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Abstract. Methods that learn the structure of Probabilistic Senten-
tial Decision Diagrams (PSDD) from data have achieved state-of-the-art
performance in tractable learning tasks. These methods learn PSDDs
incrementally by optimizing the likelihood of the induced probability
distribution given available data and are thus robust against missing val-
ues, a relevant trait to address the challenges of embedded applications,
such as failing sensors and resource constraints. However PSDDs are out-
performed by discriminatively trained models in classification tasks. In
this work, we introduce D-LearnPSDD, a learner that improves the
classification performance of the LearnPSDD algorithm by introducing
a discriminative bias that encodes the conditional relation between the
class and feature variables.

Keywords: Probabilistic models · Tractable inference · PSDD

1 Introduction

Probabilistic machine learning models have shown to be a well suited approach
to address the challenges inherent to embedded applications, such as the need
to handle uncertainty and missing data [11]. Moreover, current efforts in the
field of Tractable Probabilistic Modeling have been making great strides towards
successfully balancing the trade-offs between model performance and inference
efficiency: probabilistic circuits, such as Probabilistic Sentential Decision Dia-
grams (PSDDs), Sum-Product Networks (SPNs), Arithmetic Circuits (ACs)
and Cutset Networks, posses myriad desirable properties [4] that make them
amenable to application scenarios where strict resource budget constraints must
be met [12]. But these models’ robustness against missing data—from learn-
ing them generatively—is often at odds with their discriminative capabilities.
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We address such a conflict by proposing a discriminative-generative probabilis-
tic circuit learning strategy, which aims to improve the models’ discriminative
capabilities, while maintaining their robustness against missing features.

We focus in particular on the PSDD [17], a state-of-the-art tractable rep-
resentation that encodes a joint probability distribution over a set of random
variables. Previous work [12] has shown how to learn hardware-efficient PSDDs
that remain robust to missing data and noise. This approach relies largely on the
LearnPSDD algorithm [20], a generative algorithm that incrementally learns
the structure of a PSDD from data. Moreover, it has been shown how to exploit
such robustness to trade off resource usage with accuracy. And while the achieved
accuracy is competitive when compared to Bayesian Network classifiers, dis-
criminatively learned models perform consistently better than purely generative
models [21] since the latter remain agnostic to the discriminative task they ought
to perform. This begs the question of whether the discriminative performance of
the PSDD could be improved while remaining robust and tractable.

In this work, we propose a hybrid discriminative-generative PSDD learning
strategy, D-LearnPSDD, that enforces the discriminative relationship between
class and feature variables by capitalizing on the model’s ability to encode
domain knowledge as a logic formula. We show that this approach consistently
outperforms the purely generative PSDD and is competitive compared to other
classifiers, while remaining robust to missing values at test time.

2 Background

Notation. Variables are denoted by upper case letters X and their instantiations
by lower case letters x. Sets of variables are denoted in bold upper case X and
their joint instantiations in bold lower case x. For the classification task, the
feature set is denoted by F while the class variable is denoted by C.

Fig. 1. A Bayesian network and its equivalent PSDD (taken from [20]).
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PSDD. Probabilistic Sentential Decision Diagrams (PSDDs) are circuit repre-
sentations of joint probability distributions over binary random variables [17].
They were introduced as probabilistic extensions to Sentential Decision Dia-
grams (SDDs) [7], which represent Boolean functions as logical circuits. The
inner nodes of a PSDD alternate between AND gates with two inputs and OR
gates with arbitrary number of inputs; the root must be an OR node; and each
leaf node encodes a distribution over a variable X (see Fig. 1c). The combination
of an OR gate with its AND gate inputs is referred to as decision node, where
the left input of the AND gate is called prime (p), and the right is called sub
(s). Each of the n edges of a decision node are annotated with a normalized
probability distribution θ1, ..., θn.

PSDDs possess two important syntactic restrictions: (1) Each AND node
must be decomposable, meaning that its input variables must be disjoint. This
property is enforced by a vtree, a binary tree whose leaves are the random vari-
ables and which determines how will variables be arranged in primes and subs
in the PSDD (see Fig. 1d): each internal vtree node is associated with the PSDD
nodes at the same level, variables appearing in the left subtree X are the primes
and the ones appearing in the right subtree Y are the subs. (2) Each decision
node must be deterministic, thus only one of its inputs can be true.

