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Abstract— This work presents new tools for studying reach-
ability and set invariance for continuous-time mixed-monotone
dynamical systems subject to a disturbance input. The vector
field of a mixed-monotone system is decomposable via a
decomposition function into increasing and decreasing compo-
nents, and this decomposition enables embedding the original
dynamics in a higher-dimensional embedding system. While the
original system is subject to an unknown disturbance input,
the embedding system has no disturbances and its trajectories
provide bounds for finite-time reachable sets of the original
dynamics. Our main contribution is to show how one can
efficiently identify robustly forward invariant and attractive sets
for mixed-monotone systems by studying certain equilibria of
this embedding system. We show also how this approach, when
applied to the backward-time dynamics, establishes different ro-
bustly forward invariant sets for the original dynamics. Lastly,
we present an independent result for computing decomposition
functions for systems with polynomial dynamics. These tools
and results are demonstrated through several examples and a
case study.

I. INTRODUCTION

When verifying dynamical systems against safety con-
straints, it is often necessary to explicitly compute forward
invariant subsets of the system state space. Given a candidate
subset, forward invariance can be shown by, e.g., studying
the vector field on the boundary of the set [1] or using barrier
certificates [2]; however, it is generally difficult to identify
such candidates. In this paper, we provide several tools
for identifying robustly forward invariant and attractive sets
for continuous-time mixed-monotone systems subject to a
disturbance input. A dynamical system is mixed-monotone if
there exists a related decomposition function that decomposes
the system’s vector field into increasing and decreasing
components; mixed-monotonicity applies to continuous-time
systems [3]-[7], discrete-time systems [8], as well as systems
with disturbances [9]-[11], and it generalizes the mono-
tonicity property of dynamical systems for which trajectories
maintain a partial order over states [12], [13].

In the case with no disturbance, it is known that a 2n-
dimensional symmetric embedding system can be constructed
from the decomposition function of an n-dimensional mixed-
monotone system. This embedding system is monotone with
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respect to a particular southeast order and the original dy-
namics are contained in an invariant n-dimensional diagonal
subspace. Thus, tools from monotone systems theory can
be applied to the embedding system to conclude properties
of the original dynamics; in particular, such approaches are
useful for stability analysis [14], [15], reachability analysis
[8], and formal verification and synthesis [16], [17]. When
disturbances are present, it is also possible to construct a
monotone embedding system from the original dynamics.
In this case, the embedding system is nondeterministic
with a 2m-dimensional disturbance input when the original
system is subject to an m-dimensional disturbance input.
This result has been applied in discrete-time [10], [11] and
in continuous-time [9], [10] for the computation of robust
reachable sets.

In this work, we consider continuous-time mixed-
monotone systems with disturbances, however, unlike [9],
[10] we study a deterministic embedding system that arises
from considering the worst case disturbance inputs. While
this deterministic embedding system is straightforwardly de-
rived from the aforementioned nondeterministic embedding
system, its potential does not seem to have been fully ap-
preciated or studied in the literature. In particular, unlike the
deterministic embedding system that arises in the case with
no disturbance, the diagonal of this new deterministic em-
bedding system is not forward invariant; instead, a forward
invariant triangular region is induced above the diagonal.
Our main result is to show that equilibria in this triangular
region correspond to robustly forward invariant sets for
the original system and that stable equilibria correspond to
attractive sets for the original system.

As a second contribution, we demonstrate a new approach
for generating decomposition functions for systems with
polynomial dynamics. There do not exist universal algo-
rithms for generating closed-form decomposition functions,
except in a few, albeit important, special cases. In particular,
it is observed in [18] that a decomposition function can be
constructed if each off-diagonal entry of the Jacobian matrix
of the system’s vector field does not change sign over the
state space, and this result is extended in [3], [9], [10] to sys-
tem’s with uniformly bounded Jacobian matrices. While this
special case is quite general, the suggested construction can
provide conservative approximations of, e.g., reachable sets,
and we show through example that our proposed alternate
decomposition function construction can be less conservative
and applicable to systems not satisfying the special case
described above.

