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Abstract

A parking function (¢q,...,¢,) can be viewed as having n cars trying to park on a
one-way street with n parking spots from left to right, where car i tries to park in spot
¢i, and otherwise it parks in the leftmost available spot after ¢;. Another way to view
this is that each car has a set C; of “acceptable” parking spots, namely C; = [¢;, n],
and that each car tries to park in the leftmost available spot that it finds acceptable.

Motivated by this, we define a subset parking function (C1,...,C,), with each C; a
subset of {1,...,n}, by having the ith car try to park in the leftmost available element
of C;. We further generalize this idea by restricting our sets to be of size k, intervals,
and intervals of length k. In each of these cases we provide formulas for the number of
such parking functions.

1 Introduction

Parking functions are well-studied objects in combinatorics, and are often defined in the
following way. Imagine that there are n parking spots labeled 1 though n on a one way
street. There are n cars, also labeled 1 through n, that wish to park in these spots, and
each has a preferred parking spot ¢;. When it is car i’s turn to park, it goes to its preferred
spot ¢; and parks there if it is empty. Otherwise, it tries to park in the next available spot
that is after ¢;. The tuple (cq,...,¢,) is said to be a parking function if every car succeeds
in parking.
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For example, (2,2, 2) is not a parking function, as car 1 parks in slot 2; car 2 tries to park
in slot 2 but can not and goes to the next available slot 3; and car 3 tries to park in slot 2
but can not, and there are no slots after this that are available. On the other hand, (2,1, 1)
is a parking function as car 1 parks in slot 2; car 2 parks in slot 1; and car 3 tries to park
in slot 1 but can not, so it goes to the next available slot 3. We will say that the parking
function (2, 1,1) has outcome 213, which describes how one would see the cars parked if one
were to walk from slot 1 to slot 3.

Parking functions have many interesting combinatorial properties. For example, a nec-
essary and sufficient condition for (cy,...,¢,) to be a parking function is, after rearranging
the ¢; in increasing order as by < by < --- < b,, we have b; < i for all 7. In particular, this
shows that any permutations of the entries of a parking function is also a parking function.
One can also prove that the number of parking functions PF(n) satisfies

PF(n) = (n+1)""". (1)

Parking functions have connections to many other areas of combinatorics, such as hyperplane
arrangements [6] and the lattice of non-crossing partitions [7]. We refer the reader to the
survey of Yan [9] for an elegant proof of (1) and a more in depth study of parking functions.

Many generalizations and variants of parking functions have been studied, such as x-
parking functions [8] and G-parking functions [4]. These examples generalize the b; < i
characterization of parking functions. One can also generalize the parking analogy. An
example of this is to allow cars to park a few spaces before their preferred spot if this is
already taken, which has been studied recently [1].

In this paper we also consider a variant of parking function that is obtained by modifying
the parking rule. To motivate the idea, we observe that a parking function (cy,...,¢,) can
be viewed as each car choosing a set C; = [¢;, n] of “acceptable” parking spaces, with each
car parking in the leftmost available spot which is acceptable to them. One can generalize
this idea by allowing each C; to be an arbitrary set.

To this end, let [n] := {1,2,...,n} and let S,, denote the set of permutations of size n
written in one line notation. Given n non-empty subsets C; C [n] and a permutation 7 € S,
we will say that C = (C,...,C,) is a subset parking function with outcome 7 if for all

1 < i < n, having m; = i implies j is the smallest element of C; \ {m,' : i < i}. That is,
if car 7 ends up in spot j, it must find spot 7 to be acceptable, all the earlier spots which
are acceptable are already taken, and no one has taken spot j yet. We let SPF(n, ) denote
the number of subset parking functions with outcome 7, and we denote the total number
of subset parking functions by SPF(n) :=»_ s SPF(n, ). Technically we should say that
SPF(n) counts the number of parking functions of size n, but here and throughout we omit
explicitly noting this dependency on n whenever it is clear from context.

For example, ({2},{2,3},{1,2,3}) is a subset parking function with outcome 312. How-
ever, ({2,3},{1,2,3},{2}) is not a subset parking function since we require m = 1, m = 2,
and then no choice from Cj will work. In particular this shows that for subset parking
functions the order of the C; sets are important, which is not the case in the classical study
of parking functions.