Each PSDD node q represents a probability distribution. Terminal nodes
encode a univariate distributions. Decision nodes, when normalized for a vtree
node with X in its left subtree and Y in its right subtree, encode the following
distribution over XY (see also Fig. 1a and c):

Prq(XY) =
∑

i

θiPrpi
(X)Prsi

(Y) (1)

Thus, each decision node decomposes the distribution into independent distri-
butions over X and Y. In general, prime and sub variables are independent at
PSDD node q given the prime base [q] [17]. This base is the support of the node’s
distribution, over which it defines a non-zero probability and it is written as a
logical sentence using the recursion [q] =

∨
i[pi] ∧ [si]. Kisa et al. [17] show that

prime and sub variables are independent in PSDD node q given a prime base:

Prq(XY|[pi]) = Prpi
(X|[pi])Prsi

(Y|[pi]) (2)

= Prpi
(X)Prsi

(Y)

This equation encodes context specific independence [2], where variables (or sets
of variables) are independent given a logical sentence. The structural constraints
of the PSDD are meant to exploit such independencies, leading to a represen-
tation that can answer a number of complex queries in polynomial time [1],
which is not guaranteed when performing inference on Bayesian Networks, as
they don’t encode and therefore can’t exploit such local structures.

LearnPSDD. The LearnPSDD algorithm [20] generatively learns a PSDD by
maximizing log-likelihood given available data. The algorithm starts by learn-
ing a vtree that minimizes the mutual information among all possible sets of
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variables. This vtree is then used to guide the PSDD structure learning stage,
which relies on the iterative application of the Split and Clone operations [20].
These operations keep the PSDD syntactically sound while improving likelihood
of the distribution represented by the PSDD. A problem with LearnPSDD

when using the resulting model for classification is that when the class variable
is only weakly dependent on the features, the learner may choose to ignore that
dependency, potentially rendering the model unfit for classification tasks.

3 A Discriminative Bias for PSDD Learning

Generative learners such as LearnPSDD optimize the likelihood of the distribu-
tion given available data rather than the conditional likelihood of the class vari-
able C given a full set of feature variables F. As a result, their accuracy is often
worse than that of simple models such as Naive Bayes (NB), and its close relative
Tree Augmented Naive Bayes (TANB) [12], which perform surprisingly well on
classification tasks even though they encode a simple—or naive—structure [10].
One of the main reasons for their performance, despite being generative, is that
(TA)NB models have a discriminative bias that directly encodes the conditional
dependence of all the features on the class variable.

We introduce D-LearnPSDD, an extension to LearnPSDD based on the
insight that the learned model should satisfy the “class conditional constraint”
present in Bayesian Network classifiers. That is, all feature variables must be
conditioned on the class variable. This enforces a structure that is beneficial for
classification while still allowing to generatively learn a PSDD that encodes the
distribution over all variables using a state-of-the-art learning strategy [20].

3.1 Discriminative Bias

The classification task can be stated as a probabilistic query:

Pr(C|F) ∼ Pr(F|C) · Pr(C). (3)

Our goal is to learn a PSDD whose root decision node directly represents the
conditional probability distribution Pr(F|C). This can be achieved by forcing
the primes of the first line in Eq. 2 to be [p0] = [¬c] and [p1] = [c], where [c]
states that the propositional variable c representing the class variable is true
(i.e. C = 1), and similarly [¬c] represents C = 0. For now we assume the class is
binary and will show later how to generalize to a multi-valued class variable. For
the feature variables we can assume they are binary without loss of generality
since a multi-valued variable can be converted to a set of binary variables via a
one-hot encoding (see, for example [20]). To achieve our goal we first need the
following proposition:

