

Insight from a Containerized Kubernetes Workload Introspection

Thomas Watts
The SSI Group, LLC

Thomas.Watts@ssigroup.com

David Bourrie
The University of South Alabama

dbourrie@southalabama.edu

Ryan Benton
The University of South Alabama

rbenton@southalabama.edu

Jordan Shropshire
Uversity of South Alabama

jshropshire@southalabama.edu

Abstract

Developments in virtual containers, especially in

the cloud infrastructure, have led to diversification of

jobs that containers are used to support, particularly

in the big data and machine learning spaces. The

diversification has been powered by the adoption of

orchestration systems that marshal fleets of containers

to accomplish complex programming tasks. The

additional components in the vertical technology

stack, plus the continued horizontal scaling have led

to questions regarding how to forensically analyze

complicated technology stacks. This paper proposed a

solution through the use of introspection.

An exploratory case study has been conducted on

a bare-metal cloud that utilizes Kubernetes, the

introspection tool Prometheus, and Apache Spark. The

contribution of this research is two-fold. First, it

provides empirical support that introspection tools

can acquire forensically viable data from different

levels of a technology stack. Second, it provides the

ground work for comparisons between different

virtual container platforms.

1. Introduction

Virtual containers, which are an iteration of the
concept of virtual machines, are frequently used in the
cloud. Where a virtual machine is a complete
operating system on top of virtualized hardware, a
container is a lightweight silo for running an
application on a host operating system [1]; they
contain only the software needed to accomplish a
specific task. They are used to accelerate processing in
data processing frameworks such as Apache Spark [2].
Orchestrating containers through popular frameworks
such as Kubernetes [3] or Apache YARN [4] has
grown as a research area over the past several years.

Flexera’s 2020 State of the Cloud survey [5]
underscores how popular adoption of Kubernetes is

with a ten percent adoption rate increase from forty-
eight to fifty-eight percent from 2019 to 2020. That is
coupled with an overall container adoption growth
from fifty-seven to sixty-five percent. Forbes also
pointed out that over fifty percent of respondents to the
2020 survey expected to use more cloud in response to
the global Coronavirus pandemic. [6]

As container adoption expands throughout the
cloud, concerns surrounding the detection of security
problems arise from both practitioners and
academicians [7-11]. Alert Logic, a big data security-
as-a-service company, published a 2015 report that
stated “businesses using cloud environments are
largely considered a ‘fruit-bearing jackpot’ for
hackers” [12]. The speed with which containers
execute is a key concern since containers can perform
their function in seconds [13], as they are typically
destroyed once a task is done. Therefore, data about
containers must be collected while they are performing
their tasks. Introspection tools such as Prometheus
[14] and Datadog [15] have been created to gather this
data as an orchestrated containerized environment is
running.

These concerns in both the cloud and with
containers specifically prompts the hypothesis that
introspection tools can be expanded to gather
forensically useful data from larger, orchestrated
containerized workloads. Subsidiary questions
identified as part of this research are as follows:

1. Which levels of an orchestrated containerized
system does an introspection tool have access?

2. How can data be saved away from the running
system?

3. How can this data be visualized for ease of
examination?

The research contribution of this paper is an
analysis of the data that an introspection tool can
gather in a multi-server orchestrated containerized
environment running a variety of machine learning
workloads. The paper is structured as follows. Section
2 discusses the research surrounding the intersection

Proceedings of the 54th Hawaii International Conference on System Sciences | 2021

Page 6955
URI: https://hdl.handle.net/10125/71457
978-0-9981331-4-0
(CC BY-NC-ND 4.0)

mailto:Thomas.Watts@ssigroup.com
mailto:dbourrie@southalabama.edu
mailto:rbenton@southalabama.edu
mailto:jshropshire@southalabama.edu

of cloud computing, big data, and container
orchestration software. Section 3 presents the
experimental methodology and design. Section 4
examines the results of a series of experiments
designed to determine what data is captured from an
introspection tool from a series of containerized
workloads. Section 5 draws conclusions and presents
future work.

2. Related work

The National Institute of Standards and
Technology [16] (NIST) lists five essential
characteristics of cloud computing: on-demand self-
service, broad network access, resource pooling, rapid
elasticity or expansion, and measured service. NIST
also describes four deployment models: private,
community, public and hybrid. These definitions have
standardized cloud computing nomenclature since
their publication in 2009.

Big data and the cloud have become intertwined as
the two technologies have matured. Yang et. al [17]
pointed out the challenges and opportunities of these
two ideas. After defining several sources of big data
such as the Internet of Things and business, the
researchers point out how cloud computing ideas can
be leveraged to help provide insight into these two
evolving realms through data transmission and
management as well as analysis. Some of the
challenges that are underscored throughout the survey
are scalability and quality of service on large-scale big
data jobs. Finally, the paper concludes with several
ideas for a research agenda focused on risk
management, big data mining, and interdisciplinary
collaboration to solve pressing issues.

One of the major players in container orchestration
in a virtual is Kubernetes. Burns et. al [18] wrote about
the development arc surrounding Borg [19], Omega
[20], and Kubernetes. The authors were integral to the
various container orchestration platforms at Google.
Their 2016 work describes the history of container
orchestration at Google, which started with Borg.
Omega was their second-generation orchestration
system within their closed-source data center
operations and incorporated lessons learned from
Borg. The paper also describes what Kubernetes, their
latest generation container orchestrator that was
released to the public, obtained from Google’s internal
development efforts. One key point stressed by Burns
et. al [18] is how containers have lightened the OS load
across the fleet of Google machines and permitted data
centers to be converted into application focused
processing engines.