Our first goal is to enumerate subset parking functions. To this end, we recall that the
inversion number inv(w) of a permutation 7 is equal to the number of pairs (i, j) such that
1< jand m <.

Theorem 1. For any integer n > 1 and w € S,

SPF(’I’L, 7T) _ 2n(n—1)—inv(7r)’

n—1

SPF(n) = [ (2" — 2Y).

=0

(Classical) parking functions are subset parking functions where each C; is required to
be an interval of the form [¢;, n]. We can get other interesting variants by restricting the C;
sets in other ways. For example, we say that C = (C1,...,C,) is a k-subset parking function
if C is a subset parking function and |C;| = k for all i. We let SPFy(n, 7) denote the number
of k-subset parking functions with outcome 7 and SPFj(n) the number of k-subset parking
functions.

To state our next result, we define the local inversion number inv;(7) to be the number
of pairs (7,7) with ¢ < j and m; < m;. Observe that inv(mw) = > inv,(7). We adopt the
convention that (8) =1 and (2) =0 for x > 0.

Theorem 2. For any integern>1, 1 €S, and 1 < k <mn,

n o ; _1
SPFu(n,m) =[] (” v )

=1

i ()

We next consider the case that each C; is an interval, and we call such parking functions
interval parking functions. Let IPF(n) and IPF(n, 7) be the total number of interval parking
functions and the number of interval parking functions with outcome 7, respectively.

To state our full result, given a permutation © we define a;(7) to be the largest j with
1 < j < isuch that m; > {m,m_1,...,m_j11}. For example, a;(m) > 2 if and only if
m; > mi—1. As another example, for m = 31524, we have a;(7) equal to 1, 1, 3, 1, 2 as i ranges
from 1 to 5. Finally, define PF(n,7) to be the number of (classical) parking functions with
outcome .

=

Theorem 3. For anyn >1 and m € S,

IPF(n,7) =n!-PF(n,7) = n! ﬁ a;(m)

=1

IPF(n) = !+ PF(r) = nl (n + 1)""
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Other properties of interval parking functions are currently being investigated by Chris-
tensen, DeMuse, Martin, and Yin [2].

The last variant we consider are k-interval parking functions, which are interval parking
functions where each C; is an interval containing k elements. We let IPF,(n) denote the
number of k-interval parking functions and IPFy(n, 7) the number of those with outcome 7.
Define S* to be the set of permutations 7 of order n with m, > m, 1 > -+ > m,_p11.

Theorem 4. Let k and n be integers with 1 < k < n and let 7 € S,. If 7 ¢ S’;, then
IPFy(n,m) = 0. Otherwise,

n—k n
IPFi(n,m) = [ [ min{ai(w), k} - [ min{n—i—k+a(m)+1,n—i+1}.
=1

i=n—k+1

This formula is rather complicated, but for certain k it is manageable. For example,
when k& = 1 each term in the product is 1. We conclude that IPF;(n,7) = 1 for all w, and
hence IPF;(n) = nl. When k = n, we have IPF,(n,7) = 1 when 7 = 12---n (since in
general a;(7) = 1 and a,,_;(7) < n—1), and otherwise IPF,,(n,7) = 0, so IPF,,(n) = 1. Both
of these results can also be verified directly. The formulas for K =n — 1 and k = 2 are also
quite nice.

Corollary 5. Ifn > 2 and m € S"! with 7, = j, then

2 i A
1, if 1 =n.

IPF, _1(n,7) = {
Moreover,
IPF,_i(n) =2"1.

To state the formula for k = 2, we define the ascent number asc(m) of a permutation 7
to be the number of ¢ with 2 < ¢ <n and m;_; < m;. Define the Eulerian number <Z> to be
the number of permutations 7 € §,, with asc(7) = k.

Corollary 6. Ifn > 2 and m € S?, then
IPF,(n, ) = 221,

Moreover,



2 Subset results

We first prove enumeration results for a generalization of subset parking functions where
each car is given a list of allowed subset sizes. To this end, given £ = (L4, ..., L,) with
L; C [n], we define SPF(n, £) to be the number of subset parking functions where |C;| € L,
and we will call this an L-parking function. Our first goal will be to enumerate SPF(n, £).