Proposition 1. Given (i) a vtree with a single variable C as the prime and
variables F as the sub of the root node, and (ii) an initial PSDD where the
root decision node decomposes the distribution as [root] = ([p0] ∧ [s0]) ∨ ([p1] ∧
[s1]); applying the Split and Clone operators will never change the root decision
decomposition [root] = ([p0] ∧ [s0]) ∨ ([p1] ∧ [s1]).
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Proof. The D-LearnPSDD algorithm iteratively applies two operations: Clone
and Split (following the algorithm in [20]). First, the Clone operator requires a
parent node, which is not available for the root node. Since the initial PSDD
follows the logical formula described above, whose only restriction is on the root
node, there is no parent available to clone and the root’s base thus remains intact
when applying the Clone operator. Second, the Split operator splits one of the
subs to extend the sentence that is used to mutually exclusively and exhaustively
define all children. Since the given vtree has only one variable, C, as the prime
of the root node, there are no other variables available to add to the sub. The
Split operator cant thus not be applied anymore and the root’s base stays intact
(see Figs. 1c and d).

We can now show that the resulting PSDD contains nodes that directly
represent the distribution Pr(F|C).

Proposition 2. A PSDD of the form [root] = ([¬c] ∧ [s0]) ∨ ([c] ∧ [s1]) with c

the propositional variable stating that the class variable is true, and s0 and s1

any formula with propositional feature variables f0, . . . , fn, directly expresses the
distribution Pr(F|C).

Proof. Applying this to Eq. 1 results in:

Prq(CF) = Pr¬c(C)Prs0
(F) + Prc(C)Prs1

(F)

= Pr¬c(C|[¬c]) · Prs0
(F|[¬c]) + Prc(C|[c]) · Prs1

(F|[c])

= Pr¬c(C = 0) · Prs0
(F|C = 0) + Prc(C = 1) · Prs1

(F|C = 1)

The learned PSDD thus contains a node s0 with distribution Prs0
that

directly represents Pr(F|C = 0) and a node s1 with distribution Prs1
that rep-

resents Pr(F|C = 1). The PSDD thus encodes Pr(F|C) directly because the two
possible value assignments of C are C = 0 and C = 1.

The following examples illustrate why both the specific vtree and initial
PSDD are required.

Example 1. Figure 2b shows a PSDD that encodes a fully factorized probability
distribution normalized for the vtree in Fig. 2a. The PSDD shown in this example
initializes the incremental learning procedure of LearnPSDD [20]. Note that
the vtree does not connect the class variable C to all feature variables (e.g.
F1). Therefore, when initializing the algorithm on this vtree-PSDD combination,
there are no guarantees that the conditional relations between certain features
and the class will be learned.

Example 2. Figure 2e shows a PSDD that explicitly conditions the feature vari-
ables on the class variables by normalizing for the vtree in Fig. 2c and by fol-
lowing the logical formula from Proposition 2. This biased PSDD is then used to
initialize the D-LearnPSDD learner. Note that the vtree in Fig. 2c forces the
prime of the root node to be the class variable C.
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Example 3. Figure 2d shows, however, that only setting the vtree in Fig. 2c is
not sufficient for the learner to condition the features on the class. When initial-
izing on a PSDD that encodes a fully factorized formula, and then applying the
Split and Clone operators, the relationship between the class variable and the
features are not guaranteed to be learned. In this worst case scenario, the learned
model could have an even worse performance than the case from Example 1. By
applying Eq. 1 on the top split, we can give intuition why this is the case:

Prq(CF) = Prp0
(C|[c ∨ ¬c]) · Prs0

(F|[c ∨ ¬c])

= (Prp1
(C|[c]) + Prp2

(C|[¬c])) · Prs0
(F|[c ∨ ¬c])

= (Prp1
(C = 1) + Prp2

(C = 0)) · Prs0
(F)

The PSDD thus encodes a distribution that assumes that the class variable is
independent from all feature variables. While this model might still have a high
likelihood, its classification accuracy will be low.

We have so far introduced the D-LearnPSDD for a binary classification
task. However, it can be easily generalized to an n-valued classification scenario:
(1) The class variable C will be represented by multiple propositional variables
c0, c1, . . . , cn that represent the set C = 0, C = 1, . . . , C = n, of which exactly
one will be true at all times. (2) The vtree in Proposition 1 now starts as a
right-linear tree over c0, . . . , cn. The F variables are the sub of the node that
has cn as prime. (3) The initial PSDD in Proposition 2 now has a root the
form [root] =

∨
i=0...n([ci

∧
j:0...n∧i�=j ¬cj ] ∧ [si]), which remains the same after

applying Split and Clone. The root decision node now represents the distribution
Prq(CF) =

∑
i:0...n Prci

∧
j �=i

¬cj
(C = i) · Prsi

(F|C = i) and therefore has nodes
at the top of the tree that directly represent the discriminative bias.