Where Yang et. al and Burns et. al were working
on systems to unite overarching concepts in the

virtualization world, Casalicchio and Percibali [21]
focused specifically on virtual containers. They sought
to determine if tools built for a non-virtual
environment collected the same information as tools
built to focus on the cloud. The researchers tested a
battery of traditional Linux metrics including iostat
and mpstat. cAdvisor [22], a container specific
introspection tool suite was used as a comparison
platform for specific Docker [23] statistics. Both
Prometheus [14] and Grafana [24] for utilized for
statistics collection. Tests centered upon CPU and
Disk I/O intensive workloads. They determined
different tools present similar but not completely equal
results.

Watts et. al [25] also examined containers, but that
research was focused on detecting malware through
introspection tools. The researchers introduced a
known piece of malware to an Apache server container
and ran a series of tests to determine what differences,
if any, appeared in the metrics that the introspection
tool Prometheus produced. Through a total five
different experiments, nine different metrics were
identified that allowed the user to identify if a
container was infected or normal.

Examining performance and resource management
was the focus of Medel et. al [26]. They built a two
node Kubernetes cluster on a pair of servers, and tested
container creation and termination time with CPU and
I/O intensive workloads, with the goal of measuring
the system time required to perform the tasks. There
were several drawbacks to their approach, beginning
with the fact their cluster was composed of only two
nodes, one of which was the master node. This is a
concern, as Kubernetes does not allow for scheduling
of work on the master node unless explicitly
configured to deployed jobs on the master node. Even
with that limitation, their initial work was one of the
first to use an actual Kubernetes deployment as
opposed to the popular Minikube [27]. Minikube is
single node Kubernetes that is meant for personal
computer resources as opposed to server compute
resources that are seen in clouds; as a result,
comparisons done on Minikube do not necessarily
reflect typical Kubernetes deployments.

Shah et. al [28] used microservices such as
WordPress to show deployment patterns through a
combination of Docker [23], Kubernetes [3], and the
Google Cloud Platform [29]. The paper delineates
how Docker can be used to make deployments faster,
while Kubernetes on the Google Cloud Platform can
control the scaling of a given application. They also
compare Docker Swarm, a Kubernetes-like platform
designed to work natively with Docker, to Kubernetes.
The paper does an excellent job explaining the

Page 6956

deployment patterns along with the tradeoffs and
strengths of the different containerized systems.

Managing a stateful application across a container
orchestration platform can be a challenge. Kubernetes
attempts to address this via StatefulSets [30], which is
designed to augment the Kubernetes orchestration
layer by introducing persistent identifiers to sets of
containers. An alternative approach was presented by
Netto et. al [31], who built a coordinator-as-a-service
application called Koordinator to add some fault
tolerance to Kubernetes. The authors built a service
layer on-top of Kubernetes as opposed to augmenting
the Kubernetes orchestration layer. The Koordinator
layer sits behind the proxy servers that Kubernetes
configures for its CoreDNS [32] protocols to create the
Kubernetes virtual network, and CoreDNS itself.
Traffic is routed through that service layer if there are
many requests to an application made up of many
containers. Koordinator adds a read on top of a write,
but experimental tests showed that there was hardly
any changeover. The system was tested with sixteen
writers with eight thousand simultaneous requests as
well as 256 readers sending eighty thousand requests.
The resource consumption was also shown.

Understanding how efficient parts of the overall
system are as Kubernetes diversifies will require
vigilance, and Kratzke et. al [33] worked on the
networking side of Kubernetes. The research had a
series of test cases ranging from a non-virtualized
system to a fully containerized system using the
software-defined network Weavenet [34], a popular
networking framework for Kubernetes. The
benchmark mapped pings between hosts, and then
created a series of line graphs which compared the
non-virtual system with the fully containerized one.
Their research admitted that the tool for benchmarking
was limited, but it was able to augment the classical
iperf [35], uperf [36] by extending their usage into
Kubernetes.

A major question surrounding large virtual
containerized platforms is scaling the necessary
monitoring tools without an extreme performance
cost. Stelly et al. [37] deal with this issue via the
containerization of the digital forensics process with
their SCARF toolkit. They focused on scalability
across large platforms using Docker Swarm, and
attempted to demonstrate that high throughput to
empower scalability. The group ran tests on both a
legacy cluster, and a cluster with cutting edge
hardware and found that several of the components of
the SCARF system, such as Yahoo’s OpenNSFW
network [38], had large throughput gains when
comparing the two systems, and could potential scale
into the big data realm.

Containerization has expanded from purely
computational researchers into the world writ large.
One of the more interesting use-cases fuses
bioinformatics, which has already been heavily
involved in using cloud compute, such as Agapito et.
al’s [39] simulation of vessel reconstruction, with
Kubernetes. Moreno et. al [40] combined Kubernetes
with Galaxy developed by Afgan et. al [41] to
containerize the framework to scale bioinformatics
workloads into the cloud. They manipulate the
workflow through a Helm [42] chart in order to allow
for configuration ease. While the paper itself is short,
Monero et. al provide links to both the code as well as
robust documentation for configuring the product.