As a third contribution, we show that the basic results



discussed above for forward-time reachability analysis can
be extended for backward-time reachability analysis in the
same setting. This result relies on the observation that if
there exists a decomposition function for the backward-time
dynamics, then approximation in the backward-time setting
is possible using a method analogous to that used in the
forward-time case. Moreover, we show how the technique
presented for obtaining rectangular forward invariant sets
can be applied to the backward-time dynamics to obtain
forward invariant sets for the original dynamics that are the
complement of rectangular regions.

The results and tools created in this work are demonstrated
through three examples and a case study'.

II. NOTATION

We denote the set of nonnegative and nonpositive real
numbers by R>o and R<, respectively, and the extended
real numbers by R := R U {—00, 0}, R>g := R>o U {0},
and R<g := R<g U {—o0}.

Let (x, y) denote the vector concatenation of z, y € R™,
ie. (z,y) = [2TyT)T € R, and let < denote the
componentwise vector order, i.e. x =X y if and only if z; < y;
for all ¢+ € {1,---,n} where vector components are indexed
via subscript. Given z,y € R” with x <y,

[,y ={2 €R" | z < zand z <X y}

denotes the hyperrectangle defined by the endpoints = and
y, and we extend this notation to componentwise inequality
of matrices, i.e., Z € [X, Y] for X,Y,Z € R means
each entry of Z is lower and upper bounded by the entries
of X and Y, respectively. We also allow z € R" and Yy €
R", in which case [z, y] defines an extended hyperrectangle,
that is, a hyperrectangle with possibly infinite extent in some
coordinates. Given a = (z, y) € R?" with z <y, we denote
by [a] the hyperrectangle formed by the first and last n
components of a, i.e., [a] := [z, y].
Let <gg denote the southeast order on @% defined by

(z,2') Zsg (y,¥') & z<yandy <o

where z, y, z/, y € R". In the case that z < 2/ and y < v/,
observe that

(z,2") Zse (v, ¥') & [y, '] Clz, 2] (1)

III. PRELIMINARIES ON MIXED-MONOTONE
DYNAMICAL SYSTEMS

Consider a dynamical system with disturbance input, i.e.,
a nondeterministic system, given by

&= F(x, w) 2

for Lipschitz F' where x € X C R"™ and w € W C R™
denote the system state and a bounded time-varying distur-
bance, respectively. We assume X is an extended hyperrect-
angle with nonempty interior and W is a hyperrectangle so
that W = [w, w] for some w, w € R™ with w <X .

'The code that accompanies the examples and generates the figures in
this work is publicly available through the GaTech Facts Lab GitHub:
https://github.com/gtfactslab/Abate_CDC2020_2. An extended version of
this work is also available through ArXiv: https://arxiv.org/abs/2003.05912.

For T > 0, let ®'(T'; o, w) denote the (assumed unique)
state of (2) reached at time 7' starting from xzyp € X at
time O under the piecewise continuous disturbance input
w : [0, T] — W. We do not a priori require ®¥(T;zo, w)
to exist for all T; however, existence of ®f(T;zg, w)
implicitly means that ®F (¢;z9,w) € X for all 0 < ¢t < 7.
Additionally, let

RF(T; ) := {(I)F(T; o, W) € X ’ w0 € X
for some w : [0, T] — W} 3)

denote the set of states that are reachable by (2) in time
T > 0 from &y C X under some disturbance input.

Definition 1. A set A C X is robustly forward invariant
for (2) if ®¥(T; 29, w) € A for all zg € A, all T > 0 and
all piecewise continuous inputs w : [0, 7] — W whenever
OF(T; 29, w) exists. When F does not depend on w we
simply say A is forward invariant. |

In this paper, we focus specifically on systems that are
mixed-monotone [4].

