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Analysis of Moving Events Using Tweets

Supritha B. Patil

(ABSTRACT)

The Digital Library Research Laboratory (DLRL) has collected over 3.5 billion tweets on

different events for the Coordinated, Behaviorally-Aware Recovery for Transportation and

Power Disruptions (CBAR-tpd), Integrated Digital Event Archiving and Library (IDEAL),

and Global Event and Trend Archive Research (GETAR) projects. The tweet collection

topics include heart attack, solar eclipse, terrorism, etc. There are several collections on

naturally occurring events such as hurricanes, floods, and solar eclipses.

Such naturally occurring events are distributed across space and time. It would be beneficial

to researchers if we can perform a spatial-temporal analysis to test some hypotheses, and to

find any trends that tweets would reveal for such events.

I apply an existing algorithm to detect locations from tweets by modifying it to work better

with the type of datasets I work with. I use the time captured in tweets and also identify

the tense of the sentences in tweets to perform the temporal analysis. I build a rule-based

model for obtaining the tense of a tweet. The results from these two algorithms are merged

to analyze naturally occurring moving events such as solar eclipses and hurricanes. Using

the spatial-temporal information from tweets, I study if tweets can be a relevant source of

information in understanding the movement of the event. I create visualizations to compare

the actual path of the event with the information extracted by my algorithms. After exam-

ining the results from the analysis, I noted that Twitter can be a reliable source to identify

places affected by moving events almost immediately. The locations obtained are at a more

detailed level than in news wires. We can also identify the time that an event affected a

particular region by date.
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(GENERAL AUDIENCE ABSTRACT)

News now travels faster on social media than through news channels. Information from social

media can help retrieve minute details that might not be emphasized in news. People tend to

describe their actions or sentiments in tweets. I aim at studying if such collections of tweets

are dependable sources for identifying paths of moving events. In events like hurricanes,

using Twitter can help in analyzing people’s reaction to such moving events. These may

include actions such as dislocation or emotions during different phases of the event. The

results obtained in the experiments concur with the actual path of the events with respect

to the regions affected and time. The frequency of tweets increases during event peaks. The

number of locations affected that are identified are significantly more than in news wires.
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Chapter 1

Introduction

1.1 Problem

There are many naturally occurring events that are spread across regions and time. Examples

include floods, solar eclipses, tsunamis, and others. As soon as such an event hits, there are

many people tweeting about these events. These tweets contain a wide range of information

about these events, ranging from expressing condolences to mentioning the affected areas

and any damages caused. Analyzing the patterns in these collections of tweets would allow

efficient real-time tracking of events via social media. To be able to do that, extraction of

time and location from these tweets plays a crucial role. Extracting time from a tweet is

straightforward, but using it in combination with spatial information is a tricky problem.

Extraction of location for a tweet when there is no direct data on the coordinates available

has been an area of interest for researchers.

1.2 Motivation

There have been many attempts at finding the location of tweets.

Approaches involve contextual inference and consideration of the user’s profile location. It

is hard to evaluate these methods as it is difficult to find ground truth. Although there

1



2 Chapter 1. Introduction

is extensive research on this topic, there is no work that analyzes the location-time data

from tweets. In the Digital Library Research Laboratory at Virginia Tech (DLRL), there are

many collections that are related to events that are spread across time and location. Using

existing methods to compare locations retrieved from tweets and the actual locations where

the event occurred can be a form of evaluation for existing location extraction methods.

Additionally, such an analysis will aid in finding answers to some interesting questions and

hypotheses I have regarding tweet collections on several moving events that the DLRL has

collected over time.

1.3 Research Question

The work in this thesis is aimed at helping research projects in DLRL, which has a large

collection of tweets focusing on different events. For events such as hurricanes and solar

eclipses, that are spread across time and space, I would like to determine if the events can

be tracked by these two parameters using collections of tweets that are related to that event.

This can be used by other researchers who are trying to analyze the effects of such events

on people and their behavior.

1.4 Hypotheses

My hypotheses to test regarding tweets, and their times and locations, are:

• Hypothesis: People who have moved, tweet about evacuation or preparation related

plans.

• Hypothesis: The peak of the frequency of tweets matches the time of the event.
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• Hypothesis: Official sources (such as the National Center for Hurricanes) on Twitter

are more reliable sources for location and time information of moving data than the

general population.

• Hypothesis: The (official) path of an event maps to the time-lapsed view of tweets

along the path, as can be determined through our analysis and visualization for that

event.

1.5 Overview

This thesis is structured as follows:

• The next chapter discusses research papers and case studies related to location, time,

and movement of people in the context of tweets.

• The design and methodology chapter details the algorithms used in inference of loca-

tions and the time sequence from tweet collections. The experiments conducted and

the results for each of these modules are also documented here.

• The results chapter establishes a connection between the location and time module to

analyze the events as a whole and track the path of the events,

• The conclusions chapter briefly mentions the overview of the entire process and dis-

cusses the results obtained in the context of the hypotheses. It also summarizes the

rest of this document.

• The chapter on future work describes various ways to extend this research to obtain

more insights on moving events.



Chapter 2

Review of literature

My research concerns two components that are required for further analysis. One is location

identification in tweets that do not have geo-coordinate information but might have ingrained

location references. The second is the identification of the time sequence of events from

tweets. For this purpose, it is important to understand what time period is referred to by

tweets. This chapter discusses some papers that helped me understand the relations between

events, locations, and time.

2.1 Real-Time Detection, Tracking, and Monitoring of

Automatically Discovered Events in Social Media

Paper [19] aligns with my goals because it focuses on tracking events after they have been

discovered, using Twitter. It introduces ReDites, a system for real-time event detection,

tracking, monitoring, and visualization. ReDites can automatically detect events from Twit-

ter streams. It accomplishes four tasks: detects new events, tracks the discovered event

(finding more posts related to it and maintaining a concise summary), detects the evolving

emotions about the event, and visualizes the summary so that it is easier to understand.