Containerization research has focused on solving
specific problems with a specific component within an
orchestrated container system. This research struggles
outside of Minikube which obfuscates many core
functionalities of Kubernetes in favor of ease of use.
There has been minimal investigation of distributed
container processing utilizing cutting edge tools in a
forensic context to examine how various big data
workloads are processed throughout a technology
stack.

3. Methodology

This research investigates building a data pipeline
in a cluster setup with an eye toward forensic analysis.
The data can be used for event reconstruction across
multiple servers, or as an early warning of problems
across a cluster. The research is classified as an
exploratory study according to Oates since it is an
attempt to understand the overall research problem
[43]. It expands the framework proposed in Watts et.
al [25] to collect data through the stack, rather than
focusing on a single container.

3.1. Experimental testing environment

The experiment is conducted on three Dell R440
1U servers. Each server has one terabyte of storage,
and 168 gigabytes of RAM. The master server has a
pair of Intel Xeon processors that provides forty-eight
processing cores; the two slave servers have sixteen
cores apiece. All three servers use the CentOS 7 [44]
operating system. These servers support the Hadoop
Distributed File System (HDFS) [45], Yet Another
Resource Negotiator (YARN) [35], Kubernetes [3],
Apache Spark [2], HiBench [46], Prometheus [14],
Helm [42], and Docker [23]. An additional virtual
machine was provisioned on a fourth server, which
served to store the data collected. This virtual machine
has eight gigabytes of RAM, eighty gigabytes of
storage, and four cores and is used to house InfluxDB

Page 6957

[47], and Chronograf [48]. InfluxDB is used to store
the data collected during the experiments and
Chronograf is used to create some of the
visualizations.

The Hadoop Distributed File System [45] is the
storage portion of the popular Apache Hadoop
platform. It is open source, and allows networked
servers to share storage between them. In the
experiments that will be conducted, the work and data
storage will be shared between the single master and
the two data nodes, which matches the configuration
used in other distributed systems [49-52].

Yet Another Resource Negotiator [35] is another
part of the Apache Hadoop platform, but, where HDFS
focuses on storage, YARN focuses on providing
compute resources for data stored on HDFS. YARN
will be used to oversee and allocate computational
resources for the scripts that prepare input data for the
types of computational loads the experiment runs
through the CentOS [44] command line interface.

Kubernetes [3] is an open-source container
orchestration software that came out of Google. The
platform breaks orchestration large processing jobs
into a variety of layers, and the various layers allow
for expansive data gathering. The open source
introspection tool Prometheus [14] works through a
series of targets and configuration files and that
functionality can be leveraged to empower the
multiple level data gathering that this experiment
seeks to generate. The package manager Helm [42], a
package manager for Kubernetes similar to Linux’s
APT, is used to build and customize Prometheus for
the Kubernetes orchestrator; it enables Prometheus to
utilize the endpoints that each container exposes
through the Kubernetes APIs.

Docker [23] is open source container software
that runs on top of multiple host operating systems.
Kubernetes interfaces with Docker to schedule jobs
and distribute them across a containerized
environment.

YARN and Apache Spark [2] are interrelated, but
YARN originated as a batch processing engine, while
Spark was an in-memory analytics engine. A
containerized version of Apache Spark is what
actually runs the HiBench benchmarks once they have
been generated using internal YARN scripting.

HiBench [46] is an Intel developed project meant
to allow for a variety of computational loads to be
measured on Spark clusters. It provides the initial
input data throughout these experiments, and runs four
different types: TeraSort [53], WordCount [54],
Singular Value Decomposition [55], and Random
Forest [56]. Hadoop’s TeraGen, RandomTestWriter,
RandomForestDataGenerator and SVDDataGenerator
provide the input data through HiBench.

InfluxDB is a time-series database that takes
advantage of the Prometheus HTTP API in order to
permanently store each benchmarking test in its own
database for easier comparisons. Putting InfluxDB in
its own virtual environment also provides an
independent data store away from the experimental
system. Once the data is pulled from the experiments,
Chronograf is used to explore the data through a series
of visualizations. Figure 1 illustrates the experimental
tech stack in which data flows omnidirectionally
unless otherwise indicated.

Figure 1. Experimental stack

3.2. Experimental methodology

The experiment itself combines all of the
disparate elements together to build twenty different
databases. Each database represents one test. There
were four separate benchmarking workloads:
TeraSort, WordCount, Singular Value Decomposition
(SVD), and Random Forest (RF) that were each run
five times. Prometheus was routed to a different
database each time through the Helm package
manager, and the Spark job was reformulated as
necessary to go between benchmarking workloads.

