars(∆B)

(ZB ≥ −1) ∧ (ZB ≤ 1)

For each clause in formula ∆, since it contains at most

two Boolean variables before substitution, it also contains

at most two real variables now. Therefore formula ∆ is

a 2-Clause SMT(LRA) formula over real variables only.

Moreover, the reduction guarantees that MI(∆) = MI(∆B)
where MI(∆B) is the number of satisfying assignments to

∆B by the definition of WMI. Thus, computing MI of a

2-Clause SMT(LRA) formula over real variables is #P-

hard.

A.2. THEOREM 12

Proof. (Theorem 12) When the weight function family

Ω = Ω
SMI, by the WMI-to-MI reduction process in Zeng &

Van den Broeck (2019), any WMI problem in treeWMI(Ω)
can be reduced to an MI problem in class treeMI.

We prove the other way by contradiction. Suppose that there

exists a WMI problem ν = WMI(∆, w) ∈ treeWMI(Ω)
with a per-literal weight function w` /∈ Ω

SMI such that

ρ(ν) ∈ treeMI. Since the per-literal weight function

w` /∈ Ω
SMI, from the definition of ΩSMI, it holds that ` is a

bivariate literal defined in a clause Γ which is a conjunction

of more than one distinct literals, i.e., Γ = `∨
∨k

i=1 `i, k ≥ 1
with ` 6= `i, ∀i = 1, · · · , k. During the reduction, a clause

Γ′ = ` ⇒ ∧mj θj is conjoined to the formula ∆ to encode

the weight function w` with at least one auxiliary variable in

formula θj . Then there are at least three distinct variables in

clause Γ′ since given the form of clause Γ, clause Γ′ can not

be further simplified by resolution. This causes a loop in the

primal graph of the reduced MI problem ρ(ν), which con-

tradicts the assumption that ρ(ν) ∈ treeMI. Therefore, if

∀ν ∈ treeWMI(Ω), ρ(ν) ∈ treeMI, then Ω ⊆ Ω
SMI.

A.3. PROPOSITION 16

Proof. (Proposition 16) Recall that given a WMI problem

with SMT formula ∆ over real variables only, the WMI

can be computed as follows by the definition of WMI in

Equation 1.

WMI(∆, w) =

∫
x|=∆

∏
`∈LITS(∆)

w`(x)
Jx|=`K dx

Notice that this is equivalent to integrating

on domain R
|X| over the integrand f(x) =

Jx |= ∆K
∏

`∈LITS(∆) w`(x)
Jx|=`K. Next, we show

how to factorize over the integrand f(x) based on the

factorization on formula ∆ in Equation 2. First, for the

indicator function, we have that

Jx |= ∆K =
∏
S

JxS |= ∆SK =
∏
S

∏
Γ∈CLS(∆S)

JxS |= ΓK.

Moreover, it holds that

∏
`∈LITS(∆)

w`(x)
Jx|=`K =

∏
S

∏
Γ∈CLS(∆)

∏
`∈LITS(Γ)

w`(xS)
JxS |=`K.

Together they complete the proof that the integrand f(x)
here equals to the unnormalized joint distribution p(x) de-

fined in Equation 4 and therefore the partition function of

distribution p(x) equals to the WMI of formula ∆.

A.4. PROPOSITION 18

Proof. (Proposition 18) This follows by induction on the

message-passing scheme. Consider the base case of the

messages sent by leaf nodes. When the leaf node is a vari-

able node Xi, by definition the messages it sends to a factor

node fS is mXi→fS
(Xi) = 1; when the leaf node is a factor

node fi, by definition the messages it sends to the variable

node Xi is mfi→Xi
(Xi) = fi(Xi). By the definition of

factor functions in Equation 3, the function fi is a univari-

ate piecewise function in variable Xi with pieces defined

by the logical constraints in formula ∆i as in Equation 2.

Then it holds that messages sent from the leaf nodes in the

message-passing scheme are piecewise function.

Further, by the recursive formulation of messages in Propo-

sition 17, since the piecewise functions are close under prod-

uct, messages sent from variable nodes to factor nodes are

again univariate piecewise functions; for messages mfS→Xi

sent from factor nodes fS to variable nodes Xi, the do-

main of variable Xi is divided into different pieces by con-

straints in formula ∆S that correspond to different integra-

tion bounds and thus the resulting messages from integration

is again univariate piecewise integration. This concludes the

proof.
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A.5. PROPOSITION 19

Proof. (Proposition 19) Given the tree structure of the factor

graph as well as the factorization of WMI as in Equation 4,

the factors functions can be partitioned into groups, with

each group associated with each factor nodes fS that is a

neighbour of the variable node Xi. Then the unnormalized

joint distribution can be rewritten as follows.

p(x) =
∏

fS∈neigh(Xi)

FS(xi,xS)

where xS denotes the set of all variables in the subtree

connected to the variable Xi via the factor node fS , and

FS(xi,xS) denotes the product of all the factors in the

group associated with factor fS . Then we have that

p(xi) =
∏

fS∈neigh(Xi)

mfS→Xi
(Xi)

=
∏

fS∈neigh(Xi)

∫
FS(xi,xS) dxS =

∫
p(x) dx\xi

where the last equality is obtained by interchanging the in-

tegration and product. Thus it holds that p(xi) obtained

from the product of messages to variable node Xi is the

unnormalized marginal. The fact that the partition func-

tion of marginal p(xi) is the WMI of formula ∆ follows

Proposition 16.