To do this, we define the notion of a partial parking function, which intuitively describes
where the first m cars have parked. Let S,,, denote the set of strings m = m; - - - 7, where
for all 1 <4 < m there exists a unique index j with m; = ¢ and such that every other letter
is an auxillary letter *. Note that S,,,, is simply the set of permutations. For i« < m we let
7,1 denote the unique index j with T = 1.

We say that (Cy,...,C,,) with each C; a non-empty subset of [n] is a partial L-parking
function with outcome 7 € S,,, if for all 1 < i < m, |C;| € L; and 7; ' = j implies j is
the smallest element of C; \ {m;' : i’ < i}. Finally, given a permutation 7, we write 7™ to
denote the string where 7™ = m; if i < m and 7™
definitions, the following is immediate.

= x otherwise. Once one unpacks these

Lemma 7. Let 1 <m <n andm € S,. C is an L-parking function with outcome 7 if and
only if (Cy,...,Cn) is a partial L-parking function with outcome 7™ for all m.

The following lemma shows how to extend partial parking functions.

Lemma 8. Let 1 <m <nandw € S,. If (C1,...,Cp_1) is a partial L-parking function
with outcome m, then (Cy,...,Cy,) is a partial L-parking function if and only if |Cy,| € Ly,
and Cp, ¢ {7, i < m}.

Proof. 1t C,, is such a set, then by assumption |C,,| € L,, and there exists some minimal j
in Cy, \ {m,' : k < m}. Thus by defining 7’ by 7] = m; for i # j and 7} = m, we see that
(C,...,Cy) is a partial L-parking function with outcome n’. Conversely, if (Cy,...,C,,) is
a partial £-parking function, then C,, \ {7 : k¥ < m} must be non-empty, so C,, ¢ {m; " :
k < m}. We also must have |C,,| € L,, by definition, proving the result. O

Theorem 9. For anyn >1 and L = (Ly,...,Ly),

SPF(n, £) —ili (;L (Z) - (Z , 1)) .

Proof. Consider the following procedure. We start with an empty list (). Recursively, given
a partial L-parking function (C1,...,C;_1), we choose a set C; such that (Cy,...,C}) is a
partial L-parking function. By Lemma 7, every L-parking function is obtained (uniquely)
by this procedure. Thus to obtain our result we need only enumerate how many choices we
can make at each stage of the procedure.

Assume one has already chosen (C1, ..., C;_1) so now we need to choose C;. By Lemma 8,
for any ¢ € L;, the number of ways to choose an appropriate C; with |C;| = £ is (’g) — (izl).
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Namely, one can choose any /¢-element subset that is not contained in {ﬂ'j_l cj <i}. As we
allow |C;| to be any element of L;, we conclude that the number of choices for C; is exactly
Y e I, (’g) — (izl). As the number of choices for Cj is independent of all of the other C; sets,
we conclude that the total number of ways to complete this procedure is the product of all
of these sums. This gives the desired result. O]

We can prove a similar general theorem when the outcome is specified. To this end,
define SPF(n, £, 7) to be the number of L-parking functions with outcome 7. Recall that
inv,() is defined to be the number of (7, j) with i < j and m; < ;.

Theorem 10. For anyn>1, 1€ S,, and L = (Ly,..., Ly),

SPF(n, £, ) = ﬁ (Z (” B h;"_i(? - 1)) .

=1 \leL;

Proof. Consider the following procedure. We start with an empty list (). Recursively, given
a partial £-parking function (C1, ..., Ci_;) with outcome 7~ we choose a set C; such that
(Cy,...,C) is a partial £L-parking function with outcome 7. By Lemma 7, every £-parking
function with outcome 7 is obtained (uniquely) by this procedure. Thus to obtain our result
we need only enumerate how many choices we can make at each stage of the procedure.

Assume (C4,...,C;_,) is a partial L-parking function with outcome 70—V, By Lemma 8,
if we wish to have |C;| = ¢ € L;, then we must have C; ¢ {m;,' : i < i}. Moreover, we also
must choose this set so that it has outcome 7. If j = mr; !, this is equivalent to having C;
be any subset with j the minimal element of C; \ {m;,' : i’ < i}. To summarize, necessary
and sufficient conditions for C; to have |C;| = ¢ are

Note that (b) is implied by (c), so this is irrelevant. Condition (d) is equivalent to avoiding
k with k < j and i < 7 (that is, the car that appears in the earlier spot k parks after 7).
The number of such k is exactly inv,;(7), so we conclude that the number of C; satisfying
these conditions is exactly (”_121_“1" "(“)). Summing this value over all ¢ € L; gives the total
number of choices for C;. As this quantity is independent of all the other choices of C;, we

can take their product to arrive at the desired count for SPF(n, L, ). [
With this we can now prove our results. We start with Theorem 2.