3.2 Generative Bias

Learning the distribution over the feature variables is a generative learning pro-
cess and we can achieve this by applying the Split and Clone operators in the
same way as the original LearnPSDD algorithm. In the previous section we had
not yet defined how should Pr(F|C) from Proposition 2 be represented in the ini-
tial PSDD, we only explained how our constraint enforces it. So the question is
how do we exactly define the nodes corresponding to s0 and s1 with distribu-
tions Pr(F|C = 0) and Pr(F|C = 1)? We follow the intuition behind (TA)NB
and start with a PSDD that encodes a distribution where all feature variables
are independent given the class variable (see Fig. 2e). Next, the LearnPSDD

algorithm will incrementally learn the relations between the feature variables by
applying the Split and Clone operations following the approach in [20].

3.3 Obtaining the Vtree

In learnPSDD, the decision nodes decompose the distribution into independent
distributions. Thus, the vtree is learned from data by maximizing the approxi-
mate pairwise mutual information, as this metric quantifies the level of indepen-
dence between two sets of variables. For D-LearnPSDD we are interested in
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the level of conditional independence between sets of feature variables given the
class variable. We thus obtain the vtree by optimizing for Conditional Mutual
Information instead and replace mutual information in the approach in [20] with:

CMI(X,Y|Z) =
∑

x

∑
y

∑
z Pr(xy) log Pr(z) Pr(xyz)

Pr(xz) Pr(yz) .

Fig. 2. Examples of vtrees and initial PSDDs.

4 Experiments

Table 1. Datasets
Dataset |F| |C| |N |

Australian 40 2 690
Breast 28 2 683
Chess 39 2 3196
Cleve 25 2 303
Corral 6 2 160
Credit 42 2 653
Diabetes 11 2 768
German 54 2 1000
Glass 17 6 214
Heart 9 2 270
Iris 12 3 150
Mofn 10 2 1324
Pima 11 2 768
Vehicle 57 2 846
Waveform 109 3 5000

We compare the performance of D-LearnPSDD,
LearnPSDD, two generative Bayesian classifiers
(NB and TANB) and a discriminative classifier
(logistic regression). In particular, we discuss the
following research queries: (1) Sect. 4.2 examines
whether the introduced discriminative bias improves
classification performance on PSDDs. (2) Sect. 4.3
analyzes the impact of the vtree and the imposed
structural constraints on model tractability and
performance. (3) Finally, Sect. 4.4 compares the
robustness to missing values for all classification
approaches.
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4.1 Setup

We ran our experiments on the suite of 15 standard machine learning bench-
marks listed in Table 1. All of the datasets come from the UCI machine learning
repository [8], with exception of “Mofn” and “Corral” [18]. As pre-processing
steps, we applied the discretization method described in [9], and we binarized all
variables using a one-hot encoding. Moreover, we removed instances with miss-
ing values and features whose value was always equal to 0. Table 1 summarizes
the number of binary features |F|, the number of classes |C| and the available
number of training samples |N| per dataset.

4.2 Evaluation of DG-LearnPSDD

Table 2 compares D-LearnPSDD, LearnPSDD, Naive Bayes (NB), Tree Aug-
mented Naive Bayes (TANB) and logistic regression (LogReg)1 in terms of accu-
racy via five fold cross validation2. For LearnPSDD, we incrementally learned a
model on each fold until convergence on validation-data log-likelihood, following
the methodology in [20].

For D-LearnPSDD, we incrementally learned a model on each fold until
likelihood converged but then selected the incremental model with the highest
training set accuracy. For NB and TANB, we learned a model per fold and
compiled them to Arithmetic Circuits3, a more general form of PSDDs [6], which
allows us to compare the size of these Bayes net classifiers and the PSDDs.
Finally, we compare all probabilistic models with a discriminative classifier, a
multinomial logistic regression model with a ridge estimator.