Definition 2. Given a locally Lipschitz continuous function
d: XxXWxXxW — R”, the system (2) is mixed-monotone
with respect to d if all of the following hold:

e Forall z € X and all w € W, d(z, w, z, w) =

F(z, w).

e For all 4,7 € {l,---,n} with i« # 7,
gz; (z, w,Z, w) >0 forall z,z € X and all w, W €
W whenever the derivative exists.

e Foralli,j € {1, -, n}, gg? (x,w,Z,w) < 0 for all
x, T € X and all w, w € W whenever the derivative

exists.
o For all i € {1,---,n} and all & € {1, ---, m},
gj}" (x, w, Z, W) > 0 and gg" (z, w, T, w) <0 for all
k ~ Wi . .
z,x € X and all w, w € VW whenever the derivative

exists. |

If (2) is mixed-monotone with respect to d, d is said to be
a decomposition function for (2), and when d is clear from
context we simply say (2) is mixed-monotone.

There does not exist general algorithms for computing
closed-form decomposition functions except for some albeit
important special cases, such as those described below. As
a rule of thumb, useful decomposition functions should be
such that d(z,w,Z, @) is close to F(x,w) when z is close
to 7 and w is close to @, but we do not provide a formal
notion of closeness and observe that decomposition function
construction usually leverages structural properties of F' or
domain knowledge of the underlying physical system.

We next present a special case for which the explicit
construction of a decomposition function is possible. In
particular, if each off-diagonal entry of %—f and each entry
of g—i is either lower or upper bounded uniformly, then
(2) is mixed-monotone and a decomposition function is
constructed from F' and these bounds.



=NnXn

Special Case 1. If there exists J, € R<o L Je € R>o R
Ju € Rgo ,and J,, € Rzo such that
o forall z € X and all w € W,

JI] and g%(mvw) € [l jw]a

xT? w?

oF
7(13’71}) € [l
o foralli#j, (J,)i; >—oc or (Jg)i; < oo, and
o forall i, k, (J,)ik > —00 or (Jy)ik <00,
then (2) is mixed-monotone and a decomposition function is
constructed in the following way:
1) For all ¢,5 € {1,---,n} with ¢ # j and all k €
{1,---,m}, choose 0; ;, € € {0,1} such that

(Si)j =0 = (J )173
(S@j =1 = (j )1j
6rxr=0 = (J, )m# —00,

€k = 1 = (Jw)z,k 75 Q.

Note that such a choice exists by hypothesis.
2) Foralli € {1,---,n}, define &', o' € R" and 7*, 3% €
R™ element-wise according to

[0
(;’a;) = (J,‘],—( )z])
(@

ifi=3j,
if ¢ 7&] and (Si,j = 0,
],(j) ) lfl#] andéi,jzl,
)1 k) if €ik = 07

) if €ik = 1.

-

U)k,( w)

(ﬂ-k’ ﬁk) =
(
3) Define the i element of d according to
di(z,w,z,0) = Fi(¢", 7") + ()T (x — T)
+ () (w—d), @

which is always well-defined on X x W x X x WV since
X and W are assumed to be hyperrectangles. ]

A restrictive version of Special Case 1 requiring sign-
stability of the Jacobian matrices is first introduced in [18],
and the essential observation that this extends to the case
when the entries of the Jacobian are bounded is made in [3]
and is also in [9], [10]. However, [3], [9] require the diagonal
entries of F 16 be also bounded, and [9], [10] do not allow
the other entrles to be unbounded in one direction.