Once the baseline system is built and configured
so that everything is properly connected, the
Prometheus Helm chart is modified between each
experimental task; this modification ensures the data
for an experiment is written to the proper database. In
order to update Prometheus, Helm’s
stable/Prometheus-operator chart pull went through
several iterations. First, one of the Helm configuration
files, promop.values were updated to send the
Prometheus UI to a nodePort, as opposed to a
ClusterIP, and give it a port. The experiment used
32322 for ease for use, but any high port will function.
The Prometheus UI will allow for data to be spot-
checked during a test, and there is a configuration tab
within the UI that prints out the underlying
configuration file. That configuration file shows where

Page 6958

the remote_write of Prometheus is routed, and is
configured through the remoteWrite portion of the
values file. In order to activate remote_write, add url:
http://InfluxDB-
IP:8086/api/v1/prom/write?db=<DBNAME> inside
of the brackets next to remoteWrite. The DBNAME
was updated between experiments to be the name of
the workload being run, and numbered one to five.
Loading Prometheus from this modified repository
will deploy Prometheus throughout the Kubernetes
cluster, and populate approximately nine hundred
different metric tables.

The spark-submit queries are all variations on a
theme. The Terasort query is: “./bin/spark-submit --
verbose --master
k8s://https://<KubernetesMasterIP>:6443 --deploy-
mode cluster --name spark-terasort --class
com.intel.hibench.sparkbench.micro.ScalaTeraSort --
conf
spark.kubernetes.container.image=<repo><tag> --
conf spark.kubernetes.driver.pod.name=spark-
terasort --conf
spark.kubernetes.authenticate.driver.serviceAccount
Name=<username> --conf
spark.executor.memory=12g --conf
spark.executor.memoryoverhead=16g
local:///opt/spark/bin/sparkbench/assembly/target/sp
arkbench-assembly-7.1-SNAPSHOT-dist.jar "hdfs://
<HDFS IP>:9000/HiBench/Terasort/Input" "hdfs://
<HDFS IP>:9000/HiBench/Terasort/Output."”

Each part has a specific function within the query
itself. The “—verbose” was for debugging ease
throughout development. It outputs a more detailed
log to the screen throughout the beginning of the
query. In order for Spark to utilize Kubernetes, it has
to be passed a Kubernetes IP:port combination, as well
as a name for any kubectl commands. The container
image is what allows Spark to run on Kubernetes, and
the various properties beyond that allow for tweaking.
The final two HDFS lines are the parameters of the
TeraSort function.

The RF spark-submit is: ./bin/spark-submit --
verbose --master k8s://https://
<KubernetesMasterIP> --deploy-mode cluster --
name spark-RF --class
com.intel.hibench.sparkbench.ml.RandomForestClas
sification --conf
spark.kubernetes.container.image=<repo><tag> --
conf spark.kubernetes.driver.pod.name=spark-rf --
conf
spark.kubernetes.authenticate.driver.serviceAccount
Name=<username> --conf
spark.executor.memory=24g --conf
spark.executor.memoryoverhead=32g
local:///opt/spark/bin/sparkbench/assembly/target/sp

arkbench-assembly-7.1-SNAPSHOT-dist.jar
"hdfs://<HDFS IP>:9000/HiBench/RF/Input."

WordCount is ./bin/spark-submit --verbose --
master k8s://https:// <KubernetesMasterIP> --
deploy-mode cluster --name spark-wordcount --class
com.intel.hibench.sparkbench.micro.ScalaWordCoun
t --conf
spark.kubernetes.container.image=<repo><tag> --
conf spark.kubernetes.driver.pod.name=spark-
wordcount --conf
spark.kubernetes.authenticate.driver.serviceAccount
Name=<username> --conf
spark.executor.memory=12g --conf
spark.executor.memoryoverhead=16g
local:///opt/spark/bin/sparkbench/assembly/target/sp
arkbench-assembly-7.1-SNAPSHOT-dist.jar "hdfs://
<HDFS IP>:9000/HiBench/Wordcount/Input"
"hdfs:// <HDFS
IP>:9000/HiBench/Wordcount/Output.”

SVD is ./bin/spark-submit --verbose --master
k8s://https://<KubernetesMasterIP> --deploy-mode
cluster --name spark-svd --class
com.intel.hibench.sparkbench.ml.SVDExample --conf
spark.kubernetes.container.image=<repo><tag> --
conf spark.kubernetes.driver.pod.name=spark-svd --
conf
spark.kubernetes.authenticate.driver.serviceAccount
Name=<username> --conf
spark.executor.memory=24g --conf
spark.executor.memoryoverhead=32g
local:///opt/spark/bin/sparkbench/assembly/target/sp
arkbench-assembly-7.1-SNAPSHOT-dist.jar --
numFeatures 2000 --numSingularValues 1500 "hdfs://
<HDFS IP>:9000/HiBench/SVD/Input."

The Prometheus Helm chart is taken down
between each test, and the values updated with the new
remote_write parameters. Each job is run as the only
thing within the Kubernetes ecosystem beyond the
protected kube-system namespace which oversees the
various containers which make up Kubernetes itself.

4. Results and discussion

The results presented below are a selection from
the twenty runs. The nine hundred metrics were culled
down to a handful to illustrate differences between
different workloads and how those differences are
visualized at various points in the stack. These
visualizations are the result of queries to InfluxDB
through the Chronograf visualization engine that were
built off of Prometheus metrics.

Page 6959

4.1. Memory statistics

Prometheus is able to gather memory allocation
metrics at the node level of an experimental stack. The
two metrics shown are a total from an individual run,
the fourth TeraSort, as well as an allocation calculated
every minute throughout the run of several workloads.
The total shows the system was allocating memory,
but it never went down since it is a total. That was
consistent across every experimental test. The
individual metrics showed large differences and spikes
across various nodes as processing was allocated in a
cluster environment. The workloads perform different
things, so differing numbers across their runtimes,
which themselves were also different, is an expected
behavior. This is illustrated in Figures 2 and 3.