This system was built to identify new events that appear in traditional news wires. It

uses topic modelling to categorize events by content categorization. Geolocation plays an

4
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important role in this research as the interest lies in events that occur in a specific place. For

finding the location of tweets that do not have an implicit location-tag, tweet content and

meta-data (language, city/state/country name, user description, etc.) have been used. These

details are used with L1 penalized least square regression (LASSO) to predict longitude and

latitude.

While this paper concentrates on building a system to detect events by location, and sum-

marize them, my research focuses on collecting event related tweets and analyzing them for

location and time. My research mainly focuses on naturally occurring moving events (both

with respect to time and space), and answering some questions about them. The method

used for locating tweets in my research also is different.

2.2 Event Identification and Analysis on Twitter

Paper [22] states that popularity and importance of an event can be gauged by the volume

of tweets covering the event. It aims at identifying events on Twitter streams, analyzing

personal topics and events, and summarizing events identified from Twitter. It emphasizes

separating event-driven tweets from personal-interest-driven tweets.

The authors observe that the textual content can be combined with the time patterns of

tweets to obtain important insight into the general public’s attention. Based on this, they

suggest two models for identification of events that are extended from LDA (Latent Dirichlet

Allocation) and a non-parametric model. The concept of events and users’ personal interest

topics are orthogonal in that many events fall under certain topics. As an extended task,

they construct a unified model of topics, events, and users on Twitter.
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2.3 Distinguishing Past, On-going, and Future Events:

The EventStatus Corpus

Paper [10] investigates one of the aspects that plays an important factor that my research

looks at, the tense that an event has been mentioned with. It aims at detecting past, on-

going, and future events from a corpus of articles. The corpus contains 4500 English and

Spanish articles about civil unrest. It shows that temporal status of events is difficult to

classify because of three different reasons: local tense is often lacking, time expressions are

insufficient, and linguistic contents have rich semantic compositionality. The authors try to

classify using an SVM (Support Vector Machines) classifier and try a conventional neural net

for the task. Although both techniques do not accomplish the goal, they find the semantic

compositionality challenges for this task.

While this paper focuses on the above tasks for articles, my task is made simpler by the fact

that tweets are short text data. We need to infer whether each tweet talks about an event

in the past, present, or future using (an average of) two sentences. Therefore, the accuracy

of my predictions of tense is much higher.

2.4 Resolution of grammatical tense into actual time,

and its application in Time Perspective study in

the tweet space

Paper [12] comes closest to my work on time analysis of tweets. Time perception (past,

present, and future) is considered to have an influence on human actions, perceptions, and

emotions. It aims at assessing time perception of users from their tweets by resolving gram-
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matical tense into underlying temporal orientations of tweets: past, present, and future.

The researchers develop a minimally supervised classification framework for temporal ori-

entation task that enables incorporating linguistic knowledge into a deep neural network.

The temporal orientation model achieves an accuracy of 78.7% when tested on manually

annotated data. While doing so, they try to also categorize tweets regarding positive or

negative sentiment, and perform that analysis.

While this seems like a great method to apply to my analysis, I tried to build my own

model that analyses the three tenses of tweet messages and achieves an approximately equal

accuracy.

2.5 Case Study: Event location detection of govern-

ments and organizations

Social media has become a common platform for reporting emergencies or disasters. The

government has now started supporting the use of social media by creating accounts for its

organizations. Although such platforms are now created, they need a certain amount of

human intervention to gather information and identify locations. This is one place where

my work can minimize the amount of manual effort.

2.6 Earthquake Shakes Twitter Users: Real-time Event

Detection by Social Sensors

Paper [23] aims at building a system that detects real time events from Twitter and sends out

a notification to registered users about these events. To identify a target event, they build
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a classifier that classifies tweets based on features such as number of words and context.

Following this, they produce a probabilistic spatiotemporal model to find the center and

trajectory of the event. They perform experiments on earthquakes in Japan. They show

that they can identify 96% of the earthquakes with Japan Meteorological Agency (JMA)

seismic intensity scale 3 or more.

2.7 Geo-Locating Tweets with Latent Location Infor-

mation

The idea for my research work was sparked by Dr. Sunshin Lee’s dissertation [14] on finding

location from tweets. This research works towards locating tweets that do not have geoco-

ordinate information, by identifying and applying their location indicative words. It also

introduces an approach to eliminate any ambiguity in locations retrieved by using a classi-

fication model. The data-set used in this paper contains 6 million tweets from collections of

water main breaks, sinkholes, potholes, and car accidents. The crucial part of this research

depends on Location Indicative Words (LIWs) in tweets.

This approach to find locations works well with my research as I do not aim to find the

location for all tweets in data-sets. I only try to find affected location by looking at mentions

made explicitly or implicitly in tweets.

2.8 Home Location Identification of Twitter Users

Paper [16] presents an algorithm to retrieve the home location of Twitter users at different

granularity such as state, city, or geographic region. They do so using the content of the
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tweet and users’ tweeting behaviour. The approach uses a combination of heuristic and

statistical methods to predict locations, and the gazetteer to identify place-name entities.

They also build a classifier that states if a user is travelling during a particular time period.

They classify a user as travelling if the geo-distance between tweets is more than 100 miles.

Geo-tagged information from tweets such as mentions and hashtags are used to identify

places that the user is travelling to.

They obtain an accuracy of 0.78 for the time zone prediction and an accuracy of 0.62 for

city-level prediction. This work focuses on finding home location information for tweet users

and eliminates the users who are travelling. In this research, I do not intend to find the

home location of users, I try to find the locations spoken about by users when they mention

a particular event.