The key feature of mixed-monotone systems that we
exploit in this paper is that over-approximations of reachable
sets can be efficiently computed by considering a determin-
istic auxiliary system constructed from the decomposition
function. We first consider the nondeterministic system

R | BC
with state (z, Z) € X x X and disturbance input (w, @) €
W x W. We call (5) the embedding system relative to d, and
we use ®°(¢; (z, ), (w, W)) to denote the state of (5) at
time ¢ when initialized at (z, T) € X x X and when subjected
to the piecewise continuous input (w, w). Importantly, (5) is
a monotone control system as defined in [13] when the orders
on X x X and W x W are both taken to be the southeast

orders; that is, if a, a’ € XxX and b, b’ : [0, c0) — WxW
satisfy a <gg @’ and b(t) <sg b’(¢) for all ¢ > 0, then

(I)E(t; a, b) =<sE (I)E(t; a’, b/) (6)

for all ¢ > 0, provided ®¢( -; a, b) and ®°( -;
in X x X on [0, t].

Define A := {(z,Z) € XxX | x = T} the diagonal of the
embedding system. Then for all @ € A and all w : [0, 00) —
W we have ®°(¢; a, (w,w)) € A for all t > 0, i.e., A is
robustly forward invariant for (5) when the restriction w = @
is imposed.

Throughout most of this paper, we instead utilize a deter-
ministic embedding system given by

z] ~ _ ld(z, w, T, W)

R I eS|
with state transition function ®¢(¢; a
Note that

a’, b’) remain

O°(t; a) =g P°(¢; a') )

for all a, a’ € X x X with a <sg @’ and for all ¢t > 0, i.e.,
(7) is monotone with respect to the southeast order. However,
unlike (5), A does not generally enjoy a forward invariance
property for (7) when w # .

We next recall the following result establishing that the
reachable set R is over-approximated by solutions to the
deterministic embedding system (7).

Proposition 1. Let (2) be mixed-monotone with respect
to d, and consider Xy = |z, T| for some x =< T. If
O(t; (2, 7)) € XXX forall0 <t < T, then R (T; Xy) C
[(T; (z, 7))].

The proof of Proposition 1 appears in [10, Appendix B1].

It is important to note that the usefulness of the
mixed-monotonicity property for stability and reachability
analysis—the main focus of this paper—is entirely dependent
on the choice of d. In general, a mixed-monotone system
will be mixed-monotone with respect to many decompo-
sition functions; however, certain decomposition functions
may be more/less conservative than others when used with
Proposition 1. One key observation of this paper is that
the decomposition function construction presented as (4)
can be overly conservative or not possible, and we show
through example how alternative decomposition functions
are generally less conservative.

IV. DECOMPOSITION FUNCTIONS FOR POLYNOMIAL
VECTOR FIELDS

Given the generality of the hypotheses of Special Case
1, two natural questions arise: First, are there systems that
do not satisfy the hypotheses of Special Case 1 but are
nonetheless mixed-monotone with respect to some decom-
position function other than (4)? Second, for systems that
do satisfy the hypotheses of Special Case 1, do there exist
other, perhaps more useful, decomposition functions than
(4)? In the following example, we answer both questions
affirmatively and illustrate a new technique for obtaining
decomposition functions of polynomial systems.
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Fig. 1: Approximating forward reachable sets of (9) from the set of initial conditions Xy = [—1/2, 1/2] x [-1/2, 1/2].

(@) Xy is shown in red. R (1; Xp) is shown in green. The hyperrectangular over-approximation of R(1; &p), that is
computed from the embedding system (7) as described in Proposition 1, is shown in light green. (b) Visualisation of the
bounding procedure from Proposition 1. The trajectory of (7) that yields Figure 1a is shown in blue, where ®° is projected
to the =1, 71 plane. The southeast cones corresponding to X and the hyperrectangular over-approximation of R (1; Xj)
are shown in red and green, respectively. (c) Approximating R¥ (1/4; Xp). Xy is shown in red. RF'(1/4; Ay) is shown in
green with over-approximations derived from d and d’ shown in green and blue, respectively.