Figure 2. Terasort 4

go_memstats_alloc_bytes_total

Figure 3. Terasort 4

go_memstats_alloc_bytes

Figures 4 through 6 illustrate difference
workloads. As shown, the performance characteristics
for TeraSort differs from Random Forest; this tells us
that it is possible to infer different types of jobs on a
running cluster. TeraSort requires a large amount of
memory to store, and write out, compared to Random
Forest. Wordcount and Singular Value Decomposition
also have different memory profiles.

4.2. Node load statistics

Where memory statistics show differences across
allocations in node memory, node load is primary
concerned with processes that are currently running,
plus the queued processes that follow along in order to
complete a job. An important note is that these

visualizations show the IP addresses [57] of the three
nodes. 199.33.133.25 is the Kubernetes master node.
199.33.133.15 & 16 are the two slave nodes. Figures 7
though 10 are a selection of Terasorts and Random
forests to show how node load changes between
different experimental runs. Again, the differing
behavior in the experiments show differences in
processes counts, but these metrics also show potential
differences between the individual experiments in
terms of which servers run processes throughout
runtimes. That type of information is valuable in event
reconstruction due to being able to pinpoint when
something went amiss during a security event.

Figure 4. Random Forest 1

go_memstats_alloc_bytes

Figure 5. Singular Value Decomposition 2

go_memstats_alloc_bytes

Figure 6. Wordcount 3

go_memstats_alloc_bytes

Figure 7. Terasort 5 node_load

Page 6960

Figure 8. Tersort 2 node_load

Figure 9. Random Forest 2 node_load

Figure 10. Random Forest 3 node_load

 4.3. Namespace and container level
filesystem statistics

Kubernetes itself is split into different levels. The
main structure that Kubernetes surrounds containers
with is called a namespace, and system administrators
can use namespaces to spread out work between
different users, or different tasks, depending on
overarching policy. In a forensic context, jobs can be
divided in such a way as to make pinpointing problems
succinct. The namespaces hold individual containers,
and Prometheus can gather both of these metrics.

4.3.1. Container_fs_usage_bytes This metric

shows how the file system is utilized throughout
execution of one of the experimental workload. They
show how small the kube-system namespace is
compared to the major running processes within the
default namespace executing Spark. The development
namespace holds the various parts of Prometheus.
Figures 11 and 13 are namespace level metrics from
Terasort 3 and Random Forest 4, and Figures 12 and
14 are container level pulls of those two experiments.

4.3.2. Container_memory_usage_bytes The

other part of the system, memory, is shown in this
metric. The two experiments shown are Terasort 5 and
Random Forest 1. Interestingly, the major dip in

Random Forest one is potentially a process
changeover, or a large memory release as the classifier
works through the input data. Even knowing that there
was a dip has some bearing on potential event
reconstruction since the data is timestamped and split
amongst both namespace and containers. Figures 15
and 17 show namespace level metrics, and Figures 16
and 18 show container level metrics.

Figure 11. Namespace level Terasort 3

container_fs_usage_bytes

Figure 12. Namespace level Random

Forest 4 container_fs_usage_bytes

Figure 13. Container level Terasort 3

container_fs_usage_bytes

Figure 14. Container level Random Forest

4 container_fs_usage_bytes

Page 6961

Figure 15. Namespace level Terasort 5
container_memory_usage_bytes

Figure 16. Namespace level Random

Forest 1 container_memory_usage_bytes

Figure 17. Container level Terasort 5
container_memory_usage_bytes

Figure 18. Container level Random Forest

1 container_memory_usage_bytes

5. Conclusions and future work

This research proposed three subsidiary research
questions to determine whether introspection tools can
be expanded across a multi-server technology stack
with a container orchestrator at its heart. The first
investigates which levels an introspection tool has
access. The introspection tool Prometheus has access
to multiple levels of a technology stack. It can pull data
from the namespace and container level of

Kubernetes, as well as multiple different node metrics
to provide a multi-variate stream of data representing
execution within the environment. The data set itself
over multiple experiments contains twenty
experiments of data compiled in over nine hundred
separate metrics. The scaling suggests that
introspection tools can be used to generate historical
records for event reconstruction, or other collection
surrounding processing of large amounts of data.

The second subsidiary research question dealt
with constructing a one-way pipe to store data away
from the orchestrated containerized experimental
platform. The inclusion of InfluxDB, and the ability
for Prometheus to remotely write out its metrics as
they are being compiled demonstrates that it is
possible to pull data out in a straightforward way, and
save it outside of the running system.

The size of the data set, over nine hundred
metrics, did precipitate using a visualization tool to go
through them. Chronograf, built to directly interface
with an InfluxDB database, was useful in answering
this third and final subsidiary research question.

The answers to these subsidiary research
questions show that introspection tools can expand to
a large, diverse technology stack to gather relevant
data for event reconstruction. No matter the workload
that the orchestrated containerized system is running,
Prometheus has access to relevant metrics. The
metrics shown in the paper are from multiple levels in
the technology stack, and show totals as well as peaks
and valleys are the various pieces of the orchestrated
containerized system went about the business of
executing a complex, multi-server workload.

