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Abstract 

Developments in virtual containers, especially in 

the cloud infrastructure, have led to diversification of 

jobs that containers are used to support, particularly 

in the big data and machine learning spaces. The 

diversification has been powered by the adoption of 

orchestration systems that marshal fleets of containers 

to accomplish complex programming tasks. The 

additional components in the vertical technology 

stack, plus the continued horizontal scaling have led 

to questions regarding how to forensically analyze 

complicated technology stacks. This paper proposed a 

solution through the use of introspection. 

An exploratory case study has been conducted on 

a bare-metal cloud that utilizes Kubernetes, the 

introspection tool Prometheus, and Apache Spark. The 

contribution of this research is two-fold. First, it 

provides empirical support that introspection tools 

can acquire forensically viable data from different 

levels of a technology stack. Second, it provides the 

ground work for comparisons between different 

virtual container platforms. 

1. Introduction

Virtual containers, which are an iteration of the 
concept of virtual machines, are frequently used in the 
cloud. Where a virtual machine is a complete 
operating system on top of virtualized hardware, a 
container is a lightweight silo for running an 
application on a host operating system [1]; they 
contain only the software needed to accomplish a 
specific task. They are used to accelerate processing in 
data processing frameworks such as Apache Spark [2]. 
Orchestrating containers through popular frameworks 
such as Kubernetes [3] or Apache YARN [4] has 
grown as a research area over the past several years. 

Flexera’s 2020 State of the Cloud survey [5] 
underscores how popular adoption of Kubernetes is 

with a ten percent adoption rate increase from forty-
eight to fifty-eight percent from 2019 to 2020. That is 
coupled with an overall container adoption growth 
from fifty-seven to sixty-five percent. Forbes also 
pointed out that over fifty percent of respondents to the 
2020 survey expected to use more cloud in response to 
the global Coronavirus pandemic. [6] 

As container adoption expands throughout the 
cloud, concerns surrounding the detection of security 
problems arise from both practitioners and 
academicians [7-11]. Alert Logic, a big data security-
as-a-service company, published a 2015 report that 
stated “businesses using cloud environments are 
largely considered a ‘fruit-bearing jackpot’ for 
hackers” [12]. The speed with which containers 
execute is a key concern since containers can perform 
their function in seconds [13], as they are typically 
destroyed once a task is done. Therefore, data about 
containers must be collected while they are performing 
their tasks. Introspection tools such as Prometheus 
[14] and Datadog [15] have been created to gather this
data as an orchestrated containerized environment is
running.

These concerns in both the cloud and with 
containers specifically prompts the hypothesis that 
introspection tools can be expanded to gather 
forensically useful data from larger, orchestrated 
containerized workloads. Subsidiary questions 
identified as part of this research are as follows: 

1. Which levels of an orchestrated containerized
system does an introspection tool have access?

2. How can data be saved away from the running
system?

3. How can this data be visualized for ease of
examination?

The research contribution of this paper is an 
analysis of the data that an introspection tool can 
gather in a multi-server orchestrated containerized 
environment running a variety of machine learning 
workloads. The paper is structured as follows. Section 
2 discusses the research surrounding the intersection 
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of cloud computing, big data, and container 
orchestration software. Section 3 presents the 
experimental methodology and design. Section 4 
examines the results of a series of experiments 
designed to determine what data is captured from an 
introspection tool from a series of containerized 
workloads. Section 5 draws conclusions and presents 
future work.  

2. Related work 

The National Institute of Standards and 
Technology [16] (NIST) lists five essential 
characteristics of cloud computing: on-demand self-
service, broad network access, resource pooling, rapid 
elasticity or expansion, and measured service. NIST 
also describes four deployment models: private, 
community, public and hybrid. These definitions have 
standardized cloud computing nomenclature since 
their publication in 2009. 

Big data and the cloud have become intertwined as 
the two technologies have matured. Yang et. al [17] 
pointed out the challenges and opportunities of these 
two ideas. After defining several sources of big data 
such as the Internet of Things and business, the 
researchers point out how cloud computing ideas can 
be leveraged to help provide insight into these two 
evolving realms through data transmission and 
management as well as analysis. Some of the 
challenges that are underscored throughout the survey 
are scalability and quality of service on large-scale big 
data jobs. Finally, the paper concludes with several 
ideas for a research agenda focused on risk 
management, big data mining, and interdisciplinary 
collaboration to solve pressing issues. 