Example 1. Consider the system

{;ﬂ — Plr) = [m% +2} ©

T Ty

with X = R2. Note that g% = 2x9 is neither lower or
upper bounded on A and thus the system does not satisfy
the hypotheses of Special Case 1. However, (9) is mixed-

monotone on X with decomposition function

3+ 2 if x50 > 0 and x5 > —7,
dl(.’L', ZL'\) = ./fg +2 if 58\2 <0 and 9 < —33\2, (10)
ToTo +2 if 20 < 0 and Zr > 0,

dQ(.’E, L/L'\) =2X1.

Consider now a hyperrectangular set of initial conditions Aj.
Proposition 1 implies that the reachable set (3) from Aj
is approximated by a rectangular set defined from the state
transition function of the 2n dimensional embedding system
(7). An example is shown in Figures la and 1b.

Even though ‘g—f is not uniformly bounded on X = R2, we
can restrict our analysis to a compact subset X’ C X’ so that
the decomposition function construction defined in Special
Case 1 is applicable. For instance, take X’ = [-5, 5] X
[—5, 5], and note that —10 < g—f;(a:) < 10 for all z € X'.
Applying Special Case 1, with 6; 2 = d2.1 = 1, we have that

73+ 2+ 10(zg — T2)

o &) —
d(z, z) = )

(1)
is a decomposition function for (9) on X”. Proposition 1
then allows for computing reachable sets for (9) using d’ so
long as the trajectories of the resulting embedding system
remain within X’ x X’. An example is shown in Figure
Ic where the reachable set computed using d’ is compared
to the reachable set computed using d. Note that, even
though Special Case 1 is made applicable by restricting the
domain, the decomposition function given by (10) allows for
a significantly tighter approximation of RY". ]

Example 1 suggests a new method for computing piece-
wise decomposition functions for (2) when F' is polynomial
in z and w. This method has two steps:

1) Calculate all polynomial functions in x, Z, w, W that
evaluate to (2) when z = 7 and w = w, and then

2) Form a continuous decomposition function as a piece-
wise combination of these polynomials, such that the
remaining conditions from Definition 2 are satisfied.

Due to space constraints, we do not present a formal algo-
rithm for obtaining such decomposition functions, but the
idea extends to systems with polynomial vector fields of
arbitrary dimension and is applied in examples below.

V. ON FORWARD INVARIANCE AND MIXED-MONOTONE
SYSTEMS

In this section, we show how the embedding system (7)
can be used to efficiently compute sets that are robustly for-
ward invariant for (2). Further, we leverage the monotonicity
of (7) to compute sets that are attractive for (2).

Definition 3 ([19]). A set A C X is attractive from
X' C X, or simply attractive for (2), if for each solution
®F (- 29, w) to (2) with 7y € X’ and piecewise continuous
w and each relatively open neighborhood X, C X of A, there
exists 7' > 0 such that ®'(t; 9, w) € X, for all t > T.
When X’ = X, we say A is globally attractive. ]

While the nondeterministic embedding system (5) has
appeared in the literature before, along with connections
to reachable set computations, the deterministic embedding
system (7) has not been fully considered. We begin with
two lemmas on forward invariant regions for the embedding
system (7). These results are then related to invariant (and
attractive) sets for (2) in Theorem 1.

Define by 7 := {(z,7) € X x X|a =X T} the upper
triangle of the embedding system, and define by & =
{(z, %) € T|0 =<sg e(x, Z)}, the set of points in T such



that the embedding system’s vector field points into the
southeast cone.

Lemma 1. The set T is forward invariant for (7).

Lemma 2. The set S is forward invariant for (7), and
®e(t1;a) Ssg PC(ta;a) for all a € S and all 0 < t1 < to.

The proof of Lemma 1 is straightforward and appears in
an extended version of this work, available through ArXiv.
Lemma 2 is a direct result of [12, Ch. 3, Prop. 2.1].

We next present our main result and show how forward
invariant and attractive regions can be identified via stability
analysis for the embedding system (7).