Additionally, the metrics themselves have some
level of interoperability since the namespace and
container level metrics look at the groupings of
containers that execute a given job, as well as the
individual containers themselves. That level of
granularity is key to event reconstruction at the
individual container level.

Future work is focused on diversification, and
analysis at horizontal and vertical scale. The complex
system has clear lines of demarcation between the
various systems so removing one part and replacing it
with a similar piece is straightforward. These
comparisons have value for workload modeling, as
well as studying individual parts for potential forensic
analysis pitfalls. For instance, there are other container
orchestrators than Kubernetes. With Docker
Enterprise [58] coming for free with every copy of
Window Server 2019 [59], and configured to default
to Windows containers, the Azure Service Fabric [60]
could be substituted. Utilizing the Service Fabric
Mesh [61], which focuses on microservices on Azure,
could provide a highly focused look at microservices,

Page 6962

and solving some of the analytical challenges inherent
in that paradigm. Mirantis’s Docker Enterprise
Container Cloud [62] is based on the notion of
clustered containers managing other clusters of
containers to allow for seamless, multi-level scaling
either horizontally or vertically on an ad-hoc basis.

The dataset has potential applications outside of
forensics, such as resource management of large
distributed systems. There were over nine hundred
metrics, and targeted examinations in CPU utilization,
or memory I/O, or how utilizing graphic processing
unit architecture’s such as Nvidia’s Ampere [63] effect
resource utilization are future work.

6. Acknowledgments

This work was partially supported by the National
Science Foundation Grant No. CNS-1726069.

7. References

[1] Gerend, J. Containers vs. virtual machines. 2020;
https://docs.microsoft.com/en-
us/virtualization/windowscontainers/about/contai
ners-vs-vm.

[2] Foundation, A.S. Apache Spark™ - Unified Analytics
Engine for Big Data. 2020;
https://spark.apache.org/.

[3] Google. What is Kubernetes? 2018;
https://kubernetes.io/docs/concepts/overview/wha
t-is-kubernetes/.

[4] Foundation, A.S. Apache Hadoop 2.9.1 The YARN
Timeline Service v.2.
https://hadoop.apache.org/docs/current/hadoop-
yarn/hadoop-yarn-site/TimelineServiceV2.html.

[5] 2020 State of the Cloud Survey from Flexera. 2020;
https://info.flexera.com/SLO-CM-REPORT-
State-of-the-Cloud-2020.

[6] Msv, J. 10 Key Takeaways From RightScale 2020 State
Of The Cloud Report From Flexera. 2020;
https://www.forbes.com/sites/janakirammsv/2020
/05/02/10-key-takeaways-from-rightscale-2020-
state-of-the-cloud-report-from-flexera/.

[7] Ab Rahman, N.H. and K.-K.R. Choo, A survey of
information security incident handling in the
cloud. Computers & Security, 2015. 49: p. 45-69.

[8] Agrawal, B., T. Wiktorski, and C. Rong, Adaptive real‐
time anomaly detection in cloud infrastructures.
Concurrency and Computation: Practice and
Experience, 2017. 29(24).

[9] Osanaiye, O., K.-K.R. Choo, and M. Dlodlo, Distributed
denial of service (DDoS) resilience in cloud:
review and conceptual cloud DDoS mitigation
framework. Journal of Network and Computer
Applications, 2016. 67: p. 147-165.

[10] Cahyani, N.D.W., N.H.A. Rahman, W.B. Glisson, and
K.-K.R. Choo, The Role of Mobile Forensics in
Terrorism Investigations Involving the Use of

Cloud Storage Service and Communication Apps.
Mobile Networks and Applications, 2017. 22(2):
p. 240-254.

[11] Grispos, G., W.B. Glisson, and T. Storer, Chapter 16 -
Recovering residual forensic data from
smartphone interactions with cloud storage
providers, in The Cloud Security Ecosystem, R.K.-
K.R. Choo, Editor. 2015, Syngress: Boston. p.
347-382.

[12] Palmer, D. Hackers see cloud as 'a fruit-bearing
jackpot' for cyber attacks | Computing. 2015.

[13] Vaughan-Nichols, S.J. What is Docker and why is it so
darn popular? 2018;
https://www.zdnet.com/article/what-is-docker-
and-why-is-it-so-darn-popular/.

[14] Presmeg, N.C. Prometheus - Monitoring system & time
series database. 2018; https://prometheus.io/.

[15] Datadog, Infrastructure & Application Monitoring as a
Service | Datadog. 2015.

[16] Mell, P. and T. Grance, The NIST definition of cloud
computing. National Institute of Standards and
Technology, 2009. 53(6): p. 50.

[17] Yang, C., Q. Huang, Z. Li, K. Liu, and F. Hu, Big Data
and cloud computing: innovation opportunities
and challenges. International Journal of Digital
Earth, 2017. 10(1): p. 13-53.

[18] Burns, B., B. Grant, D. Oppenheimer, E. Brewer, and J.
Wilkes, Borg, omega, and kubernetes. Queue,
2016. 14(1): p. 70-93.

[19] Verma, A., L. Pedrosa, M. Korupolu, D. Oppenheimer,
E. Tune, and J. Wilkes. Large-scale cluster
management at Google with Borg. in Proceedings
of the Tenth European Conference on Computer
Systems. 2015.