One of the major players in container orchestration 
in a virtual is Kubernetes. Burns et. al [18] wrote about 
the development arc surrounding Borg [19], Omega 
[20], and Kubernetes. The authors were integral to the 
various container orchestration platforms at Google. 
Their 2016 work describes the history of container 
orchestration at Google, which started with Borg.  
Omega was their second-generation orchestration 
system within their closed-source data center 
operations and incorporated lessons learned from 
Borg. The paper also describes what Kubernetes, their 
latest generation container orchestrator that was 
released to the public, obtained from Google’s internal 
development efforts. One key point stressed by Burns 
et. al [18] is how containers have lightened the OS load 
across the fleet of Google machines and permitted data 
centers to be converted into application focused 
processing engines. 

Where Yang et. al and Burns et. al were working 
on systems to unite overarching concepts in the 

virtualization world, Casalicchio and Percibali [21] 
focused specifically on virtual containers. They sought 
to determine if tools built for a non-virtual 
environment collected the same information as tools 
built to focus on the cloud. The researchers tested a 
battery of traditional Linux metrics including iostat 
and mpstat. cAdvisor [22], a container specific 
introspection tool suite was used as a comparison 
platform for specific Docker [23] statistics. Both 
Prometheus [14] and Grafana [24] for utilized for 
statistics collection. Tests centered upon CPU and 
Disk I/O intensive workloads. They determined 
different tools present similar but not completely equal 
results. 

Watts et. al [25] also examined containers, but that 
research was focused on detecting malware through 
introspection tools. The researchers introduced a 
known piece of malware to an Apache server container 
and ran a series of tests to determine what differences, 
if any, appeared in the metrics that the introspection 
tool Prometheus produced. Through a total five 
different experiments, nine different metrics were 
identified that allowed the user to identify if a 
container was infected or normal.  

Examining performance and resource management 
was the focus of Medel et. al [26]. They built a two 
node Kubernetes cluster on a pair of servers, and tested 
container creation and termination time with CPU and 
I/O intensive workloads, with the goal of measuring 
the system time required to perform the tasks. There 
were several drawbacks to their approach, beginning 
with the fact their cluster was composed of only two 
nodes, one of which was the master node. This is a 
concern, as Kubernetes does not allow for scheduling 
of work on the master node unless explicitly 
configured to deployed jobs on the master node. Even 
with that limitation, their initial work was one of the 
first to use an actual Kubernetes deployment as 
opposed to the popular Minikube [27]. Minikube is 
single node Kubernetes that is meant for personal 
computer resources as opposed to server compute 
resources that are seen in clouds; as a result, 
comparisons done on Minikube do not necessarily 
reflect typical Kubernetes deployments.  

Shah et. al [28] used microservices such as 
WordPress to show deployment patterns through a 
combination of Docker [23], Kubernetes [3], and the 
Google Cloud Platform [29]. The paper delineates 
how Docker can be used to make deployments faster, 
while Kubernetes on the Google Cloud Platform can 
control the scaling of a given application. They also 
compare Docker Swarm, a Kubernetes-like platform 
designed to work natively with Docker, to Kubernetes. 
The paper does an excellent job explaining the 
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deployment patterns along with the tradeoffs and 
strengths of the different containerized systems.   

Managing a stateful application across a container 
orchestration platform can be a challenge.  Kubernetes 
attempts to address this via StatefulSets [30], which is 
designed to augment the Kubernetes orchestration 
layer  by introducing persistent identifiers to sets of 
containers.  An alternative approach was presented by 
Netto et. al [31], who built a coordinator-as-a-service 
application called Koordinator to add some fault 
tolerance to Kubernetes. The authors built a service 
layer on-top of Kubernetes as opposed to augmenting 
the Kubernetes orchestration layer. The Koordinator 
layer sits behind the proxy servers that Kubernetes 
configures for its CoreDNS [32] protocols to create the 
Kubernetes virtual network, and CoreDNS itself. 
Traffic is routed through that service layer if there are 
many requests to an application made up of many 
containers. Koordinator adds a read on top of a write, 
but experimental tests showed that there was hardly 
any changeover. The system was tested with sixteen 
writers with eight thousand simultaneous requests as 
well as 256 readers sending eighty thousand requests. 
The resource consumption was also shown.  