2.9 Multiview Deep Learning for Predicting Twitter

Users’ Location

Paper [5] runs parallel to my work on geo-locating tweets. While most proposed methods

follow either a content based approach or a network based approach, this paper introduces

a method that combines the strengths of both approaches. The proposed model is called

Multi-Entry neural NETwork (MENET).

It helps in estimating locations in cases where there is no coordinate information available

and no location indicative words exist. In such cases, the user’s network information can

still be used to predict their home location. The drawback for this method is that, in tweets

where the user is travelling away from his/her home location, the predicted location will be

inaccurate. Yet this method might help better the overall accuracy of the analysis.
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2.10 Analyzing Refugee Migration Patterns Using Geo-

Tagged Tweets

Paper [11] runs parallel to my research. In this exploratory analysis, the authors try to

identify migration patterns of people from the Middle East and Northern Africa to Europe

using information from Twitter. The study involves extraction of refugee trajectories and

detection of topical clusters along migration routes using the V-Analytics toolkit. They use

hash-tag-based topical clustering to identify refugee routes.

This work runs parallel to ours because it is highly centered around spatial-temporal analysis

of tweets. The methods used for location and time extraction in my work and this paper

differ greatly. The data-sets and the type of analysis also are different.



Chapter 3

Design and Methodology

3.1 Design goals

The DLRL has many collections of tweets related to events like elections, floods, hurricanes,

heart attacks, etc. There are many research projects that aim at analyzing these collections

and retrieving useful information. Spatial-temporal analysis of people during prominent

events will help people act immediately in case of emergencies. To gauge the impact of

moving events like solar eclipses, hurricanes, floods, and other such events, location and

time play a vital role in the analysis. An example is the Coordinated, Behaviorally-Aware

Recovery for Transportation and Power Disruptions (CBAR-tpd) project. This project aims

at analyzing the moving events in the United States in the recent past including infrastructure

damage, movement of people, and other similar information.

3.2 Methodology

3.2.1 Data Preprocessing

Our Twitter data for different events are collected mostly using one of two Twitter APIs:

yourTwapperKeeper [1] or Social Feed Manager [15]. Tweets are collected based on hashtags

or keywords identified for different events. Unfortunately, this may lead to many nonrelevant

11
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tweets. Suitable analysis can estimate the relative proportions of those nonrelevant tweets

that are posted before, during, or after the event.

Experiments are conducted on three hurricane and one solar eclipse collection selected for

analyzing moving events. I focus on Hurricane Florence (year 2018), Hurricane Harvey (year

2017), Hurricane Irma (year 2017), and the recent popular Solar Eclipse (year 2017).

Another process that is highly important in the analysis of location or time is cleaning the

tweet text to remove any punctuation marks or other escaped characters. This is because

the Stanford Named Entity Recognizer [7] throws errors while parsing these.

Two main modules required for my analysis of tweets are: 1) the module to identify locations

affected by the movement of the event, and 2) the temporal analysis module.

3.2.2 Location identification module

There are two sources for location identification from tweets. One source is the users’ geo-

coordinates recorded in tweets using location services. But most Twitter users turn off the

option to record location while tweeting, as they are concerned about privacy. To overcome

this, I use the extraction from tweets of named entities, such as names of places or organi-

zations, to identify the location that the user might be referring to. The assumption here

is that people usually mention places, or references to places being affected in their tweets,

and these can be decoded to get exact locations. Once these named entities are extracted,

I send them through the Google geocoding API [8] to get an exact location. Sometimes I

get more than one address as a match to the named entity being geocoded. For example,

Fairfax Road is a name that is common in many towns such as Radford, Blacksburg, and

Baltimore. There is an ambiguity that rises here as to which is the one the tweet is talking

about. To disambiguate this, I use a machine learning model that classifies the location to



3.2. Methodology 13

one of the states in the United States.

Using the above mentioned steps, I obtain any locations spoken about in tweets. My hy-

pothesis is that this will be enough location information to identify most places affected by

a moving event.

There are three main sub-modules in the process of location identification. The first sub-

module is for extracting named entities from the tweet text. The next one is to geocode any

entity retrieved in the previous step using the Google API. The final step of disambiguating

locations is performed in another sub-module by the use of a machine learning algorithm.

The modules and the data flow are shown in Figure 3.1.

Figure 3.1: Data flow for location identification

Rather than just using an existing model [14] to locate tweets, I extend this model to work

with data on moving events. This includes identifying the right features for this kind of

data. The above sub-modules are described in more detail in the following sections.
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3.2.3 Extracting named entities

I use the Natural Language Toolkit [20] and the Stanford Named Entity Recognizer (NER) [7]

for identifying named entities like locations, organizations, and person names. The NER can

identify most of these three classes of information quite efficiently. For the data considered,

Stanford NER performs as well as another popular natural language processing library,

spaCy [9]. Hence, I continued to use the Stanford NER as was done with the existing model

[14].

After observing the results, I realized that locations and organizations that are extracted

add value and provide accurate information on the locations of events. On the other hand,

extracting person names as one of the features adds more noise to the locations retrieved.

Hence, I choose to drop person names from the list of features.

3.2.4 Geocoding module

I make use of one of the most popular geocoding APIs existing that can be integrated with

Python, the Google geocoding API. Google allows developers to choose from a set of Map

based web-services such as Directions API, Places API, and Roads API. One of these is the

geocoding API, to help with geocoding a given address with its full address. It also provides

support for reverse geocoding, transforming a latitude-longitude combination to a formal

address.

There is one issue that we face with the API, however; there is a daily limit of 2500 addresses

only that it can geocode, or reverse geocode, for each API key created. I overcome this issue

by creating multiple API keys.
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Table 3.1: Counts of tweets, and tweets with location

Figure 3.2: Examples of manually labelled data from each collection, for training the disam-
biguating model. This is part of the manually tagged data for Hurricane Harvey.