[20] Schwarzkopf, M., A. Konwinski, M. Abd-El-Malek,
and J. Wilkes. Omega: flexible, scalable
schedulers for large compute clusters. in
Proceedings of the 8th ACM European
Conference on Computer Systems. 2013.

[21] Casalicchio, E. and V. Perciballi. Measuring docker
performance: What a mess!!! in Proceedings of
the 8th ACM/SPEC on International Conference
on Performance Engineering Companion. 2017.
ACM.

[22] Google. google/cadvisor - Docker Hub. 2018;
https://hub.docker.com/r/google/cadvisor/.

[23] Docker. Docker. 2018; https://www.docker.com/.
[24] Grafana. Grafana - The open platform for analytics and

monitoring. 2018; https://grafana.com/.
[25] Watts, T., R. Benton, W. Glisson, and J. Shropshire.

Insight from a Docker Container Introspection. in
Proceedings of the 52nd Hawaii International
Conference on System Sciences. 2019.

[26] Medel, V., O. Rana, J.Á. Bañares, and U. Arronategui.
Modelling performance & resource management
in kubernetes. in Proceedings of the 9th
International Conference on Utility and Cloud
Computing. 2016.

[27] Install Minikube. 2020;
https://kubernetes.io/docs/tasks/tools/install-
minikube/.

Page 6963

https://docs.microsoft.com/en-us/virtualization/windowscontainers/about/containers-vs-vm
https://docs.microsoft.com/en-us/virtualization/windowscontainers/about/containers-vs-vm
https://docs.microsoft.com/en-us/virtualization/windowscontainers/about/containers-vs-vm
https://spark.apache.org/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/TimelineServiceV2.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/TimelineServiceV2.html
https://info.flexera.com/SLO-CM-REPORT-State-of-the-Cloud-2020
https://info.flexera.com/SLO-CM-REPORT-State-of-the-Cloud-2020
https://www.forbes.com/sites/janakirammsv/2020/05/02/10-key-takeaways-from-rightscale-2020-state-of-the-cloud-report-from-flexera/
https://www.forbes.com/sites/janakirammsv/2020/05/02/10-key-takeaways-from-rightscale-2020-state-of-the-cloud-report-from-flexera/
https://www.forbes.com/sites/janakirammsv/2020/05/02/10-key-takeaways-from-rightscale-2020-state-of-the-cloud-report-from-flexera/
https://www.zdnet.com/article/what-is-docker-and-why-is-it-so-darn-popular/
https://www.zdnet.com/article/what-is-docker-and-why-is-it-so-darn-popular/
https://prometheus.io/
https://hub.docker.com/r/google/cadvisor/
https://www.docker.com/
https://grafana.com/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/

[28] Shah, J. and D. Dubaria. Building modern clouds: using
docker, kubernetes & Google cloud platform. in
2019 IEEE 9th Annual Computing and
Communication Workshop and Conference
(CCWC). 2019. IEEE.

[29] Google. Cloud Computing Services | Google Cloud.
2020; https://cloud.google.com/.

[30] Foundation, A.S. StatefulSets. 2020;
https://kubernetes.io/docs/concepts/workloads/co
ntrollers/statefulset/.

[31] Netto, H.V., A.F. Luiz, M. Correia, L. de Oliveira Rech,
and C.P. Oliveira. Koordinator: A Service
Approach for Replicating Docker Containers in
Kubernetes. in 2018 IEEE Symposium on
Computers and Communications (ISCC). 2018.
IEEE.

[32] Authors, C. CoreDNS. 2020;
https://github.com/coredns/coredns.

[33] Kratzke, N. and P.-C. Quint. A visualizing network
benchmark for microservices. in Proceedings of
the 6th International Conference on Cloud
Computing and Services Science (CLOSER).
2016.

[34] Weaveworks. Weave Net. 2020;
https://www.weave.works.

[35] Gueant, V. iPerf - The TCP, UDP and SCTP network
bandwidth measurement tool. 2020;
https://iperf.fr/.

[36] Microsystems, S. Uperf - A network performance tool.
2020; http://uperf.org/.

[37] Stelly, C. and V. Roussev, SCARF: A container-based
approach to cloud-scale digital forensic
processing. Digital Investigation, 2017. 22: p.
S39-S47.

[38] Open NSFW. 2018;
https://github.com/yahoo/open_nsfw.

[39] Agapito, G., B. Calabrese, and P.H. Guzzi. Parallel and
Cloud-Based Analysis of Omics Data: Modelling
and Simulation in Medicine. in 2017 25th
Euromicro International Conference on Parallel,
Distributed and Network-based Processing
(PDP). 2017. IEEE.

[40] Moreno, P., L. Pireddu, and P. Roger, Galaxy-
Kubernetes integration: scaling bioinformatics
workflows in the cloud. BioRxiv, 2018: p. 488643.

[41] Afgan, E., D. Baker, and B. Batut, The Galaxy platform
for accessible, reproducible and collaborative
biomedical analyses: 2018 update. Nucleic Acids
Research, 2018. 46(W1): p. W537-W544.