Proof of Theorem 2. Note that k-subset parking functions are precisely L-parking functions
where L; = {k} for all i. The result follows from Theorems 9 and 10. O
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Proof of Theorem 1. Subset parking functions are precisely L£-parking functions where L; =
[n] \ {0} for all i. By Theorem 9 we have

SPF(n ﬁ 27" -1)).

=1

Canceling the 1’s and reindexing the product gives the first result. For the second result,
Theorem 10 implies

SPF(H, 7T) _ H 2nfinvi(7r)71 _ 2n(n71)7inv(7r)’

i=1
where we used that inv(r) = > inv, (7). O

We note that Theorem 1 implies

n—l
Z gn(n—1)—inv(m) _ H(Qn - 21‘)’
reS, =0

which one can verify using the generating function for the inversion statistic. This also
provides an alternative way to prove the formula for SPF(n) given the formulas for each
SPF(n, 7). Similarly Theorem 2 implies

S )-ml)-()

We are not aware of a more direct method to prove this.

Before closing this section, we briefly discuss a variant of subset parking functions. Since
subset parking functions allow each car to have any set of positions be acceptable, it also
makes sense to allow each car to have their own preference order for these spots insteadof
always requiring them to park in the left-most available spot.

To formalize this, we say that a list of subsets C = (C4,...,C},), together with a list
of bijections f; : C; — [|C]], is an ordered parking function with outcome 7= = 7y - - -, if
for all 1 < i < n, m; = i implies fi(j) = minjep, fi(j'), where D; == C; \ {m;;' : i’ < i}.
We let OPF(n,m) denote the number of ordered parking functions with outcome 7 and
OPF(n) := Y  OPF(n,7) the number of ordered parking functions.

If we define L-ordered parking functions analogous to how we defined £-parking functions,
then essentially the same proof used to prove Theorem 9 shows that

OPF(n, L) :ﬁ (g (Z)m _ (Z . 1) g;) .



With this established, one can prove a nice analog of Theorem 1. Namely, define O(n) =
>-io (3)¢! to be the number of ordered subset of [n]. Then

n—1

OPF(n) = [[(O(n) — O(i)).

=0

In the ordered setting, every w is equally likely to be the outcome of an ordered parking
function, so OPF(n,7) = OPF(n)/n! for all 7.

3 Interval results

As before we first prove a more general theorem. Let K = (Kj,...,K,) be such that
K; C [n]\ {0} for all i. We say that (C1,...,C,) is a K-interval parking function if each C; is
an interval with |C;| € K;. We define partial -interval parking functions analogous to how
we defined partial £-parking functions in the previous section, and as before we immediately
have the following.

Lemma 11. Let 1 <m <n and 7 € S,,. C is a K-interval parking function with outcome
7 if and only if (Cy,...,Cy) is a partial K-interval parking function with outcome 7™ for
all m.

We also have an analog of Lemma 8. Recall that we define a;(7) to be the largest j <
such that iy 2 {7TZ', Ti—1ye-- ,7Ti_j+1}.

Lemma 12. Let 1 <m <nandmw € S,. Let (Cy,...,Cy_1) be a partial K-interval parking
function with outcome 7™~V and let p = w;'. Then (Ci,...,Cy) is a partial K-interval
parking function with outcome 7™ if and only if C,, = [r,r + k — 1] with k € K; and

max{p — a,(7) +1, p—k+1} <r <min{p, n —k+ 1}.

Proof. Assume (C1,...,C,,) is such a partial K-interval parking function with C,, = [r,r +
k — 1] for some r and k. Because |C,,| = k we require k € K,,, and because C,, C [n]| we
must have r + k — 1 < n. We also need p — kK + 1 < r < p so that this set contains p.
Further, we require every x € [r, p] to satisfy 7, < m, otherwise p will not be the smallest
element of C,, \ {m; ! : i < m}, which would contradict (C4,...,C,,) having outcome 7(™.
By definition this will not be the case if r < p—a,(7)+1, so r > p—a,(7) +1. We conclude
that r satisfies the desired inequalities.