3.2.5 Feature analysis

While I follow an existing approach to get the different locations from a tweet collection, the

data-sets that the method was designed for [14] are different from the current set of data-

sets. The approach was introduced with data on accidents, potholes, and water main breaks.

These have more mentions of locations where the incident occurred than the data-sets that

I am trying to analyze. Specifically, data-sets on hurricanes and solar eclipses have a mix of

location indicative tweets and tweets on people’s reaction to these events.
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Table 3.2: The features used in the original model and this model

The feature-set selected in the original method is different from what we have used, since

the information available about hurricanes and the solar eclipse differs from that involved in

car accidents and potholes. Table 3.2 compares the features used by Sunshin Lee et al. with

those in our research.

One crucial feature not considered in the original method is the home location from a user’s

profile Some Twitter users do not want to disclose their home location due to privacy con-

cerns. Further, since accidents occur, and potholes are observed, while traveling, home

locations may not be highly informative.

Nevertheless, users usually tend to provide state names or city names in their home loca-

tion. While there are some users that put random information into this field as a part of

their account, one such example being “over the rainbow”, these are rare enough that this

information can still be one of the features for location estimation. The statistics for the

level of detail we obtain in geo-located tweet addresses is available in Figure 3.4.

While I may not be able to get accurate addresses of affected regions from home locations, I
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Table 3.3: The detail level of addresses retrieved and percentage of tweets

can still use them in the process of disambiguating other feature locations. If a person living

in Blacksburg, Virginia mentions Walmart, he/she is most likely talking about the Walmart

in or around this area, helping me eliminate irrelevant addresses for Walmart that I receive

from the Google geocoding API.

While home location is a useful feature in disambiguation, yet it can still result in incorrect

location inference. This is because a person might be living in Virginia but travelling to

South Carolina. A tweet from this person mentioning Blacksburg may wrongly be inferred

as Blacksburg in Virginia as a result of bias from home location.

I eliminate hash-tags from the list of features used as they introduce much noise in the results

obtained. This can be attributed to the fact that in a large-scale event, people frequently

use the name of the event as a hash-tag. These hash-tags may be associated with a default

address from the Google geocoding API; use of this repeatedly in tweets results in incorrect

location inference for many tweets.

Similarly, person names and mentions do not give accurate results from the geocoding API.

This is because the Google Maps geocoding API will not be able to retrieve addresses when
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people’s names are provided. It is most likely that a person mentioned in the tweet is from

the network of the person tweeting, and will not have an address attached to them in Google.

These features also cause more noise when used for disambiguation rather than help in the

process. Therefore, these have been disregarded when inferring locations.

3.2.6 Geocoding and reverse geocoding

A geocoding API can either convert a place name to a formal address or convert a latitude-

longitude pair into its accurate address. There are several geocoding services available that

can be used with Python such as Python geocoder [3] and geopy [21]. But most of these use

Google geocoding APIs to retrieve addresses. Therefore, I choose to use the Google Maps

API directly for this algorithm. I have to create an API key to access the services by Google

Maps.

I aim at retrieving latitude-longitude level data for locations using the current method for

most tweets. There are two types of data that help in location inference. One is the direct

location information retrieved from the location-tagged tweets; these are included using

the users’ location recorded on their devices. They are usually in the format of latitude-

longitude coordinates. Thus, I can use these fields directly to map in my analysis. The

other location inference is from location indicative words in tweet text. For these, the words

are retrieved, sent through the geocoding API, disambiguated, and stored as results. The

geocoding API provides the full-address along with several fields such as city, state, country,

zip code, latitude, longitude, and so on, according to the location sent for geocoding. This

information is provided to us in the JSON format. Most addresses come back with a latitude

and longitude, so I can use these in location analysis.
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3.2.7 Disambiguating ambiguous locations

To narrow down the list of addresses to one location when the geocoding API provides

multiple addresses, I use a machine learning algorithm. I am interested only in locations

that are in the affected areas for these events. Therefore, I classify the locations as either in

the affected area or not. I have a list of states that fall under affected areas. I do a binary

classification for each of these states and then combine the results.

The binary classification identifies if the place belongs to that class (state) or not. I conduct

experiments to check if the Support Vector Machines (SVM)[25] or the Naive Bayes [17]

method for classification does better with my data-sets. I notice that SVM gives better

precision and accuracy on the validation set when compared to Naive Bayes. Hence I use

SVM for the disambiguation of locations.

I compare SVM and Naive Bayes by using four metrics as in the original method: precision,

recall, accuracy, and F1-measure. These are defined as:

Precision = tp/(tp+ fp)

Recall = tp/(tp+ fn)

Accuracy = (tp+ fn)/(tp+ tn+ fp+ fn)

F1−measure = 2 ∗ (precision ∗ recall)/(precision+ recall)

I manually labelled around 700-800 tweets, correcting the ambiguity in each of these data-

sets, for training the model. I break these into training and validation sets as 70% and

30%.
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Table 3.4: The comparision of SVM and Naive Bayes for precision, recall, and F1 measure

3.2.8 Experiments and Results for location analysis

I performed location retrieval for four data-sets of events that I wanted to analyze. The sizes

of each of these along with the number of locations that could be retrieved are recorded in

the table below.

Table 3.5: Tweet and location counts

A part of Florence data contains tweets only from official sources such as the National

Hurricane Center. I noticed that when analyzed independently, most tweets from such

official sources contained locations and location indicative words. Also, considering home

location for disambiguating tweets from these sources made the results more inaccurate.

This is because considering the home location for these official sources loses meaning when

talking about non-local events.
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3.2.9 Time analysis of events

I have the created-time of each tweet as a part of my data-set. The time recorded in this

data-set is in Coordinated Universal Time (UTC) and has the date and time when the

tweet was posted. Though it seems straightforward to analyze time from this, it is not

enough to analyze when a tweet was written, but rather what time the tweet is talking

about. A tweet in past tense would mean that it is indicating that it was posted after the

event occurred. Similarly, present and future tense represent different phases of the event.