[42] Foundation, C.N.C. Helm. 2020; https://helm.sh/.
[43] Oates, B.J., Researching information systems and

computing. 2005: Sage.
[44] Project, T.C. About CentOS. 2020;

https://www.centos.org/about/.
[45] Foundation, A.S. HDFS Architecture Guide. 2020;

https://hadoop.apache.org/docs/r1.2.1/hdfs_desig
n.html.

[46] Intel. Intel Bigdata -HiBench. 2020;
https://github.com/Intel-bigdata/HiBench.

[47] InfluxData. InfluxDB 1.X: Open Source Time Series
Platform | InfluxData. 2020;

https://www.influxdata.com/time-series-
platform/.

[48] InfluxData. Chronograf: Complete Dashboarding
Solution for InfluxDB | InfluxData. 2020;
https://www.influxdata.com/time-series-
platform/chronograf/.

[49] Vrancic, A., Synchronization of distributed systems.
2006, Google Patents.

[50] Shao, G., F. Berman, and R. Wolski. Master/slave
computing on the grid. in Proceedings 9th
Heterogeneous Computing Workshop (HCW
2000)(Cat. No. PR00556). 2000. IEEE.

[51] Durillo, J.J., A.J. Nebro, F. Luna, and E. Alba. A study
of master-slave approaches to parallelize NSGA-
II. in 2008 IEEE international symposium on
parallel and distributed processing. 2008. IEEE.

[52] Marquette, B.N., M.B. Stevens, M.L. Williams, and
J.D. Wilson, Master/slave architecture for a
distributed chat application in a bandwidth
constrained network. 2002, Google Patents.

[53] MapR. TeraSort Benchmark Comparison for YARN |
MapR. 2020;
https://mapr.com/whitepapers/terasort-
benchmark-comparison-yarn/.

[54] Foundation, A.S. MapReduce Tutorial. 2020;
https://hadoop.apache.org/docs/r1.2.1/mapred_tut
orial.html.

[55] Foundation, A.S. SVD - Singular Value Decomposition.
2020; https://mahout.apache.org/users/basics/svd-
--singular-value-decomposition.html.

[56] Wang, Y., W. Goh, L. Wong, G. Montana, and A.s.D.N.
Initiative, Random forests on Hadoop for genome-
wide association studies of multivariate
neuroimaging phenotypes. BMC Bioinformatics,
2013. 14(S16): p. S6.

[57] Griffith, E. How to Find Your IP Address. 2020;
https://www.pcmag.com/how-to/how-to-find-
your-ip-address.

[58] Mirantis. Docker Enterprise | Mirantis. 2020;
https://www.mirantis.com/software/docker/docke
r-enterprise/.

[59] Windows Server 2019 | Microsoft. 2020;
https://www.microsoft.com/en-us/windows-
server.

[60] Azure Service Fabric—Building Microservices |
Microsoft Azure. 2020;
https://azure.microsoft.com/en-
us/services/service-fabric/.

[61] Overview of Azure Service Fabric Mesh - Azure Service
Fabric Mesh. 2020;
https://docs.microsoft.com/en-us/azure/service-
fabric-mesh/service-fabric-mesh-overview.

[62] Mirantis. Docker Enterprise Container Cloud |
Mirantis. 2020;
https://www.mirantis.com/software/docker/docke
r-enterprise-container-cloud/.

[63] Nvidia. NVIDIA Ampere Architecture: The Heart of the
Modern Data Center. 2020;
https://www.nvidia.com/en-us/data-center/nvidia-
ampere-gpu-architecture/.

Page 6964

https://cloud.google.com/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://github.com/coredns/coredns
https://www.weave.works/
https://iperf.fr/
http://uperf.org/
https://github.com/yahoo/open_nsfw
https://helm.sh/
https://www.centos.org/about/
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://github.com/Intel-bigdata/HiBench
https://www.influxdata.com/time-series-platform/
https://www.influxdata.com/time-series-platform/
https://www.influxdata.com/time-series-platform/chronograf/
https://www.influxdata.com/time-series-platform/chronograf/
https://mapr.com/whitepapers/terasort-benchmark-comparison-yarn/
https://mapr.com/whitepapers/terasort-benchmark-comparison-yarn/
https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
https://mahout.apache.org/users/basics/svd---singular-value-decomposition.html
https://mahout.apache.org/users/basics/svd---singular-value-decomposition.html
https://www.pcmag.com/how-to/how-to-find-your-ip-address
https://www.pcmag.com/how-to/how-to-find-your-ip-address
https://www.mirantis.com/software/docker/docker-enterprise/
https://www.mirantis.com/software/docker/docker-enterprise/
https://www.microsoft.com/en-us/windows-server
https://www.microsoft.com/en-us/windows-server
https://azure.microsoft.com/en-us/services/service-fabric/
https://azure.microsoft.com/en-us/services/service-fabric/
https://docs.microsoft.com/en-us/azure/service-fabric-mesh/service-fabric-mesh-overview
https://docs.microsoft.com/en-us/azure/service-fabric-mesh/service-fabric-mesh-overview
https://www.mirantis.com/software/docker/docker-enterprise-container-cloud/
https://www.mirantis.com/software/docker/docker-enterprise-container-cloud/
https://www.nvidia.com/en-us/data-center/nvidia-ampere-gpu-architecture/
https://www.nvidia.com/en-us/data-center/nvidia-ampere-gpu-architecture/