Table 2 shows that the proposed D-LearnPSDD clearly benefits from the
introduced discriminative bias, outperforming LearnPSDD in all but two
datasets, as the latter method is not guaranteed to learn significant relations
between feature and class variables. Moreover, it outperforms Bayesian classi-
fiers in most benchmarks, as the learned PSDDs are more expressive and allow
to encode complex relationships among sets of variables or local dependencies
such as context specific independence, while remaining tractable. Finally, note
that the D-LearnPSDD is competitive in terms of accuracy with respect to
logistic regression (LogReg) a purely discriminative classification approach.

4.3 Impact of the Vtree on Discriminative Performance

The structure and size of the learned PSDD is largely determined by the vtree it
is normalized for. Naturally, the vtree also has an important role in determining
the quality (in terms of log-likelihood) of the probability distribution encoded
by the learned PSDD [20]. In this section, we study the impact that the choice
of vtree and learning strategy has on the trade-offs between model tractability,
quality and discriminative performance.

1 NB, TANB and LogReg are learned using Weka with default settings.
2 In each fold, we hold 10% of the data for validation.
3 Using the ACE tool Available at http://reasoning.cs.ucla.edu/ace/.

http://reasoning.cs.ucla.edu/ace/
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Table 2. Five cross fold accuracy and size in number of parameters

Dataset D-LearnPSDD LearnPSDD NB TANB LogReg

Accuracy Size Accuracy Size Accuracy Size Accuracy Size Accuracy

Australian 86.2 ± 3.6 367 84.9 ± 2.7 386 85.1 ± 3.1 161 85.8 ± 3.4 312 84.1 ± 3.4

Breast 97.1 ± 0.9 291 94.9 ± 0.5 491 97.7 ± 1.2 114 97.7 ± 1.2 219 96.5 ± 1.6

Chess 97.3 ± 1.4 2178 94.9 ± 1.6 2186 87.7 ± 1.4 158 91.7 ± 2.2 309 96.9 ± 0.7

Cleve 82.2 ± 2.5 292 81.9 ± 3.2 184 84.9 ± 3.3 102 79.9 ± 2.2 196 81.5 ± 2.9

Corral 6 99.4 ± 1.4 39 98.1 ± 2.8 58 89.4 ± 5.2 26 98.8 ± 1.7 45 86.3 ± 6.7

Credit 85.6 ± 3.1 693 86.1 ± 3.6 611 86.8 ± 4.4 170 86.1 ± 3.9 326 84.7 ± 4.9

Diabetes 78.7 ± 2.9 124 77.2 ± 3.3 144 77.4 ± 2.56 46 75.8 ± 3.5 86 78.4 ± 2.6

German 72.3 ± 3.2 1185 69.9 ± 2.3 645 73.5 ± 2.7 218 74.5 ± 1.9 429 74.4 ± 2.3

Glass 79.1 ± 1.9 214 72.4 ± 6.2 321 70.0 ± 4.9 203 69.5 ± 5.2 318 73.0 ± 5.7

Heart 84.1 ± 4.3 51 78.5 ± 5.3 75 84.0 ± 3.8 38 83.0 ± 5.1 70 84.0 ± 4.7

Iris 90.0 ± 0.1 76 94.0 ± 3.7 158 94.7 ± 1.8 75 94.7 ± 1.8 131 94.7 ± 2.9

Mofn 98.9 ± 0.9 260 97.1 ± 2.4 260 85.0 ± 5.7 42 92.8 ± 2.6 78 100.0 ± 0

Pima 80.2 ± 0.3 108 74.7 ± 3.2 110 77.6 ± 3.0 46 76.3 ± 2.9 86 77.7 ± 2.9

Vehicle 95.0 ± 1.7 1186 93.9 ± 1.69 1560 86.3 ± 2.00 228 93.0 ± 0.8 442 94.5 ± 2.4

Waveform 85.0 ± 1.0 3441 78.7 ± 5.6 2585 80.7 ± 1.9 657 83.1 ± 1.1 1296 85.5 ± 0.7

Figure 3a shows test-set log-likelihood and Fig. 3b classification accuracy as a
function of model size (in number of parameters) for the “Chess” dataset. We dis-
play average log-likelihood and accuracy over logarithmically distributed ranges
of model size. This figure contrasts the results of three learning approaches: D-

LearnPSDD when the vtree learning stage optimizes mutual information (MI,
shown in light blue); when it optimizes conditional mutual information (CMI,
shown in dark blue); and the traditional LearnPSDD (in orange).