Understanding how efficient parts of the overall 
system are as Kubernetes diversifies will require 
vigilance, and Kratzke et. al [33] worked on the 
networking side of Kubernetes. The research had a 
series of test cases ranging from a non-virtualized 
system to a fully containerized system using the 
software-defined network Weavenet [34], a popular 
networking framework for Kubernetes. The 
benchmark mapped pings between hosts, and then 
created a series of line graphs which compared the 
non-virtual system with the fully containerized one. 
Their research admitted that the tool for benchmarking 
was limited, but it was able to augment the classical 
iperf [35], uperf [36] by extending their usage into 
Kubernetes. 

A major question surrounding large virtual 
containerized platforms is scaling the necessary 
monitoring tools without an extreme performance 
cost. Stelly et al. [37]  deal with this issue via the 
containerization of the digital forensics process with 
their SCARF toolkit. They focused on scalability 
across large platforms using Docker Swarm, and 
attempted to demonstrate that high throughput to 
empower scalability. The group ran tests on both a 
legacy cluster, and a cluster with cutting edge 
hardware and found that several of the components of 
the SCARF system, such as Yahoo’s OpenNSFW 
network [38], had large throughput gains when 
comparing the two systems, and could potential scale 
into the big data realm. 

Containerization has expanded from purely 
computational researchers into the world writ large. 
One of the more interesting use-cases fuses 
bioinformatics, which has already been heavily 
involved in using cloud compute, such as Agapito et. 
al’s [39] simulation of vessel reconstruction, with 
Kubernetes. Moreno et. al [40] combined Kubernetes 
with Galaxy developed by Afgan et. al [41] to 
containerize the framework to scale bioinformatics 
workloads into the cloud. They manipulate the 
workflow through a Helm [42] chart in order to allow 
for configuration ease. While the paper itself is short, 
Monero et. al provide links to both the code as well as 
robust documentation for configuring the product. 

Containerization research has focused on solving 
specific problems with a specific component within an 
orchestrated container system. This research struggles 
outside of Minikube which obfuscates many core 
functionalities of Kubernetes in favor of ease of use. 
There has been minimal investigation of distributed 
container processing utilizing cutting edge tools in a 
forensic context to examine how various big data 
workloads are processed throughout a technology 
stack. 

3. Methodology 

This research investigates building a data pipeline 
in a cluster setup with an eye toward forensic analysis. 
The data can be used for event reconstruction across 
multiple servers, or as an early warning of problems 
across a cluster. The research is classified as an 
exploratory study according to Oates since it is an 
attempt to understand the overall research problem 
[43]. It expands the framework proposed in Watts et. 
al [25] to collect data through the stack, rather than 
focusing on a single container.  

3.1. Experimental testing environment  

The experiment is conducted on three Dell R440 
1U servers. Each server has one terabyte of storage, 
and 168 gigabytes of RAM. The master server has a 
pair of Intel Xeon processors that provides forty-eight 
processing cores; the two slave servers have sixteen 
cores apiece. All three servers use the CentOS 7 [44] 
operating system. These servers support the Hadoop 
Distributed File System (HDFS) [45], Yet Another 
Resource Negotiator (YARN) [35], Kubernetes [3], 
Apache Spark [2], HiBench [46], Prometheus [14], 
Helm [42], and Docker [23]. An additional virtual 
machine was provisioned on a fourth server, which 
served to store the data collected. This virtual machine 
has eight gigabytes of RAM, eighty gigabytes of 
storage, and four cores and is used to house InfluxDB 
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[47], and Chronograf [48]. InfluxDB is used to store 
the data collected during the experiments and 
Chronograf is used to create some of the 
visualizations. 