A.6. PROPOSITION 21

Proof. (Proposition 21) W.l.o.g, assume that both the cho-

sen root node and leaf nodes are variable nodes. Recall

that the tree-height h is the longest path from root node to

any leaf node. Let nf be the number of factor nodes in the

longest path in the factor graph from root node to a leaf node

that defines the tree-height h. Then it holds that h = 2nf

since the factor graph is a bipartite graph.

For another, consider a directed graph G whose nodes are

the directed factor nodes in F and whose directed edges

go from one factor node to factor nodes if they are visited

right after in the MP-WMI. By definition, we have that

A = 2c ·M where M is the adjacency matrix of G, and c is

the constant that bounds the size of sub-formulas associated

to factors.

For adjacency matrix M , since the power matrix Mk has

non-zero entries only when there exists at least one path in

graph G with length k, the order of matrix M is the length

of longest path in graph G plus one which is two times the

number of number of factor nodes in the longest path in the

factor graph, i.e., 2nf . Therefore the adjacency matrix M
is a nilpotent matrix with order being at most 2nf , i.e., the

tree-height of the factor graph, which is at most the diameter

of the factor graph. So is matrix A.

A.7. PROPOSITION 22

Proof. (Proposition 22) The statement (i) holds since the

message mXi→fij
is the product of messages hence intersec-

tion of corresponding pieces by definition in Proposition 17.

For the statement (ii), the end points of the message pieces

in message mfij→Xj
are obtained by the solving linear

equations with respect to variable xj as described in Zeng

& Van den Broeck (2019) where they define them as critical

points. For these equations, each side can be either an

endpoint in message mXi→fij
or an LRA atom from a

literal in sub-formula ∆ij . Then there are at most 2mc
equations with one side as an endpoint and the other size

as an LRA atom, and at most c2 equations with both sides

as LRA atoms. Thus the total number of critical points

from solving the equations is 2mc + c2, which indicates

that the number of pieces, whose domains are bounded

intervals with critical points being their endpoints, is at

most 2mc+ c2.

A.8. PROPOSITION 23

Proof. (Proposition 23) The proof is done by mathematical

induction at steps in MP-WMI. Given a directed factor node

fs ∈ F , denote the set S(fs) := {fs′ | Afs,fs′
6= 0}.

For step 0, the statement holds by the definition of v(0).
Suppose that for step t, each entry in vector v(t−1) denoted

by
−→
fs bounds the number of pieces in the message mXi→fs

received by factor fs from some variable node Xi at step

t − 1. For step t, it holds for v(t) by its definition that

(v(t))fs =
∑

fs′∈S(fs)
(Afs,fs′

(v(t−1))fs′ + c2).

Moreover, for a factor node fs ∈ F , there exists an vari-

able Xi such that nodes in S(fs) are connected to fs
by the variable node Xi in the factor graph. Since the

entry (v(t−1))fs′ bounds the number of message pieces

in mXj→fs′
for some variable Xj , the number of mes-

sage pieces in each message mfs′→Xi
is bounded by

2c · (v(t−1))fs′ + c2 by Proposition 22. It further indicates

that the number of message pieces in mXi→fs
is bounded by∑

fs′∈S(fs)
(2c · (v(t−1))fs′ + c2) = (v(t))fs since the non-

zero entries in A are defined as 2c. Thus the statement holds

for step t, which finishes the induction and the proof.

A.9. PROPOSITION 24

Proof. (Proposition 24) For brevity, we denote the L1-norm

by ‖ · ‖. Denote the cardinality of set F to be s. From the

definition of matrix A, it holds that ‖ A ‖≤ 2cs. Then for

all t, it holds that

‖ v(t) ‖≤‖ Av(t−1)+c2·sgn(Av(t−1)) ‖≤ 2cs ‖ v(t−1) ‖ +c2s
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From the recurrence above, it can be obtained that

‖
d∑

t=0

v(t) ‖≤
d∑

t=0

‖ v(t) ‖

≤
d∑

t=0

[(2cs)t ‖ v(0) ‖ +
t−1∑
i=0

(2cs)ics] ≤ 2(2cs)2d+2

Moreover, since the cardinality s ≤ 2n, we have that

‖
∑d

t=0 v
(t) ‖ is of O((4nc)2d+2).