Conversely, assume C,,, = [r,r + k] has r and k satisfying these conditions. Because
p—ay(m)+1 > 1 we have C,, C [n], and we also have |C,,| = k € K;. Again by definition of
a,(7) these inequalities imply that p is the smallest element of C,, \ {m; ' : i < m}, so this
gives the desired partial K-interval parking function. ]



Let IPF(n, KC, ) denote the number of K-interval parking functions with outcome 7 and

define
min{a;(7), k}, ifi<n-—Fk;
bi(m, k) =<0, if a;(m) < k+1i—n;
min{n —i —k +a;(m)+1,n —i+ 1}, otherwise.
Theorem 13. For anyn>1, 1 € S,, and K = (Ky,..., K,),

IPF(n, K, 7) =

e

a0
&
5
>

Proof. We consider the number of ways to iteratively build partial K-interval parking func-
tions with outcomes (™. If one has already chosen (Ci,...,C;_1) and p = 7; ', then by
Lemma 12 the number of ways to choose an appropriate C; with |C;| = k € K is the number
of r in the range

max{p —a,(7) +1,p—k+ 1} <r <min{p,n — k + 1}.
If p <n — k this number is exactly min{a,(7), k}. Otherwise it is
max{0, min{n —k —p+a,(7) +1,n —p+ 1}}.

Because n — p + 1 > 1, this quantity is 0 if and only if a,(7) +1 < k+ p —n. Thus the
number of choices for C; with |C;| = k is exactly by(m, k). Summing this over all k € K;
gives a quantity independent of all the other C;, so we can take the product of these values

and conclude
IPF(n, K, m H(mek)

=1 \kEK;
By reindexing this product, we get the stated result. O

Proof of Theorem /. Recall that we wish to prove

IPFy(n,m) = l_Imm{aZ H min{n —i — k+a;(7) +1,n —i+ 1}
i=n—k+1
whenever 7 € S’;j. That is, whenever m, > -+ > m, r+1. Observe that k-interval parking

functions are exactly K-interval parking functions with K; = {k} for all i, so a formula for
IPFj(n, ) is given by Theorem 13. It remains to rewrite this formula into the desired form.

If ré Sﬁ, then there exists some ¢ with 0 < ¢ < k — 2 and 7,_; < m,_;_1. This implies
an—i(m) =1 < k —1i, and hence b,_;(m, k) = 0. Thus IPFy(n,7) = 0.

From now on we assume 7 € S¥. This implies a,,_;(7) > k —i for all 0 <i < k — 1, and
hence for these ¢ we have b,,_;(7, k) = min{i — k 4+ a,_;(w) + 1,7+ 1}. This gives b;(m, k) for
all j > n —k+ 1, and otherwise we have b;(, k) = min{a;(7), k}. Taking the products of
these terms gives the desired result. O



Proof of Corollary 5. The statement can be verified for n = 2, so assume n > 3. By Theo-
rem 2 we have for 7 € S"~! that IPF,_;(n, 7) equals

min{a(7),n — 1} - min{ay(mw),n — 1} - Hmin{ai(ﬁ) —i+2n—i+1}

n—1
= ay(m) - H min{a;(7) —i+2,n —i+ 1},
=3

where we used a1(7) < 1 and as(m) <2 <n — 1. We claim that this is equal to

—L

(a;(m) —i+2).
i=2
Indeed this follows from the fact that a;(7) —i+2<2<n—i+1foralli<n-—1.
Assume 7; = j, and recall that 7 € S"~! implies that 7y < -+ < m,. Thus for all i > 1
we have a;(m) =i if m; > j and a;(7) = i — 1 otherwise. Thus j = n implies that a;(7) =i—1
for all © > 2, and otherwise there are exactly n — 1 — j different ¢ with 2 < ¢ < n — 1 and
a;(m) = i. We conclude the first result. For the second result,

n—1
IPF,_1(n) = Y IPF,y(n,m)=1+) 2"/ " =2""
j=1

resn!

]

In principle this same technique can be used to compute IPF, _x(n,7) and IPF, _x(n)
for any fixed k, though the case analysis and computations become rather complicated. We
note that one can prove IPF,,_;(n) = 2"~! more directly by observing that (C1,...,C,,) will
be an (n — 1)-interval parking function if and only if C,, = [2,n] and C; is [1,n — 1] or [2,n]
for all other .