The Hadoop Distributed File System [45] is the 
storage portion of the popular Apache Hadoop 
platform. It is open source, and allows networked 
servers to share storage between them. In the 
experiments that will be conducted, the work and data 
storage will be shared between the single master and 
the two data nodes, which matches the configuration 
used in other distributed systems [49-52].   

Yet Another Resource Negotiator [35] is another 
part of the Apache Hadoop platform, but, where HDFS 
focuses on storage, YARN focuses on providing 
compute resources for data stored on HDFS. YARN 
will be used to oversee and allocate computational 
resources for the scripts that prepare input data for the 
types of computational loads the experiment runs 
through the CentOS [44] command line interface. 

Kubernetes [3] is an open-source container 
orchestration software that came out of Google. The 
platform breaks orchestration large processing jobs 
into a variety of layers, and the various layers allow 
for expansive data gathering. The open source 
introspection tool Prometheus [14] works through a 
series of targets and configuration files and that 
functionality can be leveraged to empower the 
multiple level data gathering that this experiment 
seeks to generate. The package manager Helm [42], a 
package manager for Kubernetes similar to Linux’s 
APT, is used to build and customize Prometheus for 
the Kubernetes orchestrator; it enables Prometheus to 
utilize the endpoints that each container exposes 
through the Kubernetes APIs.  

Docker [23] is open source container software 
that runs on top of multiple host operating systems. 
Kubernetes interfaces with Docker to schedule jobs 
and distribute them across a containerized 
environment.  

YARN and Apache Spark [2] are interrelated, but 
YARN originated as a batch processing engine, while 
Spark was an in-memory analytics engine. A 
containerized version of Apache Spark is what 
actually runs the HiBench benchmarks once they have 
been generated using internal YARN scripting.  

HiBench [46] is an Intel developed project meant 
to allow for a variety of computational loads to be 
measured on Spark clusters. It provides the initial 
input data throughout these experiments, and runs four 
different types: TeraSort [53], WordCount [54], 
Singular Value Decomposition [55], and Random 
Forest [56]. Hadoop’s TeraGen, RandomTestWriter, 
RandomForestDataGenerator and SVDDataGenerator 
provide the input data through HiBench. 

InfluxDB is a time-series database that takes 
advantage of the Prometheus HTTP API in order to 
permanently store each benchmarking test in its own 
database for easier comparisons. Putting InfluxDB in 
its own virtual environment also provides an 
independent data store away from the experimental 
system. Once the data is pulled from the experiments, 
Chronograf is used to explore the data through a series 
of visualizations.  Figure 1 illustrates the experimental 
tech stack in which data flows omnidirectionally 
unless otherwise indicated. 

 

 
Figure 1. Experimental stack 

 

3.2. Experimental methodology  

The experiment itself combines all of the 
disparate elements together to build twenty different 
databases. Each database represents one test. There 
were four separate benchmarking workloads: 
TeraSort, WordCount, Singular Value Decomposition 
(SVD), and Random Forest (RF) that were each run 
five times. Prometheus was routed to a different 
database each time through the Helm package 
manager, and the Spark job was reformulated as 
necessary to go between benchmarking workloads.  

Once the baseline system is built and configured 
so that everything is properly connected, the 
Prometheus Helm chart is modified between each 
experimental task; this modification ensures the data 
for an experiment is written to the proper database. In 
order to update Prometheus, Helm’s 
stable/Prometheus-operator chart pull went through 
several iterations. First, one of the Helm configuration 
files, promop.values were updated to send the 
Prometheus UI to a nodePort, as opposed to a 
ClusterIP, and give it a port. The experiment used 
32322 for ease for use, but any high port will function. 
The Prometheus UI will allow for data to be spot-
checked during a test, and there is a configuration tab 
within the UI that prints out the underlying 
configuration file. That configuration file shows where 
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the remote_write of Prometheus is routed, and is 
configured through the remoteWrite portion of the 
values file. In order to activate remote_write, add url: 
http://InfluxDB-
IP:8086/api/v1/prom/write?db=<DBNAME> inside 
of the brackets next to remoteWrite. The DBNAME 
was updated between experiments to be the name of 
the workload being run, and numbered one to five. 
Loading Prometheus from this modified repository 
will deploy Prometheus throughout the Kubernetes 
cluster, and populate approximately nine hundred 
different metric tables.  