Therefore, analyzing tweets for their tenses plays an important role in this research.

My work is made easier by the fact that I need to only classify tweets into three categories:

past, present, and future, without worrying about finding more detailed tense such as present

continuous. This is because other detailed tenses widely fall under one of these categories,

and these three provide enough information to judge the time-line of the event along with

the created time.

There has been a lot of work on ways to detect tense for a sentence; some of them are spoken

about briefly in the literature review section. But instead of using any of these, I use a

rule-based inference approach to build my own model for tense detection.

3.2.10 Method

Here I use the Stanford parser [13] and the Stanford part of speech tagging to distinguish

between different pieces of the sentences to help identify tenses. Since tweets have a limit of

280 characters, the number of sentences on an average is two. This makes finding tense for

tweets easier than for longer documents. Using a rule-based model works better than more

complex classification techniques such as neural networks.
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The rules are based on the part of speech tagging, which identifies the tense for a verb in

a sentence. Just identifying all the verbs in the tweet text and their tense will not suffice.

Languages are complex; even though a sentence is meant in the past tense, each verb in

the sentence can be in a different tense. I resolve this problem by identifying the primary

subject in the tweet. Then I apply rules to determine tense depending on part of speech of

only the verbs relating to the primary subject.

An example of part of speech tagging is provided here:

Figure 3.3: Stanford Part-Of-Speech tagging

The rules that I use are in the table below for inferring the tense of words in a sentence.

Table 3.6: Rules for tense inference

After finding the primary subject of the tweet, I only consider verbs related to this subject

to determine the tense of the sentence.

“The dependency parser analyzes the grammatical structure of a sentence establishing the

relationships between ‘head’ words and words which modify those heads.” [20]
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I use this dependency parsing to analyze the primary subject and the verbs relating to this

subject.

3.2.11 Experiments and results

I ran the tense detection on all the four key data-sets. I manually labelled tweets from the

different collections. Accuracy of the tense detection model is measured against a part of

these manually labelled tweets (validation set). The number of tweets labelled from each of

these collections is listed in Table 3.7.

Table 3.7: Number of manually labelled tweets for each tense

Some examples of results from tense detection are provided in Figures 3.4, 3.5, and 3.6.

Figure 3.4: Example of tweets detected to be in past tense

The model has an accuracy of 77.43% against manually labelled data. Hence, I chose to

complete my analysis using this rule-based inference model.



24 Chapter 3. Design and Methodology

Figure 3.5: Example of tweets detected to be in present tense

Figure 3.6: Example of tweets detected to be in future tense

Some examples that were incorrectly tagged by my model are shown in Figures 3.7 and 3.8.

Figure 3.7: Example of a incorrectly labelled tweet
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Figure 3.8: Another example of a incorrectly labelled tweet

3.2.12 Interesting results from tense analysis

The use of tense provided us with some very strong insights about tweets on events spread

across time and space. I noted that the majority of the tweets were in present tense. This was

an expected result. I did not remove spam tweets the first time I conducted the experiments.

In one of the data-sets, most tweets in future tense were irrelevant. To verify if this was a

trend across different data-sets, I perform two sets of tense analysis: one with the irrelevant

tweets included, and another with all the spam tweets eliminated.

Tables 3.8, 3.9, and 3.10 show the number of tweets (including the spam tweets). The tables

below show the number of tweets in each tense.

Table 3.8: Hurricane Harvey: number of tweets in each tense

I also perform an analysis to see the number of tweets in present tense and compare with

the time the tweet was created, to see if they are dependent on the time of the event.

Since the number of tweets in present tense is much greater than the ones in past or future,

another question that arises is, while collecting tweets on different events on Twitter, can we



26 Chapter 3. Design and Methodology

Table 3.9: Hurricane Florence: number of tweets in each tense

Table 3.10: Hurricane Irma: number of tweets in each tense

Table 3.11: Solar Eclipse: number of tweets in each tense

Table 3.12: Before, during, and after posts on Hurricane Harvey, and number in present
tense
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Table 3.13: Before, during, and after posts on Hurricane Florence, and number in present
tense

Table 3.14: Before, during, and after posts on Hurricane Irma, and number in present tense

Table 3.15: Before, during, and after posts on solar eclipse, and number in present tense

only focus on the tweets in present tense and discard ones in past or future tense without

losing valuable information?

I also look at the number of tweets in present tense before, during, and after the the event

and note down the counts in Table 3.12. Here, before, after, and during indicate the time

period when the actual event occurred.
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3.2.13 Location and time analysis

An important aspect of the analysis is to be able visualize this large set of times and locations

on a map so I can make comparisons between the actual location and time of an event with

the ones I inferred from the tweets. For visualizing the data, I use the Tableau public tool [24]

as it provides flexibility of creating visualizations integrating multiple dimensions.

In order to study the locations from the tweets against time, I plot the locations retrieved

from tweets and use color range to represent the time the tweets were created. The most

evident color range that helped us comprehend time better was using the gold to red range

with a step size of 25. If the step size is too low, it is hard to distinguish between the smaller

differences. When the step size is too large, it makes it harder to differentiate between each

step. There needs to be a proper balance between the two.

Figure 3.9: Locations represented by color range on the basis of created time
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The figure above shows the color range variation with time but does not provide much clarity

regarding the dates and times. Therefore, I use a time slider for viewing tweets with respect

to time. This helps with the study of tweets in areas affected over a period.

I also create visualization in different colors for tweets in past, present, and future tense to

see if there is any pattern in the data for the three data-sets.
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Results

Now that I have the different components required to perform my analysis, I investigate

the results from location-time analysis of the four data-sets to get answers to the questions

posed.