Before proving Corollary 6, we give an enumeration result for permutations in S? with a
given number of ascents. We adopt the convention <Z> =0 for k > 0, <8> =1, and <f1> =0.

Lemma 14. For alln and k withn > 1 and 0 < k <n—1, let S:;k be the set of permutations
of size n which have m, y < T, and which have exvactly k ascents. If P(n,k) =[S, |, then

P(n,k) = (n — k;)<Z:i>

We note that this result is implicitly proven in [5], but for completeness we include the

full proof here. To prove this, we recall the following recurrence for Eulerian numbers, which
is valid for all n,k > 1 [3].

<Z>_(k+1)<”;1>+<n—k)<2:1>. 2)
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Proof. The result is true for £k = 0, so assume that we have proven the result up to k£ > 1.
For any fixed k the result is true for n = 1, so assume the result has been proven up to
n > 2. To help us prove the result, we define S, to be the set of permutations which have
Tn-1 > m, and which have exactly k ascents. Define M(n, k) := |5, ,[. By construction we
have

P@%k)+on%k)::<Z>. (3)

Define the map ¢ : S;[’ x — Sn—1 by sending 7 € S;L” . to the word obtained by removing the
letter 1 from 7 and then decreasing the value of each letter by 1. For example, ¢(32514) =
2143. We wish to determine the image of ¢. Let 7 be a permutation in S:; > and let ¢ denote
the position of 1 in 7. Note that ¢ # n since 7 ends with an ascent. If m;_; < w1 with
1 <i < n, then ¢(m) will continue to have k ascents and end with an ascent, so ¢(7) € S:;l’k.
Ifi=1orm 1 >my with 1 <i<n—1,then ¢(n) € S;QL,FI. Ifi=n—1and m,_o > m,
then ¢(m) € S, |, -

It remains to show how many times each element of the image is mapped to by ¢. If
T e S;[_Lk, then 1 can be inserted into 7 in k£ ways to obtain an element of S:;k (it can be
placed between any of the k ascents m; < m;4q). If 7 € SI_M_l, then 1 can be inserted into
7 in n — k ways (it can be placed at the beginning of = or between any of the n — 1 — k
descents m; > miyq). If € S, 1> then 1 must be inserted in between m,_1 > m, in order
to have the word end with an ascent. With this and the inductive hypothesis, we conclude
that

P(n,k)=kP(n—1,k)+(n—k)Pln—1k—1)+M(n—1,k—1)
n—2 n—2
= — k-1 —k)? M(n—1,k—1). 4
k(n —k )<k_1>+(n k) <k—2>+ (n—1,k—1) (4)
By using (3), the inductive hypothesis, and (2); we find

n—1

M(n—l,k—l):<k_1>—P(n—1,k—1)
()
:k<z:i>.

Plugging this into (4) and using (2) gives

P(n,k) = (n— k) (k<Z:f> + (n—k)<z:;>) - (n—k)<Zj>,

as desired. ]
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Proof of Corollary 6. By Theorem 2 we have, after evaluating terms which are automatically
L,

IPFy(n, ) = 1:[ min{a;(m),2}.

Note that a;(7w) > 2 if and only if m;—; < m;. There are exactly asc(m) — 1 different i with
2 < 4 < n satisfying this, where we subtract 1 since © € S? implies that there is always an
ascent at position n — 1. We conclude the first result.

For the second result, we sum IPFy(n, 7) over all 7 € S2. Each term contributes ase(m)—1
so we conclude the result by Lemma 14 after noting that <”__11> = 0. O]

Corollary 6 shows that, for n > 2, IPFy(n) is equal to A053525, the number of connected
threshold graphs on n vertices. This can be proven bijectively from essentially the same
proof as in [5], but for brevity we omit the details. The formulas for k¥ = 3 A327761 and
k =mn—2 A327794 seem complicated (though in principle the latter can be put into a closed
form).

Before proving our enumeration results for interval parking functions, we first directly
enumerate the number of parking functions with a given outcome. In what follows we
treat parking functions as subset parking functions (C1,...,C,) where C; = [¢;, n] for some
1 < ¢; < n. Define a partial parking function (C,...,C,,) analogous to how we defined
L-partial parking functions. We immediately have the following.