The spark-submit queries are all variations on a 
theme. The Terasort query is: “./bin/spark-submit  --
verbose --master 
k8s://https://<KubernetesMasterIP>:6443  --deploy-
mode cluster --name spark-terasort  --class 
com.intel.hibench.sparkbench.micro.ScalaTeraSort --
conf 
spark.kubernetes.container.image=<repo><tag> --
conf spark.kubernetes.driver.pod.name=spark-
terasort --conf 
spark.kubernetes.authenticate.driver.serviceAccount
Name=<username> --conf 
spark.executor.memory=12g --conf 
spark.executor.memoryoverhead=16g 
local:///opt/spark/bin/sparkbench/assembly/target/sp
arkbench-assembly-7.1-SNAPSHOT-dist.jar "hdfs:// 
<HDFS IP>:9000/HiBench/Terasort/Input" "hdfs:// 
<HDFS IP>:9000/HiBench/Terasort/Output."” 

Each part has a specific function within the query 
itself. The “—verbose” was for debugging ease 
throughout development. It outputs a more detailed 
log to the screen throughout the beginning of the 
query. In order for Spark to utilize Kubernetes, it has 
to be passed a Kubernetes IP:port combination, as well 
as a name for any kubectl commands. The container 
image is what allows Spark to run on Kubernetes, and 
the various properties beyond that allow for tweaking. 
The final two HDFS lines are the parameters of the 
TeraSort function. 

The RF spark-submit is: ./bin/spark-submit  --
verbose --master k8s://https:// 
<KubernetesMasterIP>  --deploy-mode cluster --
name spark-RF  --class 
com.intel.hibench.sparkbench.ml.RandomForestClas
sification --conf 
spark.kubernetes.container.image=<repo><tag> --
conf spark.kubernetes.driver.pod.name=spark-rf --
conf 
spark.kubernetes.authenticate.driver.serviceAccount
Name=<username> --conf 
spark.executor.memory=24g --conf 
spark.executor.memoryoverhead=32g 
local:///opt/spark/bin/sparkbench/assembly/target/sp

arkbench-assembly-7.1-SNAPSHOT-dist.jar 
"hdfs://<HDFS IP>:9000/HiBench/RF/Input."  

WordCount is ./bin/spark-submit  --verbose --
master k8s://https:// <KubernetesMasterIP>  --
deploy-mode cluster --name spark-wordcount  --class 
com.intel.hibench.sparkbench.micro.ScalaWordCoun
t --conf 
spark.kubernetes.container.image=<repo><tag> --
conf spark.kubernetes.driver.pod.name=spark-
wordcount --conf 
spark.kubernetes.authenticate.driver.serviceAccount
Name=<username> --conf 
spark.executor.memory=12g --conf 
spark.executor.memoryoverhead=16g 
local:///opt/spark/bin/sparkbench/assembly/target/sp
arkbench-assembly-7.1-SNAPSHOT-dist.jar "hdfs:// 
<HDFS IP>:9000/HiBench/Wordcount/Input" 
"hdfs:// <HDFS 
IP>:9000/HiBench/Wordcount/Output.” 

SVD is ./bin/spark-submit  --verbose --master 
k8s://https://<KubernetesMasterIP> --deploy-mode 
cluster --name spark-svd  --class 
com.intel.hibench.sparkbench.ml.SVDExample --conf 
spark.kubernetes.container.image=<repo><tag> --
conf spark.kubernetes.driver.pod.name=spark-svd --
conf 
spark.kubernetes.authenticate.driver.serviceAccount
Name=<username> --conf 
spark.executor.memory=24g --conf 
spark.executor.memoryoverhead=32g 
local:///opt/spark/bin/sparkbench/assembly/target/sp
arkbench-assembly-7.1-SNAPSHOT-dist.jar --
numFeatures 2000 --numSingularValues 1500 "hdfs:// 
<HDFS IP>:9000/HiBench/SVD/Input." 