Theorem 1. Suppose (2) is mixed-monotone with respect to
d. Then for all a € S the following hold:

1) For all T > 0, the set [®°(T; a)] C X is robustly
forward invariant for (2).

2) The limit lim_ o ®°(t; a) =: (Teq, Teq) exists and
e(Zeq, Teq) = 0, e, (Toq, Teq) IS an equilibrium for
the deterministic embedding system (7).

3) The set [Teq, Teq) is robustly forward invariant and
attractive from Ja]] C X.

Proof. Part 1. Suppose S is nonempty, and choose a € S.
Then, from Lemma 2, ®¢(¢; a) € S for all ¢ > 0. Choose
T >0andletb = ®°(T;a) € S. Also from Lemma 2, b <gg
®(t;b) so that [©°(¢; b)] C [b] by (1) for all ¢ > 0. From
Proposition 1 we have RE(¢; [b]) C [®¢(t; b)]. Therefore
RE(t; [b]) C [b] for all t > 0, i.e., [b] is robustly forward
invariant for (2). This completes the proof of the first part
since T > 0 was arbitrary.

Part 2. This result follows from [12, Ch. 3, Prop. 2.1]
applied to the monotone embedding system. In particular,
since a <gg P°(t; a) for all ¢ > 0, and T is forward
invariant for (7), we have ®¢(t; a) € {(b,b) € X x X |
a < b=0b=a} forall t >0, where we define a,@ € X
by a = (a, @). Since ®°(t; a) is increasing with respect
to the southeast order and is bounded, lim;_, ., ®¢(¢; a) :=
(Zeq, Teq) exists and e(Teq, Teq) = 0.

Part 3. Choose = € [[a] and w : [0, co] — W. Then

(®F (t; z, w), ®F (t; x, w)) = ®°(t; (z, ), (W, W))

and
D°(t; a) = D°(¢; a, (w, W))

hold for all ¢ > 0. Since a =<sg (z, ) and (w, W)) =<sE
(w(t), w(t)) for all t > 0, we now have ®F'(¢; z, w) €
[®°(t; a)] for all ¢ > 0. Choose a relatively open neighbor-
hood X, of [Zeq, Zeq] and a relatively open ball B C X' x X
such that (zeq, Teq) € B C X, X X.. From Part 2, there
must exist a T > 0 such that ®¢(T;a) € B and at
this time ®f(T; z, w) € X.. From Part 1 we have that
[®¢(T; a)] is robustly forward invariant for (2) and therefore
OF(t; z, w) € X, for all t > T. Therefore, [Teq, Teq] is
attractive on (2) from [a]. The fact that [y, Teq] is robustly
forward invariant follows immediately from Part 1. O

Theorem 1 provides a basic algorithm for identifying
invariant sets; if (7) has an equilibrium, i.e. if there exists an
(Zeqs Teq) € T such that e(Zeq, Teq) = 0, then [Zeq, Teq) 18
robustly forward invariant for (2). Computing equilibria for
(7) requires solving a system of 2n nonlinear equations and,
therefore, is generally computationally tractable. Moreover, if
apoint a € S is known, then one can simulate the embedding
dynamics forward in time, starting from a, in order to find
an equilibria; see Theorem 1 Part 2.

In the following corollary, we show how globally attractive
regions for (2) can be identified via stability analysis in the
embedding space.

Corollary 1. Suppose (2) is mixed-monotone with respect to
d. If (Teq, Teq) € T is an asymptotically stable equilibrium
for (7) with a basin of attraction C C X X X, then [Teq, Teq)
is robustly forward invariant for (2) and attractive from
all [a] such that a € C N T. In particular, if T C C,
then (Zeq, Teq) is globally attractive and robustly forward
invariant for (2).