Lemma 15. Let 1 <m <n andw € S,,. C is a parking function with outcome 7 if and only
if (Ch,...,Cn) is a partial interval parking function with outcome =™ for all m.

We also have an analog of Lemma 12.

Lemma 16. Let 1 <m <n and 7w € S,,. Let (C,...,Cy_1) be a partial parking function
with outcome 7™V and let p = 7;*. Then (Cy,...,Cy) is a partial parking function with
outcome ™™ if and only if C,, = [r,n] with p — a,(7) +1 <1 < p.

Proof. Assume (C1,...,C,,) is such a partial parking function with C,, = [r, n| for some r.
We need r < p so that this set contains j. Further, we require every x € [r,p| to satisfy
7, < m, otherwise p will not be the smallest element of C,, \ {m; " : i < m}, which would
contradict (Cj,...,C,,) having outcome 7(™. By definition this will not be the case if
r<p—ay(m)+1,s0r>p—a,(nr)+1. We conclude that r satisfies the desired inequalities.

Conversely, assume C,,, = [r, n| has r satisfying these inequalities. Because p—a,(7)+1 >
1 we have C,,, C [n]. Again by definition of a,(7) these inequalities imply that p is the smallest
element of C,, \ {m; ' : i < m}, so this gives the desired partial parking function. O

Proposition 17.

PF(n,m) = H a;(m).
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Proof. Assume one has chosen C',...,C;_; so that (Cy,...,C;_1) is a partial parking func-
tion with outcome 7(=Y. There are a_-1(7) choices for C; to make (Ci,...,C;) a partial

parking function with outcome 7 by Lemma 16. Every parking is obtained this way by
Lemma 15, so taking the product over all these values and reindexing gives the desired
result. O]

We use Theorem 13 to prove Theorem 3, and to do so we require the following lemma.

Lemma 18. For anyn > 1 and w € S,,,
> bi(m k) = ai(m)(n —i+1).
k=1

Proof. Throughout this proof we use that the “otherwise” case in the definition of b;(7, k)
can be written as n — i + 1 + a;(7) — max{a;(7), k}.

We first consider the case a;(7) < n—i and split the sum into two parts. For a;(7) < n—i
we have

n—i n—i ai(ﬂ) n—i
D bi(m k) =) min(ai(n), k) = > k+ > ai(w)
k=1 k=1 k=1 k=a;(m)+1

Q; +1 .
= ( (72 ) + (n — 1 — a;(m))a;(m). (5)
If a;(m) = n — i the same formula holds by essentially the same reasoning.

If k> n —i+ a;(m) we have b;(m, k) = 0, so the rest of the sum is

n—i+a;(m) n—ita; ()
> bi(mk)=(n—i+ai(m)+ Dair)— Y max{a(r) k}
k=n—i+1 k=n—i+1
n—i+a;(m)
=(n—i+am)+Da(r)— >k (6)
k=n—i+1

where we used our assumption a;(7) < n —i < k in this last equality. Using the identity
TV k =2y + (Y1), we conclude that (6) equals

) (a:(m) + Das(m) (‘”(W) * 1).

2
Adding this to (5) gives the desired result.
Now assume a;(7) > n — i+ 1. In this case we have

i bi(m, k) = imin(ai(ﬁ), k)= i k

_ (_"—;'“). (7)
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The rest of the sum is

n—i+a;(m) n—i+a;(m)
> bilmk)=(n—i+ai(r)+ Dai(m) — Y max{a;(r), k}
k=n—i+1 k=n—i+1
n—i+a;(m)
= (n—i+ai(m) + Dai(r) — ai(m)(ai(r) —n+i)— >k
k=1+a;(m)
— (20— 2 + Day(r) — (”‘5“) — ay(m)(n — ). (8)
Adding (7) and (8) gives the desired result. O

Proof of Theorem 3. Observe that interval parking functions are exactly K-interval parking
functions with K; = [n] for all 4, so by Theorem 13, Lemma 18, and Proposition 17; we have

IPF(n, ) = Hai(ﬂ)(n —i4+1)=n Hai(ﬂ) —n!-PF(n,).

Using (1), we find

IPF(n) = Y IPF(n,m) =n! > PF(n,7) =n!-PF(n) =n!- (n+1)"".

WESn 7T€Sn
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