The Prometheus Helm chart is taken down 
between each test, and the values updated with the new 
remote_write parameters. Each job is run as the only 
thing within the Kubernetes ecosystem beyond the 
protected kube-system namespace which oversees the 
various containers which make up Kubernetes itself. 

4. Results and discussion  

The results presented below are a selection from 
the twenty runs. The nine hundred metrics were culled 
down to a handful to illustrate differences between 
different workloads and how those differences are 
visualized at various points in the stack. These 
visualizations are the result of queries to InfluxDB 
through the Chronograf visualization engine that were 
built off of Prometheus metrics. 
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4.1. Memory statistics 

Prometheus is able to gather memory allocation 
metrics at the node level of an experimental stack. The 
two metrics shown are a total from an individual run, 
the fourth TeraSort, as well as an allocation calculated 
every minute throughout the run of several workloads. 
The total shows the system was allocating memory, 
but it never went down since it is a total. That was 
consistent across every experimental test. The 
individual metrics showed large differences and spikes 
across various nodes as processing was allocated in a 
cluster environment. The workloads perform different 
things, so differing numbers across their runtimes, 
which themselves were also different, is an expected 
behavior. This is illustrated in Figures 2 and 3.  
 

 
Figure 2. Terasort 4 

go_memstats_alloc_bytes_total 
 

 
Figure 3. Terasort 4 

go_memstats_alloc_bytes 
 

Figures 4 through 6 illustrate difference 
workloads. As shown, the performance characteristics 
for TeraSort differs from Random Forest; this tells us 
that it is possible to infer different types of jobs on a 
running cluster. TeraSort requires a large amount of 
memory to store, and write out, compared to Random 
Forest. Wordcount and Singular Value Decomposition 
also have different memory profiles. 

4.2. Node load statistics 

Where memory statistics show differences across 
allocations in node memory, node load is primary 
concerned with processes that are currently running, 
plus the queued processes that follow along in order to 
complete a job. An important note is that these 

visualizations show the IP addresses [57] of the three 
nodes. 199.33.133.25 is the Kubernetes master node. 
199.33.133.15 & 16 are the two slave nodes. Figures 7 
though 10 are a selection of Terasorts and Random 
forests to show how node load changes between 
different experimental runs. Again, the differing 
behavior in the experiments show differences in 
processes counts, but these metrics also show potential 
differences between the individual experiments in 
terms of which servers run processes throughout 
runtimes. That type of information is valuable in event 
reconstruction due to being able to pinpoint when 
something went amiss during a security event. 
 
 

 
Figure 4. Random Forest 1 

go_memstats_alloc_bytes 
 

 
Figure 5. Singular Value Decomposition 2 

go_memstats_alloc_bytes 
 

 
Figure 6. Wordcount 3 

go_memstats_alloc_bytes 
 

 
Figure 7. Terasort 5 node_load 
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Figure 8. Tersort 2 node_load 

 

 
Figure 9. Random Forest 2 node_load 

 

 
Figure 10. Random Forest 3 node_load 

 4.3. Namespace and container level 
filesystem statistics 

Kubernetes itself is split into different levels. The 
main structure that Kubernetes surrounds containers 
with is called a namespace, and system administrators 
can use namespaces to spread out work between 
different users, or different tasks, depending on 
overarching policy. In a forensic context, jobs can be 
divided in such a way as to make pinpointing problems 
succinct. The namespaces hold individual containers, 
and Prometheus can gather both of these metrics.  

 
4.3.1. Container_fs_usage_bytes This metric 

shows how the file system is utilized throughout 
execution of one of the experimental workload. They 
show how small the kube-system namespace is 
compared to the major running processes within the 
default namespace executing Spark. The development 
namespace holds the various parts of Prometheus.  
Figures 11 and 13 are namespace level metrics from 
Terasort 3 and Random Forest 4, and Figures 12 and 
14 are container level pulls of those two experiments. 

  
4.3.2. Container_memory_usage_bytes The 

other part of the system, memory, is shown in this 
metric. The two experiments shown are Terasort 5 and 
Random Forest 1. Interestingly, the major dip in 

Random Forest one is potentially a process 
changeover, or a large memory release as the classifier 
works through the input data. Even knowing that there 
was a dip has some bearing on potential event 
reconstruction since the data is timestamped and split 
amongst both namespace and containers. Figures 15 
and 17 show namespace level metrics, and Figures 16 
and 18 show container level metrics. 