Proof. Robust forward invariance of [Zeq, Teq] follows im-
mediately from Theorem 1 Part 1. Attractivity of [Zeq, Teq]
follows by a slight modification of the proof of Theorem
1 Part 3, where we observe that Part 2 of the theorem is
invoked to establish that ®¢(7;a) € B for some T > 0,
but this now holds for all a € C. Thus lim;_, . ®¢(¢; a) =
(Teqs Teq) € B. O

We demonstrate the applicability of Theorem 1 for com-
puting forward invariant regions in the following example.

Example 2. Consider the system

- rem- [

. - 12
X9 —xg—x‘§+x1+w3 (12)

with X = R? and W = [-2, 2]. The system (12) is mixed-
monotone with decomposition function

3 ~ ~
~ ~ _ | 71— X — T2 —W
d(z, w, T, W) = [—@ P S wg} i (13)
Additionally, e(2eq, Teq) = 0 for
Toq = (—1.37, —1.95),  Feq = (1.37, 1.95),  (14)

and (Teq, Teq) € T. Therefore, from Theorem 1, Xy =
[Zeq, Teq) is robustly forward invariant for (12). Additionally,
it can be checked that (2.q, Zoq) is globally asymptotically
stable for (7); evoking Corollary 1, we now have that X
is globally attractive for (12). We show X, graphically in
Figure 2. ]

VI. BACKWARD-TIME REACHABILITY FOR
MIXED-MONOTONE SYSTEMS AND INVARIANCE

In this section, we present a result analogous to Proposi-
tion 1 for over-approximating finite-time backward reachable
sets. Later in the section, we leverage this result for the
computation of robustly forward invariant regions for (2).
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Fig. 2: Computing attractive sets of (12) on X = R?. X,
from (14) is shown in red. The region shown in green is
globally attractive for (12), and no proper subset of this
region is robustly forward invariant.

The system (2) induces the backward-time dynamics

=Gz, w) :=—F(z, w) (15)

with x € X and w € W, and (2) and (15) are related in the
following way: if 1 = ®¥(T; zo, w) for w : [0, T] — W,
then zg = ®Y(T; z1, w') for w'(t) = w(T —t), where ®¢
denotes the state transition function of (15). Let

SE(T: &) = {xo X ‘ oF (T; 2o, w) € X
for some w : [0, T] — W} (16)

denote the set of initial conditions for which there exists a
w : [0, T] — W capable of driving (2) to the set &) in
time T > 0. Note that RE(T; &) = S¥(T;X,) where
RE(T; Xy) is given by (3). We next show that if (15)
is mixed-monotone, then S can be approximated using a
procedure similar to that presented in Proposition 1.

Proposition 2. Let (15) be mixed-monotone with respect
to D, and choose X, = [z, T|. Construct the deterministic
embedding system

{f] — B(z, 7) = {D(x’ w, 5, “’)}

G Dz, @, 7, w) a7

with state transition function ®F. If ®F(t; (z,7)) € X x X
forall 0 <t <T, then ST (T; &1) C [®E(T; (z, @))].

Proof. From Proposition 1 we have that RY(T; X)) C
[®F(T; (2, 7))], and RE(T; X)) = SF(T; Ay). Therefore
SH(T; &) € [@F(T; (2, 7). D

We next provide a special case for when the backward-
time decomposition function is easily constructed from a
(forward-time) decomposition function.

Special Case 2. If

1) (2) is mixed-monotone with respect to d, and

2) forall i € {1, ---, n}, we have g—i(x, w, T, w) >0
for all , 7 € X and for all w, @ € VW whenever the
derivative exists,

1 C//
_1,7A;
|
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€
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Fig. 3: Approximating finite-time backward reachable sets of
(18) with the set of initial conditions X7 = [—1/4, 1/4] x
[—~1/2, 0]. X, is shown in red. S¥'(1; X}) is shown in blue,
with a hyper-rectangular over approximation shown in light
blue. R¥(1; &1) is shown in green, with a hyper-rectangular
over approximation shown in light green.

then (15) is mixed-monotone with decomposition function
D(z, w, Z, w) = —d(z, 0, x, w). [ ]

We demonstrate the bounding procedure from Proposition
2 in the following example.