I created the time versus locations visualization for the four data-sets.

The most obvious observation from the visualization is that the locations retrieved are con-

centrated highly in the region of the event. For Hurricane Florence, the locations retrieved

are in North Carolina, South Carolina, Virginia, and the northern region of Florida. When

compared to the information on the internet about Florence, this accurately depicts the

states in the path of the Hurricane. The visualization in Figure 4.1 shows the places affected

by Hurricane Florence as of September 19 at 6:33 AM.

There are some locations detected away from the expected region. These are either a result

of spam tweets or some incorrect results from the ambiguity resolution sub-module.

The tweets range from the dates August 15 to September 22, 2018. The number of tweets

increases suddenly in the North Carolina and South Caroline region on September 13th and

18th (refer to Figure 4.4). This is when Hurricane Florence took a toll in these regions.

Similarly, the results for Hurricane Irma were compared with that of the path of the hurricane

as in Figures 4.5 and 4.6. The tweets represent the locations quite accurately as the locations

that were affected were the Caribbean Islands and the Virgin Islands. While the hurricane

30
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Figure 4.1: Visualization of tweets from Hurricane Florence

Figure 4.2: Hurricane Florence path till Friday [18]
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Figure 4.3: Path by Hurricane Florence in the next five days [4]

did not hit Florida directly, it had effects in this region too. From the predictions made,

most tweets and locations are marked in Florida. The next dense region of prediction is the

islands below Florida.

The tweets are in the range of dates August 27 to September 10. The number of tweets

peaks on the 9th of September as depicted in Figure 4.7. Unfortunately, the data I had

tweets created for the dates August 27 to September 10. Therefore, we do not see when the

peak drops.

I also compared the visualizations for Hurricane Harvey. The actual locations (Figure 4.9)

affected by Hurricane Harvey are Houston and Southeast Texas. Most tweets in the predic-

tions (Figure 4.8) come from Houston. Below are the comparison between the ground truth

and the ones we predicted.

Another important observation (Figure 4.10) is that the hurricane hit the regions from
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Figure 4.4: Histogram for Hurricane Florence representing the date when number of tweets
peaked

August 17 to November 23. During the end of this period, August 25 is when the number

of tweets peak.

The final predictions that I compare are of the August 2017 solar eclipse. From the predic-

tions, I notice that the tweets in the solar eclipse collection have many more locations and do

not have a proper path. Nevertheless, the tweets are more concentrated in the regions noted

for total solar eclipse. The regions where total eclipse was visible are dense with tweets.

Time analysis of the solar eclipse was very interesting. The tweets range from dates July

23, 2017 to March 1, 2018. While a couple of locations were retrieved from tweets on

September 20 to September 22, all of the other locations were from tweets on September 22

and September 23. This aligns with my assumption because after the solar eclipse people

tweeted about it immediately. But we notice another slight peak in the number of tweets
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Figure 4.5: Visualization of tweets from Hurricane Irma

from August 31 to September 3. However, when I investigated the tweet content between

these dates manually, I could not find any pattern in tweets between these dates. Since the

path of totality of the eclipse is visible, I can gather information about the locations of view

as well. (Please refer to Figure 4.11 and Figure 4.12.)

While I was able to tell apart the order of events by day, tracking the event by hour is a hard

task, and I noted that this could not be accomplished using tweets. For example, it would

be more useful to know at what exact time the solar eclipse could be viewed from different

locations. But we could not achieve this level of detail.
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Figure 4.6: Hurricane Irma actual path [6]
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Figure 4.7: Histogram for Hurricane Irma representing the date when number of tweets
peaked

Figure 4.8: Visualization of tweets from Hurricane Harvey
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Figure 4.9: Hurricane Harvey actual path [26]

Figure 4.10: Histogram for Hurricane Harvey representing the date when number of tweets
peaked
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Figure 4.11: Visualization of tweets from solar eclipse

Figure 4.12: Solar eclipse actual path [2]
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Figure 4.13: Histogram for August 2017 solar eclipse representing the date when number of
tweets peaked
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Conclusions

I modify an existing method to extract locations that people talk about in tweets and

extend these to successfully perform better in these data-sets. I use four features to do

so effectively: named entity recognized locations, named entity recognized organizations,

user’s home location, and geo-coordinate information recorded. There are three parts to

this existing method. The first one is extraction of features, the second one is geocoding

with these extracted features, and the final step is using machine learning to disambiguate

multiple locations. I used a manually labelled set from my collection to train the model.

The model achieves an accuracy of 72.61% on the validation set.

I extract the temporal information based on the time recorded in the tweet and the tense

of the tweet as a whole. When I used the rule-based model to detect tense, I obtained an

accuracy of 77.43% on average.

I have seen how information retrieved from Twitter can be used to track moving events.

From the results obtained, I see that the frequency of tweets during various events peak

on the day of the event and the next day. The locations extracted from tweets can help in

identifying the path of the moving events and also the affected regions. I also notice that for

tweets from official sources, 40% of the tweets contain location indicative words, while from

non-official sources, 12% of tweets contain location indicative words.

While I use data-sets of events that have already occurred, these methods can be used in
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future events to track them in real time, and identify affected locations and act immediately.

I also identify how to relate time of the tweets and the phase of the event, as well as how

people relate the two in these collections.

For the four data-sets, the period during which the tweets talk about that respective event is

on an average of 28 days around the time of the event. The solar eclipse was a anomaly here.

Though with a much lower frequency, it was spoken about for 5 months after the event.

While news-wires talk about some of the most seriously impacted areas, I can see that using

tweets I can find the most affected areas, even obtaining zipcode-level information.
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Future work

I have studied the use of tense in the four events, as well as its relation to the phases of events

that people talk about in tweets. Extending this work, sentiment analysis of tweet content

can help analyze people’s reaction to these events in different phases. For example, people

may express excitement while talking about the solar eclipse, but sadness when talking about

the after effects of hurricanes, and then relief after a hurricane has passed.