 

 
Figure 11. Namespace level Terasort 3 

container_fs_usage_bytes 
 

 
Figure 12. Namespace level Random 

Forest 4 container_fs_usage_bytes 
 

 
Figure 13. Container level Terasort 3 

container_fs_usage_bytes 
 

 
Figure 14. Container level Random Forest 

4 container_fs_usage_bytes 
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Figure 15. Namespace level Terasort 5 
container_memory_usage_bytes 

 

 
Figure 16. Namespace level Random 

Forest 1 container_memory_usage_bytes 
 

 
Figure 17. Container level Terasort 5 
container_memory_usage_bytes 

 

 
Figure 18. Container level Random Forest 

1 container_memory_usage_bytes 
 

5. Conclusions and future work  

This research proposed three subsidiary research 
questions to determine whether introspection tools can 
be expanded across a multi-server technology stack 
with a container orchestrator at its heart. The first 
investigates which levels an introspection tool has 
access. The introspection tool Prometheus has access 
to multiple levels of a technology stack. It can pull data 
from the namespace and container level of 

Kubernetes, as well as multiple different node metrics 
to provide a multi-variate stream of data representing 
execution within the environment. The data set itself 
over multiple experiments contains twenty 
experiments of data compiled in over nine hundred 
separate metrics.  The scaling suggests that 
introspection tools can be used to generate historical 
records for event reconstruction, or other collection 
surrounding processing of large amounts of data.  

The second subsidiary research question dealt 
with constructing a one-way pipe to store data away 
from the orchestrated containerized experimental 
platform. The inclusion of InfluxDB, and the ability 
for Prometheus to remotely write out its metrics as 
they are being compiled demonstrates that it is 
possible to pull data out in a straightforward way, and 
save it outside of the running system. 

The size of the data set, over nine hundred 
metrics, did precipitate using a visualization tool to go 
through them. Chronograf, built to directly interface 
with an InfluxDB database, was useful in answering 
this third and final subsidiary research question. 

The answers to these subsidiary research 
questions show that introspection tools can expand to 
a large, diverse technology stack to gather relevant 
data for event reconstruction. No matter the workload 
that the orchestrated containerized system is running, 
Prometheus has access to relevant metrics. The 
metrics shown in the paper are from multiple levels in 
the technology stack, and show totals as well as peaks 
and valleys are the various pieces of the orchestrated 
containerized system went about the business of 
executing a complex, multi-server workload.  

Additionally, the metrics themselves have some 
level of interoperability since the namespace and 
container level metrics look at the groupings of 
containers that execute a given job, as well as the 
individual containers themselves. That level of 
granularity is key to event reconstruction at the 
individual container level. 

Future work is focused on diversification, and 
analysis at horizontal and vertical scale. The complex 
system has clear lines of demarcation between the 
various systems so removing one part and replacing it 
with a similar piece is straightforward. These 
comparisons have value for workload modeling, as 
well as studying individual parts for potential forensic 
analysis pitfalls. For instance, there are other container 
orchestrators than Kubernetes. With Docker 
Enterprise [58] coming for free with every copy of 
Window Server 2019 [59], and configured to default 
to Windows containers, the Azure Service Fabric [60] 
could be substituted. Utilizing the Service Fabric 
Mesh [61], which focuses on microservices on Azure, 
could provide a highly focused look at microservices, 
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and solving some of the analytical challenges inherent 
in that paradigm. Mirantis’s Docker Enterprise 
Container Cloud [62] is based on the notion of 
clustered containers managing other clusters of 
containers to  allow for seamless, multi-level scaling 
either horizontally or vertically on an ad-hoc basis. 

The dataset has potential applications outside of 
forensics, such as resource management of large 
distributed systems. There were over nine hundred 
metrics, and targeted examinations in CPU utilization, 
or memory I/O, or how utilizing graphic processing 
unit architecture’s such as Nvidia’s Ampere [63] effect 
resource utilization are future work.  
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