Figure 3a shows that likelihood improves at a faster rate during the first
iterations of LearnPSDD, but eventually settles to the same values as D-

LearnPSDD because both optimize for log-likelihood. However, the discrimi-
native bias guarantees that classification accuracy on the initial model will be
at least as high as that of a Naive Bayes classifier (see Fig. 3b). Moreover, this
results in consistently superior accuracy (for the CMI case) compared to the
purely generative LearnPSDD approach as shown also in Table 2. The dip in
accuracy during the second and third intervals are a consequence of the genera-
tive learning, which optimizes for log-likelihood and can therefore initially yield
feature-value correlations that decrease the model’s performance as a classifier.

Finally, Fig. 3b demonstrates that optimizing the vtree for conditional mutual
information results in an overall better performance vs. accuracy trade-off when
compared to optimizing for mutual information. Such a conditional mutual infor-
mation objective function is consistent with the conditional independence con-
straint we impose on the structure of the PSDD and allows the model to consider
the special status of the class variable in the discriminative task.
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Fig. 3. Log-likelihood and accuracy vs. model size trade-off of the incremental PSDD
learning approaches. MI and CMI denote mutual information and conditional mutual
information vtree learning, respectively. (Color figure online)

4.4 Robustness to Missing Features

The generative models in this paper encode a joint probability distribution over
all variables and therefore tend to be more robust against missing features than
discriminative models, which only learn relations relevant to their discriminative
task. In this experiment, we assessed this robustness aspect by simulating the
random failure of 10% of the original feature set per benchmark and per fold
in five-fold cross-validation. Figure 4 shows the average accuracy over 10 such
feature failure trials in each of the 5 folds (flat markers) in relation to their full
feature set accuracy reported in Table 2 (shaped markers). As expected, the per-
formance of the discriminative classifier (LogReg) suffers the most during feature
failure, while D-LearnPSDD and LearnPSDD are notably more robust than
any other approach, with accuracy losses of no more than 8%. Note from the
flat markers that the performance of D-LearnPSDD under feature failure is
the best in all datasets but one.

Fig. 4. Classification robustness per method.
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5 Related Work

A number of works have dealt with the conflict between generative and dis-
criminative model learning, some dating back decades [14]. There are multiple
techniques that support learning of parameters [13,23] and structure [21,24]
of probabilistic circuits. Typically, different approaches are followed to either
learn generative or discriminative tasks, but some methods exploit discrimina-
tive models’ properties to deal with missing variables [22]. Other works that also
constraint the structure of PSDDs have been proposed before, such as Choi et
al. [3]. However, they only do parameter learning, not structure learning: their
approach to improve accuracy is to learn separate structured PSDDs for each
distribution of features given the class and feed them to a NB classifier. In [5],
Correira and de Campos propose a constrained SPN architecture that shows both
computational efficiency and classification performance improvements. However,
it focuses on decision robustness rather than robustness against missing values,
essential to the application range discussed in this paper. There are also a num-
ber of methods that focus specifically on the interaction between discriminative
and generative learning. In [15], Khosravi et al. provide a method to compute
expected predictions of a discriminative model with respect to a probability dis-
tribution defined by an arbitrary generative model in a tractable manner. This
combination allows to handle missing values using discriminative couterparts of
generative classifiers [16]. More distant to this work is the line of hybrid discrim-
inative and generative models [19], their focus is on semisupervised learning and
deals with missing labels.

6 Conclusion

This paper introduces a PSDD learning technique that improves classification
performance by introducing a discriminative bias. Meanwhile, robustness against
missing data is kept by exploiting generative learning. The method capitalizes
on PSDDs’ domain knowledge encoding capabilities to enforce the conditional
relation between the class and the features. We prove that this constraint is
guaranteed to be enforced throughout the learning process and we show how not
encoding such a relation might lead to poor classification performance. Evalu-
ation on a suite of benchmarking datasets shows that the proposed technique
outperforms purely generative PSDDs in terms of classification accuracy and the
other baseline classifiers in terms of robustness.
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