Other new and more accurate methods could be used to locate the affected areas in similar

events. [5] could be used to identify locations in tweets which may not contain any location

indicative words. A comparison could be made between using location indicative words from

tweets’ context and the MENET architecture for extracting locations. Both of the results

can be mapped too, to identify the method that provides more accurate locations for moving

events.

Performing a classification on tweets to identify classes that tweets belong to, such as damage,

evacuation, and political event, could help make this analysis complete.
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Appendix A

First Appendix

In this section, I add the important pieces of code in location analysis.

The first part shows the extraction of named entities from tweets.

1 de f c l ean ( t ext ) :

2 t ex t = text . r ep l a c e ( ’ ” ’ , ’ ’ )

3 t ex t = text . r ep l a c e ( ’ ‘ ’ , ’ ’ )

4 t ex t = text . r ep l a c e ( ’ \\ ’ , ’ ’ )

5 t ex t = text . r ep l a c e ( ’\n ’ , ’ ’ )

6 t ex t = text . r ep l a c e ( ’\ r ’ , ’ ’ )

7 t ex t = text . r ep l a c e ( ’@’ , ’ ’ )

8 re turn text

9

10 # w i l l be deprecated

11 de f get_sner ( t ex t ) :

12

13 # Tag us ing SNER se rv e r

14 tagger = ner . SocketNER( host=’ l o c a l ho s t ’ , port =9199 ,

output_format=’ slashTags ’ )

15 tagged = tagger . g e t_en t i t i e s ( t ex t )

16

17 # Extract l o c a t i o n only

44
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18 l o c a t i o n s = [ ] # l i s t

19 t ry :

20 l o c a t i o n s = tagged [ ’LOCATION’ ]

21 except KeyError :

22 # pr in t ’No NEs ’

23 nothing = 0

24 # lo c a t i o n s = { ’ Null ’ }

25

26 # return s t r i n g ( l i s t −>s t r i n g )

27 re turn ” ; ” . j o i n ( l o c a t i o n s )

28

29 # w i l l r ep l a c e get_sner ( )

30 de f get_sner_type ( tagged , type ) :

31 e n t i t i e s = [ ] # l i s t

32 t ry :

33 e n t i t i e s = tagged [ type ]

34 except KeyError :

35 nothing = 0

36 # return s t r i n g ( l i s t −>s t r i n g )

37 re turn ” ; ” . j o i n ( e n t i t i e s )

The next piece of code shows part of the geo-coding algorithm:

1 de f geo_code_gmaps ( connect ion , l o c s , geo_locator ) :

2 addresses_num = 0

3 cit ies_num = 0

4 geo_id = 0

5 t ry :
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6 l o c a t i o n s = geo_locator . geocode ( ’%s ’ % l o c s )

7 pr in t ( l o c a t i o n s )

8 except ( GeocoderServ iceError , KeyError ) as e :

9 pr in t (” Google e r r o r : %s ” , e )

10 l o c a t i o n = None

11 l a t = ’ ’

12 long = ’ ’

13

14 i f l o c a t i o n s i s not None :

15 addre s s e s = ’ ’

16 lat_lng_set = s e t ( )

17 count r i e s_se t = s e t ( )

18 s tates_codes_set = s e t ( )

19 s tates_codes_countr i e s_set = s e t ( )

20 c i t i e s_ s e t = s e t ( )

21 c i t i e s_s ta t e_codes_count r i e s_se t = s e t ( )

22 json_raw = ’{ ’

23 num_locations = 1

24 f o r address in l o c a t i o n s :

25 l a t = address [ ’ geometry ’ ] [ ’ l o ca t i on ’ ] [ ’ l a t ’ ]

26 long = address [ ’ geometry ’ ] [ ’ l o ca t i on ’ ] [ ’ lng ’ ]

27 lat_lng_set . add ( ( la t , long ) )

28 json_raw += ’”” ’+ s t r ( num_locations ) + ’”: ’+ j son . dumps

( address )

29 i f num_locations != len ( l o c a t i o n s ) :

30 json_raw += ’ , ’

31 num_locations += 1
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32 address_str = address [ ’ formatted_address ’ ] . r s t r i p ( )

33 i f address_str . endswith ( ’ United Arab Emirates ’ ) :

34 adre s s_st r = address_str . r ep l a c e ( ’ − ’ , ’ , ’ )

35 address_elements = re . s p l i t ( r ’ , \ s * ’ , address_str )

36 i f address == l o c a t i o n s [ 0 ] :

37 addre s s e s = address_str

38 e l s e :

39 addre s s e s += ’; ’+ address_str

40 addresses_num += 1

41 country = address_elements [−1]

42 count r i e s_se t . add ( country )

43

44 s t a t e = state_plus = state_code = c i t y = ’ ’

45 i f address_str . endswith ( ’USA’ ) :

46 i f l en ( address_elements ) >= 3 :

47 c i t y = address_elements [−3]

48 c i t i e s_ s e t . add ( c i t y )

49 s tate_plus = address_elements [−2]

50 i f s tate_plus [ 0 : 2 ] in STATES_PCODE:

51 state_code = state_plus [ 0 : 2 ]

52 e l s e :

53 t ry :

54 state_code = STATES_PCODE_DIC[

state_plus ]

55 except KeyError :

56 state_code = ’XX’

57 s tates_codes_set . add ( state_code )
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58 s tates_codes_countr i e s_set . add ( c i t y + ’ , ’+

state_code+’ , ’+ country )

59 c i t i e s_s ta t e_codes_count r i e s_se t . add (

state_code+’ , ’+ country )

60 e l i f l en ( address_elements ) == 2 :

61 s tate_plus = address_elements [−2]