Example 3. Consider the system

L)

with X = R? and W = [0, 1/4]. The backward-time
dynamics & = —F(x, w) for (18) are mixed-monotone with
decomposition function

if 21 >0,

o~ o~ —33156‘\2—7:(7
Dl(fE, w, , U}): ]
w if x1 <0,

—X1xo — (19)
DQ(Z‘, w, /l’\, 1/1}) = 7%1 —1.
Figure 3 illustrates how finite-time backward reachable sets

of (18) are approximated using Proposition 2. ]

We next extend Theorem 1 to leverage the backward time
dynamics (15). Specifically, we show that if (15) is mixed-
monotone, as was the case in Proposition 2, then a robustly
forward invariant region for (2) can be computed using an
analogous technique to that of Theorem 1.

Theorem 2. Let (15) be mixed-monotone with respect to D.
If there exists (x, T) € T such that 0 <sg E(z, T) then
X\ [z, T| is robustly forward invariant for (2).

Proof. If 0 <gg E(z, ) holds for (z, T) € T then from
Theorem 1 we have that [z, Z] is robustly forward invariant
for (15). Thus, X \ [z,Z] is robustly forward invariant for
Q). O

VII. CASE STUDY

In this section, we present a numerical example to demon-
strate the applicability of Theorems 1 and 2.
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Fig. 4: Computing robustly forward invariant sets for (20)
by applying Theorems 1 and 2. X, is the larger rectangle
and ).y is the smaller rectangle. The region shown in blue
is the smallest attractive set computed numerically.

Consider the system

1| _ —ro +21(4 — 422 — 23) + w;y
[ig] = F(z, w) = [ T+ 29(4 — 2% — 422) + wo
(20)

with X = R? and W = [-3/4, 3/4] x [—3/4, 3/4]. The

system (20) is mixed-monotone with respect to

d(.]? w 3} 1,1}) _ 7%\2 —+ 4.’£1 — 4£C:{) — l(xl,xQ,fg) +w1
TN py 4 Aoy — 4a3 — (w9, 11, T1) + w2

ab> ifa>0>b and b < —c,
orb>0>a and b > —c,

ac® ifa,c>0 and b> —c,
ora<0 and ¢ <0 and b < —c,

abc ifa>0 and b>0>c,
orc>0>a,b.

Additionally, we have e(Zcq, Teq) = 0 for

Teq = (—1.36, —1.36), Teq = (1.36, 1.36).  (21)

Therefore, from Theorem 1, we have that Ay, :=
[Teqs Teq] is robustly forward invariant for (20). Additionally,
(Teq, Teq) 1s asymptotically stable on (7) with a basin of
attraction containing 7. Therefore, X is globally attractive
for (20).

The backward-time dynamics ¢ = —F(z, w) for (20) are
mixed-monotone with decomposition function given by

To —4x1 + 4.’1,':;’ — l(—l’l,fEQ, /"E\2) - ’[U\l

—El —4xo + 45(5% — l(—$27.’171,/$\1) — Wa
and we have E(Yeq, Yoq) = O for

Yeq = (—0.59, —0.59), Yeq = (0.59, 0.59).  (22)

Therefore, from Theorem 2, we have that X’ \Jicq is robustly
forward invariant for (20), where Veq := [Yeq, Yeq]- We show
Xoq and YVeq graphically in Figure 4.

VIII. CONCLUSION

This work presents several new reachability analysis tools
for continuous-time mixed-monotone systems subject to a
disturbance input. The specific contributions of this paper
are that (a) we suggest a new algorithm for computing
decomposition functions for polynomial systems, (b) we
present an efficient method for explicitly computing robustly
forward invariant sets for mixed-monotone systems, and
(c) we present a method for over-approximating finite-time
backward reachable sets for mixed-monotone systems.
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