62 i f s tate_plus [ 0 : 2 ] in STATES_PCODE:

63 state_code = state_plus [ 0 : 2 ]

64 e l s e :

65 t ry :

66 state_code = STATES_PCODE_DIC[

state_plus ]

67 except KeyError :

68 state_code = ’XX’

69 s tates_codes_countr i e s_set . add ( state_code

+’ , ’+ country )

70 e l i f address_str . endswith ( ’UK’ ) :

71 a=0

72 e l i f address_str . endswith ( ’ Canada ’ ) :

73 a=0

74 t ry :

75 pr in t (” −−−−−−−−−−−−−−−−−−−−−−−−−−”)

76 pr in t (” %s address : %s country : %s s t a t e : %s

state_code : %s c i t y : %s ” \

77 % ( addresses_num , address_str , country ,

s ta te , state_code , c i t y ) )

78 except UnicodeEncodeError :
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79 pr in t (” −−−−−−−−−−−−−(Unicode Removed) \n %s ”

% addresses_num )

80 break

81

82 countries_num = len ( count r i e s_se t )

83 state_codes_num = len ( s tates_codes_countr i e s_set )

84 cit ies_num = len ( c i t i e s_s ta t e_codes_count r i e s_se t )

85 json_raw += ’} ’

86 i f addresses_num > 0 :

87 geo_id = update_geo_google ( connect ion , l o c s ,

json_raw , addresses , addresses_num , ’ ; ’ . j o i n (

count r i e s_se t ) , countries_num , ’ ; ’ . j o i n (

s tates_codes_countr i e s_set ) , state_codes_num ,

’ ; ’ . j o i n ( c i t i e s_s ta t e_codes_count r i e s_se t ) ,

cities_num , s t r ( l a t ) , s t r ( long ) , i n t ( time . time ( )

) )

88 e l s e :

89 pr in t (” No return from Google ”)

90 geo_id = update_geo_google ( connect ion , l o c s , ’ {} ’ ,

’ ’ , 0 , ’ ’ , 0 , ’ ’ , 0 , ’ ’ , 0 , ’ ’ , ’ ’ , i n t ( time .

time ( ) ) )

91 f a i l e d . append ( geo_id )

92 pr in t (”Geo_id (RETURN) : ” + s t r ( geo_id ) )

93 re turn [ geo_id , l a t , long ]

94

95 de f geo_coding ( connect ion , tab le , geo_locator , column ) :

96 i f column == ’ geoid_sl ’ :
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97 s q l = ”SELECT id , sne r_ loca t i on s FROM %s_ne2 WHERE

sne r_ loca t i on s != ’ ’” % ( tab l e )

98 with connect ion . cu r so r ( ) as cur so r :

99 t ry :

100 cur so r . execute ( s q l )

101 t o t a l = s t r ( cur so r . rowcount )

102 pr in t (”# of tweets (NEs) : %s rows” % t o t a l )

103 r e s u l t s = cur so r . f e t c h a l l ( )

104 except MySQLError as e :

105 pr in t ( ’Got e r r o r { ! r } , er rno i s {} ’ . format ( e , e .

a rgs [ 0 ] ) )

106 re turn

107 f o r row in r e s u l t s :

108 t i d = row [ 0 ]

109 nes_combined = row [ 1 ]

110 nes_combined = nes_combined . r ep l a c e ( ’ : ’ , ’ ’ )

111 nes_combined = nes_combined . r ep l a c e ( ’ . . . ’ , ’ ’ )

112 pr in t (” Proce s s ing id : %s ” % t i d )

113 with connect ion . cu r so r ( ) as cur so r :

114 s q l = ”SELECT geoid , l a t , l o n g i from z_90_geo where

query=%s ”

115 cur so r . execute ( sq l , nes_combined )

116 r e s u l t = cur so r . f e t chone ( )

117 i f r e s u l t i s not None :

118 geo_id = in t ( r e s u l t [ 0 ] )

119 l a t = r e s u l t [ 1 ]

120 long = r e s u l t [ 2 ]
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121 pr in t (”REUSE (Geo_id ) : ” + s t r ( geo_id ) )

122 update_experiments ( connect ion , tab le , column , t id ,

geo_id , l a t , long )

123 e l s e :

124 temp = geo_code_gmaps ( connect ion , nes_combined ,

geo_locator )

125 geo_id = temp [ 0 ]

126 l a t = temp [ 1 ]

127 long = temp [ 2 ]

128 time . s l e e p (1 )

129 update_experiments ( connect ion , tab le , column , t id ,

geo_id , l a t , long )

The next piece of code is showing the rule based tense analysis:

1 de f determine_tense ( sentence ) :

2 t ex t = word_tokenize ( sentence )

3 tagged = pos_tag ( t ext )

4 t ense = {}

5 t ense [ ” fu tu r e ” ] = l en ( [ word f o r word in tagged i f word

[1]== ’MD’ ] )

6 t ense [ ” pre sent ” ] = l en ( [ word f o r word in tagged i f word [ 1 ]

in [ ’VBP’ , ’VBZ’ , ’VBZ’ , ’VBG’ ] ] )

7 t ense [ ” past ” ] = l en ( [ word f o r word in tagged i f word [ 1 ] in

[ ’VBD’ , ’VBN’ ] ] )

8 re turn tense
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Second Appendix

In this section, I will describe briefly the procedure involved in visualizing the locations

across time in the result section.

• I choose the columns ‘tweetid’, ‘createdat’, ‘latitude’, ‘longitude’ from the results ob-

tained from location and time analysis.

• I map the two dimensions as latitude and longitude and use the symbol map in Tableau.

• I then plot the ‘tweetid’ on the maps. The apply the filter on ‘createdat’ and apply a

color range to distinguish the time periods each tweet was generated.

• I create a parameter using the ‘createdat’ and apply a filtering formula to create the

slider.
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